Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 管理學院企業管理專班(Global MBA)
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47812
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭佳瑋(Chia-Wei Kuo)
dc.contributor.authorRobin Bunkeren
dc.contributor.author柏洛賓zh_TW
dc.date.accessioned2021-06-15T06:20:02Z-
dc.date.available2010-08-13
dc.date.copyright2010-08-13
dc.date.issued2010
dc.date.submitted2010-08-10
dc.identifier.citation1. Basic Business Statistics- Mark L. Berenson, David M. Levine, Timothy C. Krehbiel
2. Khamis, A., I. Zuhaimy, H. Khalid and M. Ahmad Tarmizi, (2006). Modeling oil palm yield using multiple linear regression and robust m-regression. J. Agron., 5: 32-36
3. Andrew, D.F., 1974. A robust method for multiple linear regression. Technometrics, 16: 523-551.
4. Barnett, V. and T. Lewis, 1995. Outliers in Statistical Data. 3rd Edn., John Wiley and Sons, England, pp: 584.
5. Fairhurst, T.H. and E. Mutert, 1999. Interpretation and management of oil palm leaf analysis data. Better Crops Int., 13: 48-51.
6. Ismail, Z. and F. Jamaluddin, 2008. Time series regression models for forecasting Malaysian electricity load demand. Asian J. Math. Stat., 1: 139-149
7. Taylor, J.W. and R. Buizza, 2003. Using weather ensemble predictions in electricity demand forecasting. Int. J. Forecasting, 19: 57-70.
8. Da Silva, C.G., 2008. Time series forecasting with a non-linear model and the scatter search meta-heuristic. Inform. Sci., 178: 3288-3299.
9. Dr. Khaled A. Abbas, Conceptual and Regression Models for Passenger Demand Prediction: A case study of Cairo Airport and Egyptair,
10. Egyptian Civil Aviation Authority (ECAA) (2001) ECAA Statistical Year Book. Cairo, Egypt.
11. Profillidis V. A. (2000) Econometric and Fuzzy Models for the Forecast of Demand in the Airport of Rhodes. Journal of Air Transport Management, Vol. 6, pp. 95-100.
12. Mariana Kaznovsky (University of Economics, Bucharest, Romania Monetary and Financial Statistics Division, National Bank of Romania, Bucharest, Romania) Money Demand In Romanian Economy, Using Multiple Regression Method And Unrestricted VAR Model
13. Friedman, M. The optimum quantity of money and other essays, Aldine, Chicago, 1969
14. Sriram, S. S. A survey of recent empirical money demand studies, International Monetary Fund, 2001
15. In Miaou, S.-P. (1990), A Stepwise Time Series Regression Procedure for Water Demand Model Identification, Water Resour. Res., 26(9), 1887–1897,
16. Abraham, B. and Ledolter, J., 1983. Statistical Methods for Forecasting. , Wiley, New York.
17. Provisional Patent Application Ser. No. 61/142,025, entitled 'Method For Updating Regression Coefficients In a Causal Product Demand Forecasting System' by Arash Bateni, Edward Kim, Philippe Dupuis Hamel, and Stephen Szu Chang; filed on Dec. 31, 2008.
18. Application Ser. No. 11/613,404, entitled 'Improved Methods and Systems for Forecasting Product Demand Using a Causal Methodology,' filed on Dec. 20, 2006, by Arash Bateni, Edward Kim, Philip Liew, and J. P. Vorsanger;
19. Application Ser. No. 11/967,645, entitled 'Techniques for Causal Demand Forecasting,' filed on Dec. 31, 2007, by Arash Bateni, Edward Kim, J. P. Vorsanger, and Rong Zong.
20. Bruce Schaller. Schaller Consulting A Regression Model of the Number of Taxicabs in U.S. Cities,(2005)
21. Taylor, Brian D. and Camille Fink. 2003. The Factors Influencing Transit Ridership: An Analysis of the Literature, Working Paper, UCLA Institute of Transportation Studies, UCLA.
22. K.E. Kioulafas, An application of multiple regression analysis to the Greek beer market, J. Oper. Res. Soc. 36(8) (1985) 689–696
23. M. SAMUELS (1971) The effect of advertising on sales and brand shares. Br. J. Advert.4, 187-207.
24. J. SIMON (1969) The effect of advertising on liquor brand sales. J. Mktg Res.6, 301-313.
25. Morphet, C. S. (1991) Applying multiple regression analysis to the forecasting of grocery store sales: an application and critical appraisal. International Review of Retail, Distribution and Consumer Research 1:3 , pp. 329-380,
26. Davies, R. L. (1977b) 'Store Location and Store Assessment Techniques: the integration of some new and traditional techniques', Transactions of the Institute of British Geographers, 2: 141-57.
27. Nelson, R. L. (1958) The selection of Retail Locations, New York: Dodge.
28. Selvanathan, E.A., 1991. A note on the accuracy of business economists gold price’s forecast. Aust. J. Manage., 16: 91-95. http://www.agsm.edu.au/eajm /9106/pdf/selvanathan.pdf
29. Mark Bujarski, Seth Kussmaul, Sharief Luqman, Andy Mcnary, Sundar Muthuvelu, Northern Illinois University, Invensys Optimization of Copper Pricing (2008)
30. New York State Energy Plan June 2002, All Fuels demand and Price Forecast Methodology
31. Rene Lalonde, Zhenhua Zhu. Frederick Demers. Oct 18 2002. Forecasting and Analyzing World Commodity Prices
32. United Nations Educational, Scientific and Cultural Organization.
33. http://www.Graphpad.com
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47812-
dc.description.abstractIn order to develop a regression model to forecast iron-ore price, CVRD & Baosteel annual contract iron ore prices were used for IOF price i.e., the dependent variable. Twelve factors were identified to have influence on the IOF price as independent variables in the regression model.
In the process of developing Multi Regression Model, assumptions of – Linearity, Independence, Normality and Equal Variance were tested. It was found that multicollinearity among independent variables was the main problem. Stepwise regression was proposed to resolve this. The stepwise procedures successfully solved the problem of multicollinearity by reducing the total number of independent variables to four. The variables selected by stepwise regression were Oil Price, Production of Steel in China, World Steel Exports and China Iron Ore Production. The adjusted coefficient of correlation remained almost same.
The results obtained with Stepwise Regression Model were very encouraging for years 2006-2007 and further research was suggested to overcome certain limitations.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:20:02Z (GMT). No. of bitstreams: 1
ntu-99-R97749059-1.pdf: 1919202 bytes, checksum: 13f2091742e5fbeb297df45dafb7b12a (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsTABLE OF CONTENTS
List of Figures ii
List of Tables iii
Chapter 1: Introduction 3
1.1 Iron Ore 3
1.1 Brief History of Iron Ore Trade 5
1.2 Motivation 9
1.3 Summary of Chapters 10
Chapter 2: Literature Review 11
Chapter 3: Multi Regression Model 18
3.1 Introduction 18
3.2 Data 19
3.3 Assumptions 19
3.4 Developing Multi Regression Model 27
3.4.1 Fit of the regression model 28
3.4.2 Statistical inferences for the model 30
3.4.3 ANOVA Table for Multiple Regression 31
3.5 Interim analysis of results 32
3.6 Stepwise Regression Model 33
Chapter 4: Analysis of Results 38
4.1 Results from Step-wise Regression Model 38
4.2 Validation of Step-wise Regression Model 38
Chapter 5: Conclusion 43
Bibliography 44
Appendix 1 47
dc.language.isoen
dc.subject鐵礦石zh_TW
dc.subject鐵礦zh_TW
dc.subject回歸模型zh_TW
dc.subject預測zh_TW
dc.subjectIron-oreen
dc.subjectForecastingen
dc.subjectMulti-Regression Modelen
dc.title利用多元回歸模型預測鐵礦石價格zh_TW
dc.titleForecasting Iron-ore Prices Using Multi-Regression Modelen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee余峻瑜,黃奎隆
dc.subject.keyword鐵礦,回歸模型,預測,鐵礦石,zh_TW
dc.subject.keywordIron-ore,Multi-Regression Model,Forecasting,en
dc.relation.page48
dc.rights.note有償授權
dc.date.accepted2010-08-10
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept企業管理碩士專班zh_TW
顯示於系所單位:管理學院企業管理專班(Global MBA)

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved