Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47815
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor阮雪芬(Hsueh-Fen Juan)
dc.contributor.authorTsun-Hsuan Yien
dc.contributor.author尹存瑄zh_TW
dc.date.accessioned2021-06-15T06:20:12Z-
dc.date.available2015-08-12
dc.date.copyright2010-08-12
dc.date.issued2010
dc.date.submitted2010-08-10
dc.identifier.citation1. Larimer, F. W., Chain, P., Hauser, L., Lamerdin, J., Malfatti, S., Do, L., Land, M. L., Pelletier, D. A., Beatty, J. T., Lang, A. S., Tabita, F. R., Gibson, J. L., Hanson, T. E., Bobst, C., Torres, J. L., Peres, C., Harrison, F. H., Gibson, J., and Harwood, C. S. (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22, 55-61.
2. Imhoff, J. F. (2005) Rhodopseudomonas Czurda and Maresch 1937, 119 AL emend. Imhoff, Trüper and Pfennig 1984, 341 Bergey's Manual® of Systematic Bacteriology, 473-476.
3. Conlan, S., Lawrence, C., and McCue, L. A. (2005) Rhodopseudomonas palustris regulons detected by cross-species analysis of alphaproteobacterial genomes. Appl Environ Microbiol 71, 7442-7452.
4. Whittenbury, R., and McLee, A. G. (1967) Rhodopseudomonas palustris and Rh. viridis--photosynthetic budding bacteria. Arch Mikrobiol 59, 324-334.
5. van Berkum, P., Terefework, Z., Paulin, L., Suomalainen, S., Lindstrom, K., and Eardly, B. D. (2003) Discordant phylogenies within the rrn loci of Rhizobia. J Bacteriol 185, 2988-2998.
6. Barbosa, M. J., Rocha, J. M., Tramper, J., and Wijffels, R. H. (2001) Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J Biotechnol 85, 25-33.
7. Sasikala, C., and Ramana, C. V. (1998) Biodegradation and metabolism of unusual carbon compounds by anoxygenic phototrophic bacteria. Adv Microb Physiol 39, 339-377.
8. Kube, M., Beck, A., Meyerdierks, A., Amann, R., Reinhardt, R., and Rabus, R. (2005) A catabolic gene cluster for anaerobic benzoate degradation in methanotrophic microbial Black Sea mats. Syst Appl Microbiol 28, 287-294.
9. Gyoo Yeol Jung, H. O. J., Jung Rae Kim, Yeonghee Ahn & Sunghoon Park (1999) Isolation and characterization of Rhodopseudomonas palustris P4 which utilizes CO with the production of H2. Biotechnology Letters 21, 525-529.
10. VerBerkmoes, N. C., Shah, M. B., Lankford, P. K., Pelletier, D. A., Strader, M. B., Tabb, D. L., McDonald, W. H., Barton, J. W., Hurst, G. B., Hauser, L., Davison, B. H., Beatty, J. T., Harwood, C. S., Tabita, F. R., Hettich, R. L., and Larimer, F. W. (2006) Determination and comparison of the baseline proteomes of the versatile microbe Rhodopseudomonas palustris under its major metabolic states. J Proteome Res 5, 287-298.
11. Rey, F. E., Oda, Y., and Harwood, C. S. (2006) Regulation of uptake hydrogenase and effects of hydrogen utilization on gene expression in Rhodopseudomonas palustris. J Bacteriol 188, 6143-6152.
12. Joshi, G. S., Romagnoli, S., Verberkmoes, N. C., Hettich, R. L., Pelletier, D., and Tabita, F. R. (2009) Differential accumulation of form I RubisCO in Rhodopseudomonas palustris CGA010 under Photoheterotrophic growth conditions with reduced carbon sources. J Bacteriol 191, 4243-4250.
13. Romagnoli, S., and Tabita, F. R. (2006) A novel three-protein two-component system provides a regulatory twist on an established circuit to modulate expression of the cbbI region of Rhodopseudomonas palustris CGA010. J Bacteriol 188, 2780-2791.
14. Romagnoli, S., and Tabita, F. R. (2007) Phosphotransfer reactions of the CbbRRS three-protein two- component system from Rhodopseudomonas palustris CGA010 appear to be controlled by an internal molecular switch on the sensor kinase. J Bacteriol 189, 325-335.
15. Hunter, T. (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80, 225-236.
16. Cozzone, A. J. (1988) Protein phosphorylation in prokaryotes. Annu Rev Microbiol 42, 97-125.
17. Chang, C., and Stewart, R. C. (1998) The two-component system. Regulation of diverse signaling pathways in prokaryotes and eukaryotes. Plant Physiol 117, 723-731.
18. Cohen, P. (2001) The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture. Eur J Biochem 268, 5001-5010.
19. Schlessinger, J. (2000) Cell signaling by receptor tyrosine kinases. Cell 103, 211-225.
20. Han, G., Ye, M., and Zou, H. (2008) Development of phosphopeptide enrichment techniques for phosphoproteome analysis. Analyst 133, 1128-1138.
21. Hoch, J. A. (2000) Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3, 165-170.
22. Deutscher, J., and Saier, M. H., Jr. (2005) Ser/Thr/Tyr protein phosphorylation in bacteria - for long time neglected, now well established. J Mol Microbiol Biotechnol 9, 125-131.
23. Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X., Fasolo, J., Guo, H., Jona, G., Breitkreutz, A., Sopko, R., McCartney, R. R., Schmidt, M. C., Rachidi, N., Lee, S. J., Mah, A. S., Meng, L., Stark, M. J., Stern, D. F., De Virgilio, C., Tyers, M., Andrews, B., Gerstein, M., Schweitzer, B., Predki, P. F., and Snyder, M. (2005) Global analysis of protein phosphorylation in yeast. Nature 438, 679-684.
24. Songyang, Z., Blechner, S., Hoagland, N., Hoekstra, M. F., Piwnica-Worms, H., and Cantley, L. C. (1994) Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr Biol 4, 973-982.
25. Yaffe, M. B., Leparc, G. G., Lai, J., Obata, T., Volinia, S., and Cantley, L. C. (2001) A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat Biotechnol 19, 348-353.
26. Aebersold, R., and Mann, M. (2003) Mass spectrometry-based proteomics. Nature 422, 198-207.
27. Andersen, J. S., Lam, Y. W., Leung, A. K., Ong, S. E., Lyon, C. E., Lamond, A. I., and Mann, M. (2005) Nucleolar proteome dynamics. Nature 433, 77-83.
28. Rosen, R., Sacher, A., Shechter, N., Becher, D., Buttner, K., Biran, D., Hecker, M., and Ron, E. Z. (2004) Two-dimensional reference map of Agrobacterium tumefaciens proteins. Proteomics 4, 1061-1073.
29. Mann, M., and Jensen, O. N. (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21, 255-261.
30. Schmelzle, K., and White, F. M. (2006) Phosphoproteomic approaches to elucidate cellular signaling networks. Curr Opin Biotechnol 17, 406-414.
31. Larsen, M. R., Thingholm, T. E., Jensen, O. N., Roepstorff, P., and Jorgensen, T. J. (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4, 873-886.
32. Olsen, J. V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., and Mann, M. (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635-648.
33. Macek, B., Gnad, F., Soufi, B., Kumar, C., Olsen, J. V., Mijakovic, I., and Mann, M. (2008) Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Mol Cell Proteomics 7, 299-307.
34. Macek, B., Mijakovic, I., Olsen, J. V., Gnad, F., Kumar, C., Jensen, P. R., and Mann, M. (2007) The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Mol Cell Proteomics 6, 697-707.
35. Hatch, M. D., and Slack, C. R. (1968) A new enzyme for the interconversion of pyruvate and phosphopyruvate and its role in the C4 dicarboxylic acid pathway of photosynthesis. Biochem J 106, 141-146.
36. Kondo, A., Nose, A., Yuasa, H., and Ueno, O. (2000) Species variation in the intracellular localization of pyruvate, Pi dikinase in leaves of crassulacean-acid-metabolism plants: an immunogold electron-microscope study. Planta 210, 611-621.
37. Reeves, R. E. (1968) A new enzyme with the glycolytic function of pyruvate kinase. J Biol Chem 243, 3202-3204.
38. Evans, H. J., and Wood, H. G. (1968) The mechanism of the pyruvate, phosphate dikinase reaction. Proc Natl Acad Sci U S A 61, 1448-1453.
39. Aoyagi, K., and Bassham, J. A. (1984) Pyruvate Orthophosphate Dikinase of C(3) Seeds and Leaves as Compared to the Enzyme from Maize. Plant Physiol 75, 387-392.
40. Cooper, R. A., and Kornberg, H. L. (1967) The direct synthesis of phosphoenolpyruvate from pyruvate by Escherichia coli. Proc R Soc Lond B Biol Sci 168, 263-280.
41. Tjaden, B., Plagens, A., Dorr, C., Siebers, B., and Hensel, R. (2006) Phosphoenolpyruvate synthetase and pyruvate, phosphate dikinase of Thermoproteus tenax: key pieces in the puzzle of archaeal carbohydrate metabolism. Mol Microbiol 60, 287-298.
42. Burnell, J. N. (2010) Cloning and characterization of Escherichia coli DUF299: a bifunctional ADP-dependent kinase--Pi-dependent pyrophosphorylase from bacteria. BMC Biochem 11, 1.
43. Furbank, R. T., and Hatch, M. D. (1987) Mechanism of C(4) Photosynthesis: The Size and Composition of the Inorganic Carbon Pool in Bundle Sheath Cells. Plant Physiol 85, 958-964.
44. Chastain, C. J., Lee, M. E., Moorman, M. A., Shameekumar, P., and Chollet, R. (1997) Site-directed mutagenesis of maize recombinant C4-pyruvate,orthophosphate dikinase at the phosphorylatable target threonine residue. FEBS Lett 413, 169-173.
45. Burnell, J. N., and Hatch, M. D. (1986) Activation and inactivation of an enzyme catalyzed by a single, bifunctional protein: a new example and why. Arch Biochem Biophys 245, 297-304.
46. Han, C. L., Chien, C. W., Chen, W. C., Chen, Y. R., Wu, C. P., Li, H., and Chen, Y. J. (2008) A multiplexed quantitative strategy for membrane proteomics: opportunities for mining therapeutic targets for autosomal dominant polycystic kidney disease. Mol Cell Proteomics 7, 1983-1997.
47. Ravichandran, A., Sugiyama, N., Tomita, M., Swarup, S., and Ishihama, Y. (2009) Ser/Thr/Tyr phosphoproteome analysis of pathogenic and non-pathogenic Pseudomonas species. Proteomics 9, 2764-2775.
48. Soufi, B., Gnad, F., Jensen, P. R., Petranovic, D., Mann, M., Mijakovic, I., and Macek, B. (2008) The Ser/Thr/Tyr phosphoproteome of Lactococcus lactis IL1403 reveals multiply phosphorylated proteins. Proteomics 8, 3486-3493.
49. G. Salahas, Y. M. a. N. A. G. (1990) Assaying for pyruvate, orthophosphate dikinase activity: Necessary precautions with phosphoenolpyruvate carboxylase as coupling enzyme Photosynthesis Research 24, 183-188.
50. Chastain, C. J., Botschner, M., Harrington, G. E., Thompson, B. J., Mills, S. E., Sarath, G., and Chollet, R. (2000) Further analysis of maize C(4) pyruvate,orthophosphate dikinase phosphorylation by its bifunctional regulatory protein using selective substitutions of the regulatory Thr-456 and catalytic His-458 residues. Arch Biochem Biophys 375, 165-170.
51. Pawson, T., and Scott, J. D. (2005) Protein phosphorylation in signaling--50 years and counting. Trends Biochem Sci 30, 286-290.
52. Stock, A. M., Robinson, V. L., and Goudreau, P. N. (2000) Two-component signal transduction. Annu Rev Biochem 69, 183-215.
53. Cozzone, A. J., Grangeasse, C., Doublet, P., and Duclos, B. (2004) Protein phosphorylation on tyrosine in bacteria. Arch Microbiol 181, 171-181.
54. Backert, S., and Selbach, M. (2005) Tyrosine-phosphorylated bacterial effector proteins: the enemies within. Trends Microbiol 13, 476-484.
55. Gosse, J. L., Engel, B. J., Rey, F. E., Harwood, C. S., Scriven, L. E., and Flickinger, M. C. (2007) Hydrogen production by photoreactive nanoporous latex coatings of nongrowing Rhodopseudomonas palustris CGA009. Biotechnol Prog 23, 124-130.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47815-
dc.description.abstract紫色非硫光合菌Rhodopseudomonas palustris (R.palustris) 廣泛分布於土壤和河水中,分類階層屬於alpha-proteobacteria。R. palustris能利用太陽光當作能量來源,也可吸收大氣中的二氧化碳轉變成本身的重量,除此之外,它還能代謝並回收植物的木質組織。由於R. palustris和碳的利用與回收有密切的關係,因此被DOE Carbon Management Program選為基因體定序的物種。R. palustris能夠生長在光合異營、光合自營、化學異營以及化學自營等不同的代謝環境,並且可能利用磷酸化的方式來調控不同代謝路徑的轉變。在本研究中,我們在化學異營以及光合異營的條件下,利用shotgun的方式分析R. palustris的磷酸化蛋白質體表現。我們在化學異營的條件下鑑定到80條磷酸化胜肽,其可對應到73個蛋白質;而在光合異營的條件下則有74條磷酸化胜肽,可對應到68個蛋白質。另外,針對磷酸化胜肽定量的結果中發現,pyruvate phosphate dikinase (PPDK, RPA1051) 當中的胜肽“GGMpTSHAAVVAR”,在光合異營下蘇胺酸的磷酸化程度比化學異營條件下高出兩倍以上。目前已知PPDK在C4及CAM植物中是受磷酸化調控活性,並且在固碳上扮演重要的角色,但磷酸化的PPDK在原核生物的研究當中目前仍是未知。在我們的光合異營及化學異營內生性PPDK酵素活性測試實驗中發現,PPDK在光合異營條件下的活性較高;另外,在我們點突變磷酸化位置的實驗中也顯示,蘇胺酸的磷酸化位置對PPDK的活性是重要的。因此,從我們的結果推測,PPDK受到光刺激後,使蘇胺酸磷酸化並且同時具有活性,而磷酸化的PPDK也可能調控了R. palustris在光合異營與化學異營間的轉換機制。zh_TW
dc.description.abstractRhodopseudomonas palustris (R. palustris) is a purple nonsulfur anoxygenic phototrophic bacterium that belongs to the alpha-proteobacteria. It is a common soil and water bacterium that makes its living by converting sunlight to cellular energy and by absorbing atmospheric carbon dioxide and converting to biomass. This microbe can also degrade and recycle components of the woody tissues of plants. Because of its intimate involvement in carbon management and recycling, R. palustris was selected by the DOE Carbon Management Program for genome sequencing. R. palustris exhibits the ability to grow under photoheterotrophic, photoautotrophic, chemoheterotrophic and chemoautotrophic conditions, and can switch between the four different modes of metabolism for survival by protein phosphorylation. Here, we analyzed the phosphoproteome of R. palustris in photoheterotrophic condition with a shotgun approach and identified 80 phosphopeptides from 73 phosphoproteins and 74 phosphopeptides from 68 phosphoproteins at chemohetrotrophic and photoheterotrophic condition, respectively. Our results revealed that the threonine phosphorylated peptide “GGMpTSHAAVVAR” from pyruvate phosphate dikinase (PPDK, RPA1051) in photoheterotrophic condition is elevated more than 2 folds than in chemoheterotrophic condition. PPDK performs a light-dependent activity and plays an important role in carbon fixation in C4 and CAM plants. However, the function of phosphorylated PPDK is still unknown in prokaryotic cell. Here, we showed that PPDK enzyme activity is higher in photoheterotrophic than in chemoheterotrophic. In our in vitro point mutation experiment revealed that threonine phosphorylation site played an important role in regulating PPDK activity. We suggested that light could stimulate threonine phosphorylation of PPDK and might enhance its activity which could regulate the switch mechanism of R. palustris in photoheterotrophic and chemoheterotrophic conditions.en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:20:12Z (GMT). No. of bitstreams: 1
ntu-99-R97b43002-1.pdf: 8997195 bytes, checksum: b34ae4e9331ac69d45718784b29bbffb (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌 謝......................................................I
中文摘要................................................. II
英文摘要................................................ III
縮寫表 ....................................................V
第1章簡介................................................. 1
1.1 Rhodopseudomonas palustris ........................... 1
1.2 磷酸化蛋白質體學(Phosphoproteome) .................... 2
1.3 丙酮酸磷酸雙激酶(PPDK) ............................... 4
1.3.1 序列分析............................................ 4
1.3.2 磷酸化活性調控...................................... 5
1.4 實驗動機與目的........................................ 5
第2章材料與方法 .......................................... 7
2.1 培養Rhodopsudomonas palustis方法...................... 7
2.2 穿透式電子顯微鏡觀察R. palustris外觀.................. 7
2.3 西方轉漬(Western blot) ............................... 7
2.4 磷酸化蛋白質體分析.................................... 8
2.4.1 定性分析............................................ 8
2.4.1.1 準備光合異營及化學異營條件的樣品.................. 8
2.4.1.2 破菌.............................................. 8
2.4.1.3 丙酮沉澱(Acetone precipitation)................... 9
2.4.1.4 蛋白質濃度定量(Protein assay) .................... 9
2.4.1.5 In-solution digestion ............................ 9
2.4.1.6 樣品酸化.......................................... 9
2.4.1.7 SCX陽離子交換樹脂................................ 10
2.4.1.8 TiO2純化步驟..................................... 10
清洗平衡 TiO2 ........................................... 10
TiO2純化磷酸化胜肽鏈..................................... 10
2.4.1.9 C18 desalting cartridge去除鹽類及雜質.............11
活化C18 desalting cartridge ............................. 11
注入樣品 ................................................ 11
2.4.1.10 LC-MS/MS 分析................................... 11
2.4.1.11 原始檔資料分析.................................. 11
2.4.1.12 生物資訊軟體分析................................ 12
2.4.2 定量分析........................................... 12
2.4.2.1 凝膠............................................. 13
2.4.2.2 洗膠............................................. 13
2.4.2.3 In-gel digestion ................................ 13
2.4.2.4 胜肽萃取......................................... 13
2.4.2.5 TiO2純化步驟..................................... 13
2.4.2.6 LC-MS/MS 分析.................................... 13
2.4.2.7 生物資訊軟體分析................................. 13
2.5 點突變............................................... 14
2.5.1 建構RPA1051基因質體................................ 14
2.5.2 膠體電泳回收(Gel-extraction) ...................... 14
2.5.3 樣品末端加A........................................ 15
2.5.4 TA cloning ........................................ 15
2.5.5 轉型作用(Transform) ............................... 16
2.5.6 菌落PCR篩選(Colony pcr screen) .................... 16
2.5.7 小量質體萃取( Plasmid extraction) ................. 17
2.5.8 T487V以及H489N的點突變............................. 17
DpnI digest原始的質體.................................... 18
2.5.9 DNA限制酵素反應(Double digestion) ................. 18
2.5.10 接合作用(Ligation) ............................... 19
2.5.11 轉型作用(Transform) .............................. 20
2.6 誘導表現PPDK (Induction) ............................ 20
2.7 蛋白質純化(Protein purification)..................... 21
2.8 PPDK 酵素活性測試(Enzyme activity assay)............. 21
第3章結果................................................ 23
3.1 光合異營與化學異營不同生長條件比較................... 23
3.1.1 外觀與生長......................................... 23
3.1.2 蛋白質變化......................................... 23
3.2 磷酸化蛋白質體學分析................................. 24
3.2.1 定性實驗........................................... 24
鑑定結果................................................. 24
Blast2Go分析磷酸化蛋白質功能............................. 26
3.2.2 定量實驗........................................... 27
鑑定結果................................................. 27
IdealQ- label free定量軟體分析........................... 27
3.3 菌體內PPDK活性測試................................... 29
3.4 點突變T487V、T487D與H489N in vitro PPDK活性測試...... 30
第4章討論................................................ 32
第5章參考資料 ........................................... 37
第6章圖.................................................. 44
第7章表.................................................. 70
附錄 .................................................... 86
dc.language.isozh-TW
dc.subject化學異營zh_TW
dc.subject紫色非硫光合菌zh_TW
dc.subject磷酸化蛋白質體學zh_TW
dc.subject磷酸化胜&#32957zh_TW
dc.subject光合異營zh_TW
dc.subjectchemoheterotrophicen
dc.subjectphotoheterotrophicen
dc.subjectphosphopeptideen
dc.subjectphosphoproteomeen
dc.subjectRhodopseudomonas palustrisen
dc.title紫色非硫光合菌之磷酸化蛋白質體學研究zh_TW
dc.titlePhosphoproteome of Rhodopseudomonas palustrisen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃宣誠,吳世雄,陳水田,陳仁治
dc.subject.keyword紫色非硫光合菌,磷酸化蛋白質體學,磷酸化胜&#32957,光合異營,化學異營,zh_TW
dc.subject.keywordRhodopseudomonas palustris,phosphoproteome,phosphopeptide,photoheterotrophic,chemoheterotrophic,en
dc.relation.page107
dc.rights.note有償授權
dc.date.accepted2010-08-10
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
8.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved