請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47833完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘永寧(Yong-ning Pan) | |
| dc.contributor.author | Shoa-Hui Chiou | en |
| dc.contributor.author | 邱少暉 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:21:18Z | - |
| dc.date.available | 2012-08-12 | |
| dc.date.copyright | 2010-08-12 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-10 | |
| dc.identifier.citation | [1] 林峰輝,組織與生醫材料之交互作用:醫學工程原理與應用,王正一主編,正中
書局出版,(1993). [2] B. D. Kattahagen: Bone regeneration with bone substitutes: Springer-Verlag, Berlin Heidelberh, New York,98,(1989). [3] M. Niinomi: Metall. and Mater. Trans,33A,(2002). [4] J. Pan, C. Karlen and C. Ulfvin: Electrochemical Society Proc,(1999). [5] 何文福,鈦鉬合金之結構及性質研究, 國立成功大學博士論文,(1999). [6] 李智銘,鈦鉭及鈦鈮合金之結構性質研究,國立成功大學博士論文, (2001). [7] 林殿傑,鑄造鈦鉬鐵及鈦鉬鉻合金性質研究,國立成功大學博士論文, (2002). [8] K. Endo, Y. Abiko, M.Suzuki, H. Oho and T. Kaku: Zauryo-to-Kankyo,47, 1998) . [9] R. S. Brown and R. C. Gebeau: 6th World Biomaterials Congr. Trans., Kamuela, Hawaii, May 15-20 (2000). [10] Modern Casting Staff Report, Modern Casting,93,(2003). [11] 李智銘,鈦鉭及鈦鈮合金之結構性質研究,國立成功大學博士論文,(2001). [12] U. Zwicker, K. Buhler, R. Mueller, H. Beck and H. J. Schmid: in Titanium’80: Science and Technology, H. Kimura and O. Izumi, eds. A. [13] S. G. Steinemann: Titanium’84: Science and Technology, ed. by G. Lutjering, U. Zwicker and W. Bunk (Deutsche Gesellschaft Fur Metallkunde, Munich, Germany, 1985). [14] D. P. Perl and A. R. Brody: Sci. 208,(1980). [15] S. Yumoto, H. Ohashi, H. Nagai, S. Kakimi Y. Ogawa, Y. Iwata and K. Ishii: Int. J. PIXE 2,(1992). [16] H. Kawahara, S. Ochi, K. Tanetani, K. Kato, M. Isogai, Y, Mizuno, H. Yamamoto and A. Yamaguchi: J. Jpn. Soc. Dent. Apparat. &Mater.4,(1963). [17] C. A. Engh and J. D. Bobyn: Clin. Orthop. Relat. Res, 231,(1988). [18] D. Kuroda, M. Ninomi, M. Morinaga, Y. Kato and T. Yasshiro: Mater. Sci. Eng. A A243,(1998). [19] P. J. Bania: Beta Titanium in the 1990’s,ed. by D. Eylon, R. R. Boyer and D. A. Kosss, (TMS, Warrendale,PA,1993). [20] Standard Specification for Wrought Ti-13Nb-13Zr alloy for surgical implant applications, ASTM Designation F1713-96, ASTM, Philadelphia,PA ,(2000). [20] K. Wang: Mater. Sci. Eng. A, A213,(1996). [21] Standard Specification for Wrought Ti-21Mo-6Zr-2Fe alloy for surgical implant applications, ASTM Designation F1813-97, ASTM, Philadelphia,PA,(2000). [22] L. D. Zardiackas, D. W. Mitchell and J. A. Diesegi: in Medical Applications of Titanium and Its Alloys, S. A. Brown and J. E. Lemons, eds., ASTM STP 1272, ASTM, Philadelphia,PA,(1996). [23] ASTM designation F2066-01: Standard specification for wrought titanium- 15molybdenum alloy for surgical implant applications. (ASTM, Philadelphia. PA: U. S. A., 2001). [24] T. Ahmed, M. Long, J. Slivestri, C. Ruiz and H. J. Rack: in Titanium’95: Science and Technology, P. A. Blenkinsop, W. J. Evans, and H. M. Flower, eds., Institute of Metal, London, 2 ,(1996). [25] ASTM designation draft # 3. Standard specification for wrought titanium- 35niobium-7zirconium-5tantalum alloy for surgical implant applications (UNS R58350): (ASTM, Philadelphia. PA, U. S. A.) [26] 潘宗呈,全人工髖關節植入後之界面應力分析,國立成功大學醫學工程研究所碩士論文, (2000). [27] H. C. Amstutz, P. Campbell, N. Kossvsky and I. C. Clarke: Clin. Orthop.276, (1991). [28] H. A. Mckellop T. V. Rostlund: J. Biomed. Mater. Res. 24,(1990). [29] J. Rieu, A. Pichat, L. M. Rabbe, A. Rambert, C. Chabro and M. Robelet: Mater. Sci. and Tech.8,(1992). [30] A. Ravaglioli and A. Krajewski, “Bioceramics: materials, properties, applications”, Chapman & Hall Press, London, (1992). [31] J. Barksdale, “Titanium: its occurrence, chemistry, and technology”, Ronald Press Co., New York,(1949). [32] C. R. Brooks, “Heat treatment, structure, and properties of nonferrous alloys”, American Society for Metals, Metals Park, Ohio,(1982). [33] V. C. Petersen, J. B. Guernsey and H. A. Johnson: properties and applications of beta III titanium, Washington, DC: AIAA,(1968). [34] M. J. Donachie, Jr.: Titanium: A Technical Guide, ASM, Metals Park, OH, (1988). [35] 劉文海,鈦合金資源與應用需求專題研究,金屬工業研究發展中心,(2000). [36] S. G. Steinemann: Evaluation of Biomaterials, ed. by G. D. Winter, J. [37] E. W. Colling: The Physical Metallurgy of Titanium Alloys (ASM, Metals Park, OH, 1984). [38] E. W. Colling: Applied Superconductivity, Metallurgy and Physics of Titanium Alloys, Vol.1 (Plenum Press, NY, U.S.A., 1986). [39] J. L. Murry: Phase Diagram of Binary Titanium Alloys, Vol.2 (ASM, Metals Park, OH,1987). [40] A Guha, Metals Handbook, 9th ed. Vol.8 edited by H. E. Boyer and T. L. Gall,(ASM, Metals Park,OH,1985). [42] ASTM designation E83-00: Standard practice for verification and classification of extensometer system. (ASTM, Philadelphia. PA, U.S.A., 2002). [43] W. H. Graft and W. Rostoker, The measurement of elastic modulus of titanium alloys, Symposium on Titanium: Presented at the Second Pacific Area National Meeting, ASTM,(1957). [44] Introduction of Young’s Modulus Measure System (JE-RT 3), Technical Manual, Nippon Techno-Plus Co., Ltd., Japan. [45] Y. L. Hao, M. Niinomi, D. Kuroda, K. Fukunaga, Y. L. Zhou, R. Yang and A. Suzuki: Metall. Mater. Trans. A 33A,(2003). [46] S. G. Fedotova: Dependene of the Elastic Properties of Titanium Alloys on Their Composition and Structure, in Titanium and its Alloys, ed. By I. I. Kornilov, Akademiya Nauk SSSR (1963); Transl. Israel Program for Scientific Translations Ltd., IPST. Cat. No. 1454, (1966). [47] 柯賢文, “腐蝕及其防治” (全華科技圖書, 1995). [48] 鮮祺振,“腐蝕控制” ,徐氏基金會. [49] 熊楚強、王月,“電化學”,文京圖書有限公司. [50] 劉富雄, “防蝕技術”,全華科技圖書有限公司. [51] Denny A.Jones, “Principles And Prevention of Corrosion” 2nd ed. (Prentice-Hall, Inc.1996). [52] S. G. Steinemann, P. A. Mausli, S. Szmuklermoncler, M.Emlitsch, O. Pohler, H.E. Hintermann, Beta Titanium in the 1990s, TMS,Warrendale, Pennsylvania,(1993). [53] Ying-Long Zhou, Mitsuo Niinomi , Passive films and corrosion resistance of Ti–Hf alloys in 5% HCl solution. [54] Pitting corrosion of aluminumZ. Szklarska-Smialowska. [55] J.A. Helsen and J. Breme, Metals as s Biomaterials, John Wiley & Sons Ltd, Chichester, England (1998). [56] L.L. Shreir, F.R.I. C. and F.I. M., Corrosion, vol. 1: Corrosion of Metals and Alloys, George Newnes Ltd (1963). [57] F.L. Laque and H.R. Copson, Corrosion Resistance of Metals and Alloys, Reinhold Publishing CorporationChapman & Hall Ltd, New York, London (1963). [58] J.R. Davis, Corrosion Understanding the Basics, ASM International, Materials Park (2000). [59] R. N. S. Sodhi, A. Weninger, and J. E. Davies, K. Sreenivas. [60] Ying Long Zhou, Mitsuo Niinomi, Toshikazu Akahori,Hisao Fukui , Hiroyuki Toda, Corrosion resistance and biocompatibility of Ti–Ta alloys for biomedical Applications. [61] H. Habzaki, K. Shimizu, P. Skeldon, G.E. Thompson, G.C. Wood and X. Zhou, Trans. Inst. Met. Finish.75,(1997). [62] B. L. Wang, Y. F. Zheng and L. C. Zhao, Effects of Hf content and immersion time on electrochemical behavior of biomedical Ti-22Nb-xHf alloys in 0.9%NaCl solution. [63] B. L. Wang, Y. F. Zheng and L. C. Zhao, Electrochemical corrosion behavior of biomedical Ti–22Nb and Ti–22Nb–6Zr alloys in saline medium. [64] S. L. Assis, S. Wolynec, I. Costa, Electrochim. Acta, 2006. [65] Marisa V. Capela , Heloisa A. Acciari, Jorge Manuel V. Capela,Tha’ısa M. Carvalho, Maria Cec’ılia S. Melin, Repeatability of corrosion parameters for titanium–molybdenum alloys in 0.9% NaCl solution. [66] A.P.R. Alves, F.A. Santana, L.A.A. Rosa, S.A. Cursino, E.N. Codaro, A study on corrosion resistance of the Ti–10Mo experimental alloy after different processing methods. [67] J.E.G. Gonz’alez, J.C. Mirza-Rosca, J. Electroanal. Chem. 471,(1999). [68] G.O. Ilevbare, G.T. Burstein, Corros. Sci. 43,(2001). [69] Wislei R. Osorio, Alessandra Cremasco, Protasio N. Andrade, Amauri Garcia, Rubens Caram, Electrochemical behavior of centrifuged cast and heat treated Ti–Cu alloys formedical applications. [70] T. P. HOAR, D. C. MEARS and G. P. R.OTHWELL, THE RELATIONSHIPS BETWEEN ANODIC PASSIVITY,BRIGHTENING AND PITTING. [71] Nicolas Schiffa, Brigitte Grosgogeata, Michele Lissaca, Francis Dalardb, Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys. [72] Nakagawa M, Matsuya S, Shiraishi T, Ohta M. Effect of fluoride concentration and pH on corrosion behavior of titanium for dental use. J Dent Res 1999. [73] Shinji Takemoto,Masayuki Hattoria, Masao Yoshinari,Eiji Kawadaa, Katsuhiko Asamib, Yutaka Oda, Corrosion mechanism of Ti–Cr alloys in solution containing fluoride. [74] Bard JA. Encyclopedia of electrochemistry of the elements. Titanium, vol. 5. New York: Marcel Dekker; 1976. [75] Gert Boere, Influence of Fluoride on Titanium in an Acidic Environment Measured by Polarization Resistance Technique. [76] Yoshimitsu Okazaki,Emiko Gotoh, Comparison of metal release from various Metallic biomaterials in vitro. [77] D.Q. Martins, M.E.P. Souza, S.A. Souza, D.C. Andrade, C.M.A. Freire, R. Caram,Solute segregation and its influence on the microstructure and electrochemical behavior of Ti–Nb–Zr alloys. [78] Loesche WJ. Role of Streptococcus mutans in human dentaldecay. Microbiol Rev ,50,1986. [79] P.Y. Lim , P.L. She , H.C. Shih , Microstructure effect on microtopography of Chemically etched α+ β Ti alloys. [80] Joon B.Park,Joseph D.Brobzino Biomaterials principles and plications. [81] D. R. C. Mclachlan, B. Farnell and H.Galin: Biological Aspects of Metals and Metal-Related Disease. ed. by B. Sarkar (Raven Press, NY, 1983). [82] D. R. Sumner and J. O. Galante: Clin. Orthop. Relat. Res. 274(1992). [83] A. Sarmiento, G. A. Zych, L. L. Latta and R. R. Tarr: Clin. Orthop. Relat. Res. 144 (1979) . [84] 洪炎輝,生醫用鈦合金之合金開發及機械性質研究 ,國立台灣大學博士論,(2004). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47833 | - |
| dc.description.abstract | 本研究針對不同Hf含量(1~4%)之Ti-30Nb-1Fe-xHf與Ti-40Nb-yHf生醫用合金,分別在0.9%NaCl(pH 5.6)與0.2%NaF(pH 4)溶液中,以極化試驗及浸泡試驗來探討合金之耐腐蝕性質,並以掃描式電子顯微鏡觀察合金浸泡於含氟離子溶液後之表面形貌,再以X光電子能譜儀分析合金於含氟離子浸泡試驗後之表面之化學組成。 研究結果指出,Ti-30Nb-1Fe-xHf合金之抗腐蝕能力以Ti-30Nb-1Fe-1Hf最佳;Ti-40Nb-yHf合金之抗腐蝕能力則無明顯差異。觀察合金浸泡於含氟離子溶液之表面形貌,推論Ti-30Nb-1Fe-xHf合金其腐蝕行為屬於選擇性腐蝕(selective corrosion),而Ti-40Nb-yHf合金其腐蝕行為屬於均勻性腐蝕(uniform corrosion)。另外,合金浸泡後的表面化學組成為氫氧化物與TiO2及Nb2O5組成之金屬氧化物,但並無發現相關之氟化物。 | zh_TW |
| dc.description.abstract | The purpose of this research is to investigate the electrochemical corrosion behaviros of Ti-30Nb-1Fe-xHf and Ti-40-Nb-yHf (x, y= 1, 2, 3, and 4 wt%) alloys in 0.9%NaCl (pH=5.6) and 0.2%NaF (pH=4.0) solutions, utilizing potentiodynamic polarization and immerse tests. After testing, the surfaces of the alloys were examined by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results reveal that the corrosion resistance of Ti-30Nb-1Fe-1Hf alloy is the best among Ti-30Nb-1Fe-xHf alloys studied. Whereas, for Ti-40-Nb-yHf alloys, no significant difference in corrosion resistance can be obtained with different Hf content. The analyses of surface morphologies of the Ti-30Nb-1Fe-xHf alloys after immersed in flouride solution suggest that the corrosion behavior is a selective type. On the other hand, a uniform corrosion mode is responsible for Ti-40-Nb-yHf alloys. The constituents on the surfaces of both types of alloy consist of hydroxide, TiO2 and Nb2O5, but not fluoride. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:21:18Z (GMT). No. of bitstreams: 1 ntu-99-R97522723-1.pdf: 4939355 bytes, checksum: 159220aa577c6ee9299bfe402ff3872e (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員委員審定書…………………………………………………………………... I
誌謝 II 摘要 III Abstract IV 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 第二章 文獻回顧 5 2.1 生醫材料的定義 5 2.2 金屬生醫材料的發展 5 2.3 鈦合金的特性及分類 7 2.4 合金元素的影響 8 2.5 楊氏係數 8 2.5.1 楊氏係數測量方法 8 2.5.2 影響楊氏係數之因素 9 2.6 腐蝕導論 10 2.7 腐蝕和電化學反應 12 2.7.1 電化學反應 12 2.7.2 腐蝕速率之測試 13 2.8 電化動力學 14 2.8.1 混合電位理論 14 2.8.2 腐蝕電流測量 15 2.9 鈦合金於電化學實驗中的腐蝕行為探討 16 2.9.1 Ti-Hf 合金於5%HCl溶液中的抗腐蝕性探討 16 2.9.2 生醫用Ti-Ta 合金於5%HCl溶液中的抗腐蝕性探討 17 2.9.3 Ti-22Nb-Hf 合金於0.9%NaCl溶液中的抗腐蝕性探討 17 2.9.4 Ti-22Nb-Zr 合金於0.9%NaCl溶液中的抗腐蝕性探討 18 2.9.5 Ti-Mo合金於含氯離子溶液環境中其電化學腐蝕行為探討 18 2.9.6 鑄造態之Ti-Cu合金於含氯離子溶液環境中其電化學腐蝕行為探討 19 2.9.7 鈦合金表面之鈍化層於含氯離子溶液中之破裂機致 19 2.9.8 鈦合金於含氟離子中不同pH值對於抗腐蝕性之影響 20 2.9.9 Ti-Cr合金於含氟化物的溶液內之腐蝕行為探討 20 2.9.10 鈦合金表面之鈍化層於含氟離子溶液中之破裂機致 21 第三章 實驗方法及步驟 39 3.1 材料之選用及前處理 39 3.2 金相分析 39 3.3 X射線繞射分析 39 3.4 溶液調配 39 3.5 腐蝕液浸泡 40 3.6 極化試驗 40 3.7 試片分析 40 3.7.1 SEM分析 40 3.8 XPS 40 第四章 結果與討論 43 4.1 Ti – 30Nb-1Fe-xHf合金顯微組織與電化學實驗 43 4.1.1 金相分析 43 4.1.2 X光繞射分析 43 4.1.3 電化學實驗 (於氯離子溶液中) 43 4.1.3.1 極化試驗 43 4.1.3.2 浸泡試驗 45 4.1.4 Ti-30Nb-1Fe-xHf之電化學實驗 (於氟離子溶液) 45 4.1.4.1 極化試驗 45 (1) 極化曲線之結果討論 45 (2) 極化試驗後之表面形貌觀察 (SEM) 46 4.1.4.2 浸泡試驗 46 (1) 重量損失率結果討論 46 (2) 浸泡試驗後之表面形貌觀察 (SEM) 46 4.1.5 小結 47 4.2 Ti – 40Nb-yHf合金顯微組織與電化學實驗 47 4.2.1 金相分析 47 4.2.2 XRD 48 4.2.3 電化學實驗(於氯離子溶液) 48 4.2.3.1 極化試驗 48 4.2.3.2 浸泡試驗 48 4.2.4 電化學實驗(於氟離子溶液) 48 4.2.4.1 極化試驗 48 (1) 極化曲線之結果討論 48 (2) 極化試驗後之表面形貌觀察 (SEM) 49 4.2.4.2 浸泡試驗 49 (1) 重量損失率結果討論 49 (2) 浸泡試驗後之表面形貌觀察 (SEM) 49 4.2.5 小結 50 4.3 綜合討論 50 4.3.1 電化學實驗(於氯離子溶液) 50 4.3.1.1 極化試驗 50 4.3.1.2 浸泡試驗 50 4.3.2 電化學實驗(於氟離子溶液) 51 4.3.2.1 極化試驗 51 4.3.2.2 浸泡試驗 51 4.3.3 合金元素添加之影響 52 4.3.3.1 Nb添加於合金對其基地組織及抗蝕性影響 52 4.3.3.2 Hf添加於合金對其基地組織及抗蝕性影響 52 4.3.3.3 小結 52 4.4 XPS 分析 53 4.4.1 Ti-30Nb-1Fe-1Hf 53 4.4.2 Ti-30Nb-1Fe-4Hf 53 4.4.3 Ti-40Nb-1Hf 53 4.4.4 Ti-40Nb-4Hf 54 4.4.5 c.p Ti 54 4.4.6 小結 54 第五章 結論 55 參考文獻 96 | |
| dc.language.iso | zh-TW | |
| dc.subject | Ti-30Nb-1Fe-xHf` | zh_TW |
| dc.subject | Ti-40Nb-yHf | zh_TW |
| dc.title | Hf添加入Ti-30Nb-1Fe與Ti-40Nb合金
於電化學腐蝕行為之探討 | zh_TW |
| dc.title | Effects of Hf content on
electrochemical corrosion behavior of biomedical Ti-30Nb-1Fe and Ti-40Nb alloys | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林招松(Zhao-song Lin),葛明德(Ming-de Ger) | |
| dc.subject.keyword | Ti-30Nb-1Fe-xHf`,Ti-40Nb-yHf, | zh_TW |
| dc.relation.page | 101 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
