Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47816
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠
dc.contributor.authorShuo-Yen Wuen
dc.contributor.author吳碩彥zh_TW
dc.date.accessioned2021-06-15T06:20:16Z-
dc.date.available2010-08-12
dc.date.copyright2010-08-12
dc.date.issued2010
dc.date.submitted2010-08-10
dc.identifier.citation71

References
1. M. C. Daniel and D. Astruc, “Gold Nanoparticles: Assembly,
Supramolecular Chemistry, Quantum-Size-Related Properties, and
Applications toward Biology, Catalysis, and Nanotechnology,” Chem.
Rev. 104, 293-346 (2004).
2. C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and
R. Drezek, “Nanoshell-Enabled Photonics-Based Imaging and Therapy
of Cancer,” Technology in Cancer Research & Treatment 3, 33-41
(2004).
3. A. W. H. Lin, N. A. Lewinski, J. L. West, N. J. Halas, and R. A. Drezek,
“Optically Tunable Nanoparticle Contrast Agents for Early Cancer
Detection: Model-based Analysis of Gold Nanoshells,” J. Biomed. Opt.
10, 064035 (2005).
4. J. C. Y. Kah, N. Phonthammachai, R. C. Y. Wan, J. Song, T. White, S.
Mhaisalkar, I. Ahmad, C. Sheppard, and M. Olivo “Synthesis of Gold
Nanoshells Based on the Deposition Precipitation Process,” Gold
Bulletin 41, 23-36 (2008).
5. T. S. Troutman, J. K. Barton, and M. Romanowski, “Biodegradable
Plasmon Resonant Nanoshells,” Adv. Mater. 20, 2604-2608 (2008).
6. T. S. Troutman, S. J. Leung, and M. Romanowski, “Light-Induced
Content Release from Plasmon-Resonant Liposomes,” Adv. Mater. 21,
2334-2338 (2009).
7. J. Gao, C. M. Bender, and C. J. Murphy, “Dependence of the Gold
Nanorod Aspect Ratio on the Nature of the Directing Surfactant in
Aqueous Solution,” Langmuir 19, 9065-9070 (2003).
8. J. Pe′rez-Juste, L. M. Liz-Marza′n, S. Carnie, D. Y. C. Chan, and P.
72

Mulvaney, “Electric Field Directed Growth of Gold Nanorods in
Aqueous Surfactant Solutions,” Adv. Funct. Mater. 14, 571-579 ( 2004).
9. C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S.
E. Hunyadi, and T. Li, “Anisotropic Metal Nanoparticles: Synthesis,
Assembly, and Optical Applications,” J. Phys. Chem. B 109, 13857-
13870 (2005).
10. T. S. Troutman, J. K. Barton, and M. Romanowski, “Optical Coherence
Tomography with Plasmon Resonant Nanorods of Gold,” Opt. Lett. 32,
1438-1440 (2007).
11. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Ka‥ll, G. W. Bryant, and F.
J. Garcı′a de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev.
Lett. 90, 057401 (2003).
12. E. M. Larsson, J. Alegret, M. Ka1ll, and D. S. Sutherland, “Sensing
Characteristics of NIR Localized Surface Plasmon Resonances in Gold
Nanorings for Application as Ultrasensitive Biosensors,” Nano Lett. 7,
1256-1263 (2007).
13. F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander,
“Shedding Light on Dark Plasmons in Gold Nanorings,” Chem. Phys.
Lett. 458, 262–266 (2008).
14. Y. Sun and Y. Xia, “Mechanistic Study on the Replacement Reaction
between Silver Nanostructures and Chloroauric Acid in Aqueous
Medium,” J. Am. Chem. Soc. 126, 3892-3901 (2004).
15. J. Chen, B. Wiley, Z. Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J.
Lee, X. Li, and Y. Xia, “Gold Nanocages: Engineering Their Structure
for Biomedical Applications,” Adv. Mater. 17, 2255-2261 (2005).
16. J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H.
Zhang, Y. Xia, and X. Li, “Immuno Gold Nanocages with Tailored

73

Optical Properties for Targeted Photothermal Destruction of Cancer
Cells,” Nano Lett. 7, 1318-1322 (2007).
17. S. Oldenburg, R. D. Averitt, S. Westcott, and N. J. Halas,
“Nanoengineering of Optical Resonances,” Chem. Phys. Lett. 288, 243
(1998).
18. Huang X.l, Neretina. S,; and El-Sayed, M.A., “Gold Nanorods: From
Synthesis and Properties to Biological and Biomedical Applications,”
Adv. Mater. 21, 4880-4910 (2009).
19. D. Huang, E. A. Swanson, C. P. Lin. J. S. Schuman, W. G. Stinson, W.
Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G.
Fujimoto, “Optical Coherence Tomography,” Science 254, 1178-1181
(1991).
20. D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal
detection of gold nanoparticles using phase-sensitive optical coherence
tomography,” Opt. Express 16, 4376-4393 (2008).
21. C. Zhou, T. H. Tsai, D. C. Adler, H. C. Lee, D. W. Cohen, A.
Mondelblatt, Y. Wang, J. L. Connolly, and J. G. Fujimoto,
“Photothermal optical coherence tomography in ex vivo human breast
tissues using gold nanoshells,” Opt. Lett. 35, 700-702 (2010).
22. M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal Optical
Coherence Tomography of Epidermal Growth Factor Receptor in Live
Cells Using Immunotargeted Gold Nanospheres,” Nano Lett. 8, 3461–
3467 (2008).
23. C. S. Kim, P. Wilder-Smith, Y. C. Ahn, L. H. L. Liaw, Z. Chen, and Y.
J. Kwon, “Enhanced detection of early-stage oral cancer in vivo by
optical coherence tomography using multimodal delivery of gold
nanoparticles,” J. Biomed. Opt. 14, 034008 (2009).

74

24. J. H. Baek, T. Krasieva, S. Tang, Y. Ahn, C. S. Kim, D. Vu, Z. Chen,
and P. Wilder-Smith, “Optical approach to the salivary pellicle,” J.
Biomed. Opt. 14, 044001 (2009).
25. J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H.
Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold Nanocages:
Bioconjugation and Their Potential Use as Optical Imaging Contrast
Agents.” Nano Lett. 5, 473-477 (2005).
26. H. Cang, T. Sun, Z. Y. Li, J. Chen, B. J. Wiley, Y. Xia, and X. Li,
“Gold nanocages as contrast agents for spectroscopic optical coherence
tomography.” Opt. Lett. 30, 3048-3050 (2005).
27. E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A.
G. Orlova, I. V. Balalaeva, M. A. Sirotkina, and M. L. Bugrova,
“Contrasting properties of gold nanoparticles for optical coherence
tomography: phantom, in vivo studies and Monte Carlo simulation.”
Phys. Med. Biol. 53, 4995-5009 (2008).
28. M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, E.
Zagaynova, “Contrasting properties of gold nanoshells and titanium
dioxide nanoparticles for optical coherence tomography imaging of skin:
Monte Carlo simulations.” J. Biomed. Opt. 14, 021017 (2009).
29. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J.
L. West, “Near-Infrared Resonant Nanoshells for Combined Optical
Imaging and Photothermal Cancer Therapy.” Nano Lett. 7, 1929–1934
(2207).
30. A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A.
Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo
contrast agents for optical coherence tomography.” Opt. Express 14,
6724-6738 (2006).

75

31. D. P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West,
“Photo-thermal tumor ablation in mice using near infrared-absorbing
nanoparticles,” Cancer Lett. 209, 171-176 (2004).
32. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted
Nanoshells for Integrated Cancer Imaging and Therapy,” Nano Lett. 5,
709-711 (2005).
33. A. R. Lowery, A. M. Gobin, E. S. Day, N. J. Halas, and J. L. West,
“Immunonanoshells for targeted photothermal ablation of tumor
cells,“ Int. J. Nanomedicine 1, 149-154 (2006).
34. B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov,
“Optical amplification of photothermal therapy with gold nanoparticles
and nanoclusters,” Nanotechnology 17, 5167-5179 (2006).
35. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-
thermal therapy of epithelial carcinoma using anti-EGFR antibody
conjugated gold nanoparticles,” Cancer Lett. 239, 129-135 (2006).
36. V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer,
“Photothermal Nanotherapeutics and Nanodiagnostics for Selective
Killing of Bacteria Targeted with Gold Nanoparticles,” Biophysical J.
90, 619-627 (2006).
37. I. L. Maksimova, G. G. Akchurin, B. N. Khlebtsov, G. S. Terentyuk, G.
G. Akchurin, I. A. Ermolaev, A. A. Skaptsov, E. P. Soboleva, N. G.
Khlebtsov, and V. V. Tuchin, “Near-infrared laser photothermal therapy
of cancer by using gold nanoparticles: Computer simulations and
experiment,” Medical Laser Application 22, 199-206 (2007).
38. L. Au, D. Zheng, F. Zhou, Z. Y. Li, X. Li, and Y. Xia, “A Quantitative
Study on the Photothermal Effect of Immuno Gold Nanocages Targeted
to Breast Cancer Cells,” ACS Nano 2, 1645-1652 (2008).

76

39. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic
photothermal therapy (PPTT) using gold nanoparticles,” Lasers in
Medical Science 23, 217-228 (2008).
40. E. B. Dickersona, E. C. Dreadenb, X. Huangb, I. H. El-Sayedc, H. Chub,
S. Pushpanketh, J. F. McDonalda, and M. A. El-Sayedb, “Gold nanorod
assisted near-infrared plasmonic photothermal therapy (PPTT) of
squamous cell carcinoma in mice,” Cancer Lett. 269, 57-66 (2008).
41. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light
by Small Particles (John Wiley & Sons Inc., New York, 1998).
42. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press,
New York, 1985).
43. A. H. Faraji and P. Wipf, “Nanoparticles in cellular drug delivery,”
Bioorganic & Medicinal Chemistry 17, 2950-2962 (2009).
44. A. Mary, A. Dereux, and T. L. Ferrell, “Localized surface plasmons on
a torus in the nonretarded approximation,” Phys. Rev. B 72, 155426
(2005).
45. C. M. Dutta, T. A. Ali, D. W. Brandl, T. H. Park, and P. Nordlander,
“Plasmonic properties of a metallic torus,” J. Chem. Phys. 129, 084706
(2008).
46. S. D. Liu, Z. S. Zhang, and Q. Q. Wang, “High sensitivity and large
field enhancement of symmetry broken Au nanorings: Effect of
multipolar plasmon resonance and propagation,” Opt. Express 17,
2906–2917. (2009).
47. H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang,
Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. E. Chou, and C.
P. Chiang, “Au nanorings for enhancing absorption and backscattering

77

monitored with optical coherence tomography,” Nanotechnology 21,
295102 (2010).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47816-
dc.description.abstract本論文中,我們利用數值模擬計算金奈米柱、金奈米環、金奈米
球殼在其侷域表面電漿子共振模態時的散射、吸收截面積以及單位體
積散射、吸收截面積。其中,金奈米柱、金奈米環、金奈米球殼的模
擬結構及尺寸皆著重在現今製程容許度以及合理之波段範圍。數值結
果顯示金奈米柱的吸收截面積及散射截面積小於金奈米環及金奈米球
殼。而在單位體積散射、吸收截面積的計算中,金奈米柱則為三者中
最高,金奈米環次之,金奈米球殼則為最低者。
我們另外計算了金奈米顆粒在溶液或組織中的隨機指向分布狀態
所產生的效應,可以發現在隨機指向分布時的金奈米顆粒的侷域表面
電漿子共振強度會依其模態所對應的軸向幾何對稱性而有所衰減,另
外,藉由改變金奈米環的高度,我們有效設計一個金奈米環,使其在
隨機指向分布的狀態下,其散射、吸收截面積衰減的效應能有效的減
小。
zh_TW
dc.description.abstractIn this thesis, the numerical results of overall absorption and
scattering cross sections and cross sections per metal volume of Au nanorod
(NRO), nanoring (NRI), and nanoshell (NS), based on the commonly used
localized surface plasmon (LSP) resonance modes, with various sizes and
aspect ratios (ARs) in the reasonable ranges, which are determined by the
practical fabrication capability and application wavelength ranges, are
compared. The results show that the overall absorption and scattering cross
sections of NRO are generally smaller than those of NRI and NS. However,
in terms of cross section per Au volume, those of NRO are the highest
among the three types of Au nanoparticle (NP), followed by NRI and then
NS. We also evaluate the effects of NP random orientation distribution in a
solution or tissue in practical applications. It is found that with random
orientation, the reduction range of extinction cross section depended on the
geometry symmetry property of the electron oscillation axis in the
concerned LSP resonance mode. Then, we designed an Au NRI to make the
resonance wavelengths of its symmetric dipole mode and axial dipole mode
the same by increasing the ring height. In such an Au NRI of a large ring height, the reduction ranges of scattering and absorption cross sections were
significantly decreased.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:20:16Z (GMT). No. of bitstreams: 1
ntu-99-R96941061-1.pdf: 2544303 bytes, checksum: 6b8a09365d7f79c965e37288b61ed7b5 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsChapter 1 Introduction.......................................................................................1
1.1 Au Nanoparticles and Their Applications ....................................................1
1.2 Research Motivations and Dissertation Organization..................................6
Chapter 2 Theories................................................................................................8
2.1 Surface plasmon (SP) ...................................................................................8
2.1.1 Introduction........................................................................................8
2.1.2 Surface Plasmon Polariton (SPP).....................................................10
2.1.3 Lacalized Surface Plasmon (LSP)....................................................12
2.2 Scattering and absorption by a small particle..............................................15
2.2.1 Introduction......................................................................................15
2.2.2 Mie theory and Quasi-Static Approximation...................................17
2.2.3 Numerical Methods..........................................................................19
Chapter 3 Comparisons of LSP Resonance Behaviors between
Au Nanoparticles of Different Geometries......................24
3.1 Au Nanoparticle Geometries and Simulation Method.................................24
3.2 Comparison of Scattering and Absorption Cross Sections..........................27
Chapter 4 LSP resonance behaviors of Au Nanorings
with random orientation distribution................................43
4.1 Simulation Geometry and Method...............................................................45
4.2 Effect of Random Orientation Distribution................................................48
4.3 Design Optimization for Reducing the Effects of Random
Orientation...................................................................................................50
Chapter 5 Conclusions......................................................................................69
References................................................................................................................71
dc.language.isoen
dc.subject金奈米球殼zh_TW
dc.subject表面電漿共振zh_TW
dc.subject金奈米環zh_TW
dc.subject金奈米柱zh_TW
dc.subjectLocalized Surface Plasmon (LSP)en
dc.subjectAu Nanoshellen
dc.subjectAu Nanoroden
dc.subjectAu Nanoringen
dc.title奈米金顆粒之侷域表面電漿子共振特性數值研究zh_TW
dc.titleNumerical Study on the Behaviors of Localized Surface
Plasmon Resonances of Au Nanoparticles
en
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江衍偉,張宏鈞,吳育任,王志洋
dc.subject.keyword金奈米球殼,金奈米柱,金奈米環,表面電漿共振,zh_TW
dc.subject.keywordLocalized Surface Plasmon (LSP),Au Nanoring,Au Nanorod,Au Nanoshell,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2010-08-10
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
2.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved