請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47816完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊志忠 | |
| dc.contributor.author | Shuo-Yen Wu | en |
| dc.contributor.author | 吳碩彥 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:20:16Z | - |
| dc.date.available | 2010-08-12 | |
| dc.date.copyright | 2010-08-12 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-10 | |
| dc.identifier.citation | 71
References 1. M. C. Daniel and D. Astruc, “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology,” Chem. Rev. 104, 293-346 (2004). 2. C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-Enabled Photonics-Based Imaging and Therapy of Cancer,” Technology in Cancer Research & Treatment 3, 33-41 (2004). 3. A. W. H. Lin, N. A. Lewinski, J. L. West, N. J. Halas, and R. A. Drezek, “Optically Tunable Nanoparticle Contrast Agents for Early Cancer Detection: Model-based Analysis of Gold Nanoshells,” J. Biomed. Opt. 10, 064035 (2005). 4. J. C. Y. Kah, N. Phonthammachai, R. C. Y. Wan, J. Song, T. White, S. Mhaisalkar, I. Ahmad, C. Sheppard, and M. Olivo “Synthesis of Gold Nanoshells Based on the Deposition Precipitation Process,” Gold Bulletin 41, 23-36 (2008). 5. T. S. Troutman, J. K. Barton, and M. Romanowski, “Biodegradable Plasmon Resonant Nanoshells,” Adv. Mater. 20, 2604-2608 (2008). 6. T. S. Troutman, S. J. Leung, and M. Romanowski, “Light-Induced Content Release from Plasmon-Resonant Liposomes,” Adv. Mater. 21, 2334-2338 (2009). 7. J. Gao, C. M. Bender, and C. J. Murphy, “Dependence of the Gold Nanorod Aspect Ratio on the Nature of the Directing Surfactant in Aqueous Solution,” Langmuir 19, 9065-9070 (2003). 8. J. Pe′rez-Juste, L. M. Liz-Marza′n, S. Carnie, D. Y. C. Chan, and P. 72 Mulvaney, “Electric Field Directed Growth of Gold Nanorods in Aqueous Surfactant Solutions,” Adv. Funct. Mater. 14, 571-579 ( 2004). 9. C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications,” J. Phys. Chem. B 109, 13857- 13870 (2005). 10. T. S. Troutman, J. K. Barton, and M. Romanowski, “Optical Coherence Tomography with Plasmon Resonant Nanorods of Gold,” Opt. Lett. 32, 1438-1440 (2007). 11. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Ka‥ll, G. W. Bryant, and F. J. Garcı′a de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90, 057401 (2003). 12. E. M. Larsson, J. Alegret, M. Ka1ll, and D. S. Sutherland, “Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors,” Nano Lett. 7, 1256-1263 (2007). 13. F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding Light on Dark Plasmons in Gold Nanorings,” Chem. Phys. Lett. 458, 262–266 (2008). 14. Y. Sun and Y. Xia, “Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acid in Aqueous Medium,” J. Am. Chem. Soc. 126, 3892-3901 (2004). 15. J. Chen, B. Wiley, Z. Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold Nanocages: Engineering Their Structure for Biomedical Applications,” Adv. Mater. 17, 2255-2261 (2005). 16. J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno Gold Nanocages with Tailored 73 Optical Properties for Targeted Photothermal Destruction of Cancer Cells,” Nano Lett. 7, 1318-1322 (2007). 17. S. Oldenburg, R. D. Averitt, S. Westcott, and N. J. Halas, “Nanoengineering of Optical Resonances,” Chem. Phys. Lett. 288, 243 (1998). 18. Huang X.l, Neretina. S,; and El-Sayed, M.A., “Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications,” Adv. Mater. 21, 4880-4910 (2009). 19. D. Huang, E. A. Swanson, C. P. Lin. J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178-1181 (1991). 20. D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16, 4376-4393 (2008). 21. C. Zhou, T. H. Tsai, D. C. Adler, H. C. Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, and J. G. Fujimoto, “Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells,” Opt. Lett. 35, 700-702 (2010). 22. M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal Optical Coherence Tomography of Epidermal Growth Factor Receptor in Live Cells Using Immunotargeted Gold Nanospheres,” Nano Lett. 8, 3461– 3467 (2008). 23. C. S. Kim, P. Wilder-Smith, Y. C. Ahn, L. H. L. Liaw, Z. Chen, and Y. J. Kwon, “Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles,” J. Biomed. Opt. 14, 034008 (2009). 74 24. J. H. Baek, T. Krasieva, S. Tang, Y. Ahn, C. S. Kim, D. Vu, Z. Chen, and P. Wilder-Smith, “Optical approach to the salivary pellicle,” J. Biomed. Opt. 14, 044001 (2009). 25. J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents.” Nano Lett. 5, 473-477 (2005). 26. H. Cang, T. Sun, Z. Y. Li, J. Chen, B. J. Wiley, Y. Xia, and X. Li, “Gold nanocages as contrast agents for spectroscopic optical coherence tomography.” Opt. Lett. 30, 3048-3050 (2005). 27. E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, and M. L. Bugrova, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation.” Phys. Med. Biol. 53, 4995-5009 (2008). 28. M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations.” J. Biomed. Opt. 14, 021017 (2009). 29. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy.” Nano Lett. 7, 1929–1934 (2207). 30. A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography.” Opt. Express 14, 6724-6738 (2006). 75 31. D. P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171-176 (2004). 32. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted Nanoshells for Integrated Cancer Imaging and Therapy,” Nano Lett. 5, 709-711 (2005). 33. A. R. Lowery, A. M. Gobin, E. S. Day, N. J. Halas, and J. L. West, “Immunonanoshells for targeted photothermal ablation of tumor cells,“ Int. J. Nanomedicine 1, 149-154 (2006). 34. B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17, 5167-5179 (2006). 35. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo- thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239, 129-135 (2006). 36. V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal Nanotherapeutics and Nanodiagnostics for Selective Killing of Bacteria Targeted with Gold Nanoparticles,” Biophysical J. 90, 619-627 (2006). 37. I. L. Maksimova, G. G. Akchurin, B. N. Khlebtsov, G. S. Terentyuk, G. G. Akchurin, I. A. Ermolaev, A. A. Skaptsov, E. P. Soboleva, N. G. Khlebtsov, and V. V. Tuchin, “Near-infrared laser photothermal therapy of cancer by using gold nanoparticles: Computer simulations and experiment,” Medical Laser Application 22, 199-206 (2007). 38. L. Au, D. Zheng, F. Zhou, Z. Y. Li, X. Li, and Y. Xia, “A Quantitative Study on the Photothermal Effect of Immuno Gold Nanocages Targeted to Breast Cancer Cells,” ACS Nano 2, 1645-1652 (2008). 76 39. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers in Medical Science 23, 217-228 (2008). 40. E. B. Dickersona, E. C. Dreadenb, X. Huangb, I. H. El-Sayedc, H. Chub, S. Pushpanketh, J. F. McDonalda, and M. A. El-Sayedb, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269, 57-66 (2008). 41. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons Inc., New York, 1998). 42. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985). 43. A. H. Faraji and P. Wipf, “Nanoparticles in cellular drug delivery,” Bioorganic & Medicinal Chemistry 17, 2950-2962 (2009). 44. A. Mary, A. Dereux, and T. L. Ferrell, “Localized surface plasmons on a torus in the nonretarded approximation,” Phys. Rev. B 72, 155426 (2005). 45. C. M. Dutta, T. A. Ali, D. W. Brandl, T. H. Park, and P. Nordlander, “Plasmonic properties of a metallic torus,” J. Chem. Phys. 129, 084706 (2008). 46. S. D. Liu, Z. S. Zhang, and Q. Q. Wang, “High sensitivity and large field enhancement of symmetry broken Au nanorings: Effect of multipolar plasmon resonance and propagation,” Opt. Express 17, 2906–2917. (2009). 47. H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. E. Chou, and C. P. Chiang, “Au nanorings for enhancing absorption and backscattering 77 monitored with optical coherence tomography,” Nanotechnology 21, 295102 (2010). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47816 | - |
| dc.description.abstract | 本論文中,我們利用數值模擬計算金奈米柱、金奈米環、金奈米
球殼在其侷域表面電漿子共振模態時的散射、吸收截面積以及單位體 積散射、吸收截面積。其中,金奈米柱、金奈米環、金奈米球殼的模 擬結構及尺寸皆著重在現今製程容許度以及合理之波段範圍。數值結 果顯示金奈米柱的吸收截面積及散射截面積小於金奈米環及金奈米球 殼。而在單位體積散射、吸收截面積的計算中,金奈米柱則為三者中 最高,金奈米環次之,金奈米球殼則為最低者。 我們另外計算了金奈米顆粒在溶液或組織中的隨機指向分布狀態 所產生的效應,可以發現在隨機指向分布時的金奈米顆粒的侷域表面 電漿子共振強度會依其模態所對應的軸向幾何對稱性而有所衰減,另 外,藉由改變金奈米環的高度,我們有效設計一個金奈米環,使其在 隨機指向分布的狀態下,其散射、吸收截面積衰減的效應能有效的減 小。 | zh_TW |
| dc.description.abstract | In this thesis, the numerical results of overall absorption and
scattering cross sections and cross sections per metal volume of Au nanorod (NRO), nanoring (NRI), and nanoshell (NS), based on the commonly used localized surface plasmon (LSP) resonance modes, with various sizes and aspect ratios (ARs) in the reasonable ranges, which are determined by the practical fabrication capability and application wavelength ranges, are compared. The results show that the overall absorption and scattering cross sections of NRO are generally smaller than those of NRI and NS. However, in terms of cross section per Au volume, those of NRO are the highest among the three types of Au nanoparticle (NP), followed by NRI and then NS. We also evaluate the effects of NP random orientation distribution in a solution or tissue in practical applications. It is found that with random orientation, the reduction range of extinction cross section depended on the geometry symmetry property of the electron oscillation axis in the concerned LSP resonance mode. Then, we designed an Au NRI to make the resonance wavelengths of its symmetric dipole mode and axial dipole mode the same by increasing the ring height. In such an Au NRI of a large ring height, the reduction ranges of scattering and absorption cross sections were significantly decreased. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:20:16Z (GMT). No. of bitstreams: 1 ntu-99-R96941061-1.pdf: 2544303 bytes, checksum: 6b8a09365d7f79c965e37288b61ed7b5 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Chapter 1 Introduction.......................................................................................1
1.1 Au Nanoparticles and Their Applications ....................................................1 1.2 Research Motivations and Dissertation Organization..................................6 Chapter 2 Theories................................................................................................8 2.1 Surface plasmon (SP) ...................................................................................8 2.1.1 Introduction........................................................................................8 2.1.2 Surface Plasmon Polariton (SPP).....................................................10 2.1.3 Lacalized Surface Plasmon (LSP)....................................................12 2.2 Scattering and absorption by a small particle..............................................15 2.2.1 Introduction......................................................................................15 2.2.2 Mie theory and Quasi-Static Approximation...................................17 2.2.3 Numerical Methods..........................................................................19 Chapter 3 Comparisons of LSP Resonance Behaviors between Au Nanoparticles of Different Geometries......................24 3.1 Au Nanoparticle Geometries and Simulation Method.................................24 3.2 Comparison of Scattering and Absorption Cross Sections..........................27 Chapter 4 LSP resonance behaviors of Au Nanorings with random orientation distribution................................43 4.1 Simulation Geometry and Method...............................................................45 4.2 Effect of Random Orientation Distribution................................................48 4.3 Design Optimization for Reducing the Effects of Random Orientation...................................................................................................50 Chapter 5 Conclusions......................................................................................69 References................................................................................................................71 | |
| dc.language.iso | en | |
| dc.subject | 金奈米球殼 | zh_TW |
| dc.subject | 表面電漿共振 | zh_TW |
| dc.subject | 金奈米環 | zh_TW |
| dc.subject | 金奈米柱 | zh_TW |
| dc.subject | Localized Surface Plasmon (LSP) | en |
| dc.subject | Au Nanoshell | en |
| dc.subject | Au Nanorod | en |
| dc.subject | Au Nanoring | en |
| dc.title | 奈米金顆粒之侷域表面電漿子共振特性數值研究 | zh_TW |
| dc.title | Numerical Study on the Behaviors of Localized Surface
Plasmon Resonances of Au Nanoparticles | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江衍偉,張宏鈞,吳育任,王志洋 | |
| dc.subject.keyword | 金奈米球殼,金奈米柱,金奈米環,表面電漿共振, | zh_TW |
| dc.subject.keyword | Localized Surface Plasmon (LSP),Au Nanoring,Au Nanorod,Au Nanoshell, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-10 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
