Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4780
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 沈麗娟(Li-Jiuan Shen) | |
dc.contributor.author | Jyun-Yi Wu | en |
dc.contributor.author | 吳駿誼 | zh_TW |
dc.date.accessioned | 2021-05-14T17:47:04Z | - |
dc.date.available | 2020-03-12 | |
dc.date.available | 2021-05-14T17:47:04Z | - |
dc.date.copyright | 2015-03-12 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-02-24 | |
dc.identifier.citation | 1. Banting FG, Best CH, Collip JB, Campbell WR, Fletcher AA. Pancreatic extracts in the treatment of diabetes mellitus: preliminary report. 1922. CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne. 1991; 145:1281-6.
2. Stryjewska A, Kiepura K, Librowski T, Lochynski S. Biotechnology and genetic engineering in the new drug development. Part I. DNA technology and recombinant proteins. Pharmacological reports : PR. 2013; 65:1075-85. 3. Richter B, Neises G. 'Human' insulin versus animal insulin in people with diabetes mellitus. The Cochrane database of systematic reviews. 2002:Cd003816. 4. Baker EN, Blundell TL, Cutfield JF, Cutfield SM, Dodson EJ, Dodson GG, et al. The structure of 2Zn pig insulin crystals at 1.5 A resolution. Philosophical transactions of the Royal Society of London Series B, Biological sciences. 1988; 319:369-456. 5. Laub O, Rutter WJ. Expression of the human insulin gene and cDNA in a heterologous mammalian system. The Journal of biological chemistry. 1983; 258:6043-50. 6. Nielsen J. Production of biopharmaceutical proteins by yeast: advances through metabolic engineering. Bioengineered. 2013; 4:207-11. 7. Lundby C, Olsen NV. Effects of recombinant human erythropoietin in normal humans. The Journal of physiology. 2011; 589:1265-71. 8. Johnson KP, Panitch HS. Effects of experimental recombinant interferons on multiple sclerosis. Transactions of the American Clinical and Climatological Association. 1989; 100:171-6. 9. Shapiro AD. Long-lasting recombinant factor VIII proteins for hemophilia A. Hematology / the Education Program of the American Society of Hematology American Society of Hematology Education Program. 2013; 2013:37-43. 10. Reissner KJ, Aswad DW. Deamidation and isoaspartate formation in proteins: unwanted alterations or surreptitious signals? Cellular and molecular life sciences : CMLS. 2003; 60:1281-95. 11. Lam XM, Yang JY, Cleland JL. Antioxidants for prevention of methionine oxidation in recombinant monoclonal antibody HER2. Journal of pharmaceutical sciences. 1997; 86:1250-5. 12. Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharmaceutical research. 2010; 27:544-75. 13. Fayos R, Pons M, Millet O. On the origin of the thermostabilization of proteins induced by sodium phosphate. Journal of the American Chemical Society. 2005; 127:9690-1. 14. Ruiz L, Aroche K, Reyes N. Aggregation of recombinant human interferon alpha 2b in solution: technical note. AAPS PharmSciTech. 2006; 7:99. 15. Arakawa T, Timasheff SN. Stabilization of protein structure by sugars. Biochemistry. 1982; 21:6536-44. 16. Lee JC, Timasheff SN. The stabilization of proteins by sucrose. The Journal of biological chemistry. 1981; 256:7193-201. 17. Otzen DE, Knudsen BR, Aachmann F, Larsen KL, Wimmer R. Structural basis for cyclodextrins' suppression of human growth hormone aggregation. Protein science : a publication of the Protein Society. 2002; 11:1779-87. 18. Chou DK, Krishnamurthy R, Randolph TW, Carpenter JF, Manning MC. Effects of Tween 20 and Tween 80 on the stability of Albutropin during agitation. Journal of pharmaceutical sciences. 2005; 94:1368-81. 19. Torchilin VP. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annual review of biomedical engineering. 2006; 8:343-75. 20. Sharma AR, Kundu SK, Nam JS, Sharma G, Priya Doss CG, Lee SS, et al. Next generation delivery system for proteins and genes of therapeutic purpose: why and how? BioMed research international. 2014; 2014:327950. 21. Bechara C, Sagan S. Cell-penetrating peptides: 20 years later, where do we stand? FEBS letters. 2013; 587:1693-702. 22. Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 1988; 55:1189-93. 23. Green M, Loewenstein PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell. 1988; 55:1179-88. 24. Vives E, Brodin P, Lebleu B. A Truncated HIV-1 Tat Protein Basic Domain Rapidly Translocates through the Plasma Membrane and Accumulates in the Cell Nucleus. Journal of Biological Chemistry. 1997; 272:16010-7. 25. Joliot A, Pernelle C, Deagostini-Bazin H, Prochiantz A. Antennapedia homeobox peptide regulates neural morphogenesis. Proceedings of the National Academy of Sciences of the United States of America. 1991; 88:1864-8. 26. Derossi D, Joliot AH, Chassaing G, Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. The Journal of biological chemistry. 1994; 269:10444-50. 27. Milletti F. Cell-penetrating peptides: classes, origin, and current landscape. Drug discovery today. 2012; 17:850-60. 28. Elmquist A, Lindgren M, Bartfai T, Langel U. VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. Experimental cell research. 2001; 269:237-44. 29. Pooga M, Hallbrink M, Zorko M, Langel U. Cell penetration by transportan. FASEB Journal. 1998; 12:67-77. 30. Morris MC, Vidal P, Chaloin L, Heitz F, Divita G. A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res. 1997; 25:2730-6. 31. Morris MC, Depollier J, Mery J, Heitz F, Divita G. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol. 2001; 19:1173-6. 32. Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB. Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res. 2000; 56:318-25. 33. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, et al. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. The Journal of biological chemistry. 2001; 276:5836-40. 34. Oehlke J, Scheller A, Wiesner B, Krause E, Beyermann M, Klauschenz E, et al. Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Bba-Biomembranes. 1998; 1414:127-39. 35. Delaroche D, Aussedat B, Aubry S, Chassaing G, Burlina F, Clodic G, et al. Tracking a new cell-penetrating (W/R) nonapeptide, through an enzyme-stable mass spectrometry reporter tag. Anal Chem. 2007; 79:1932-8. 36. Marks JR, Placone J, Hristova K, Wimley WC. Spontaneous membrane-translocating peptides by orthogonal high-throughput screening. Journal of the American Chemical Society. 2011; 133:8995-9004. 37. Shi NQ, Qi XR, Xiang B, Zhang Y. A survey on 'Trojan Horse' peptides: Opportunities, issues and controlled entry to 'Troy'. Journal of controlled release : official journal of the Controlled Release Society. 2014; 194C:53-70. 38. Vasconcelos L, Parn K, Langel U. Therapeutic potential of cell-penetrating peptides. Therapeutic delivery. 2013; 4:573-91. 39. Heitz F, Morris MC, Divita G. Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. British journal of pharmacology. 2009; 157:195-206. 40. Lee SH, Castagner B, Leroux JC. Is there a future for cell-penetrating peptides in oligonucleotide delivery? European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2013; 85:5-11. 41. Koppelhus U, Awasthi SK, Zachar V, Holst HU, Ebbesen P, Nielsen PE. Cell-dependent differential cellular uptake of PNA, peptides, and PNA-peptide conjugates. Antisense & nucleic acid drug development. 2002; 12:51-63. 42. Menozzi FD, Rouse JH, Alavi M, Laude-Sharp M, Muller J, Bischoff R, et al. Identification of a heparin-binding hemagglutinin present in mycobacteria. The Journal of experimental medicine. 1996; 184:993-1001. 43. Pethe K, Alonso S, Biet F, Delogu G, Brennan MJ, Locht C, et al. The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature. 2001; 412:190-4. 44. Delogu G, Fadda G, Brennan MJ. Impact of structural domains of the heparin binding hemagglutinin of Mycobacterium tuberculosis on function. Protein and peptide letters. 2012; 19:1035-9. 45. Delogu G, Brennan MJ. Functional domains present in the mycobacterial hemagglutinin, HBHA. Journal of bacteriology. 1999; 181:7464-9. 46. Pethe K, Aumercier M, Fort E, Gatot C, Locht C, Menozzi FD. Characterization of the heparin-binding site of the mycobacterial heparin-binding hemagglutinin adhesin. The Journal of biological chemistry. 2000; 275:14273-80. 47. 鄭如辰. 研究肝素結合凝血附著素相關胜肽之穿胞運輸性質: 臺灣大學; 2009. 48. 邱予芹. 研究肝素結合凝血附著素c之蛋白質運送能力: 臺灣大學; 2010. 49. 康竣崴. 含穿胞胜肽HBHAc之重組綠色螢光蛋白於肝癌細胞株的胞內運輸之研究: 臺灣大學; 2012. 50. Wu FL, Yeh TH, Chen YL, Chiu YC, Cheng JC, Wei MF, et al. Intracellular Delivery of Recombinant Arginine Deiminase (rADI) by Heparin-Binding Hemagglutinin Adhesion Peptide Restores Sensitivity in rADI-Resistant Cancer Cells. Molecular pharmaceutics. 2014; 11:2777-86. 51. Goshima Y, Nakamura F, Strittmatter P, Strittmatter SM. Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature. 1995; 376:509-14. 52. Li W, Herman RK, Shaw JE. Analysis of the Caenorhabditis elegans axonal guidance and outgrowth gene unc-33. Genetics. 1992; 132:675-89. 53. Charrier E, Reibel S, Rogemond V, Aguera M, Thomasset N, Honnorat J. Collapsin response mediator proteins (CRMPs): involvement in nervous system development and adult neurodegenerative disorders. Molecular neurobiology. 2003; 28:51-64. 54. Hamajima N, Matsuda K, Sakata S, Tamaki N, Sasaki M, Nonaka M. A novel gene family defined by human dihydropyrimidinase and three related proteins with differential tissue distribution. Gene. 1996; 180:157-63. 55. Schmidt EF, Strittmatter SM. The CRMP family of proteins and their role in Sema3A signaling. Advances in experimental medicine and biology. 2007; 600:1-11. 56. Deo RC, Schmidt EF, Elhabazi A, Togashi H, Burley SK, Strittmatter SM. Structural bases for CRMP function in plexin-dependent semaphorin3A signaling. The EMBO journal. 2004; 23:9-22. 57. Uchida Y, Ohshima T, Sasaki Y, Suzuki H, Yanai S, Yamashita N, et al. Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer's disease. Genes to cells : devoted to molecular & cellular mechanisms. 2005; 10:165-79. 58. Shih JY, Lee YC, Yang SC, Hong TM, Huang CY, Yang PC. Collapsin response mediator protein-1: a novel invasion-suppressor gene. Clinical & experimental metastasis. 2003; 20:69-76. 59. Lin PC, Chan PM, Hall C, Manser E. Collapsin response mediator proteins (CRMPs) are a new class of microtubule-associated protein (MAP) that selectively interacts with assembled microtubules via a taxol-sensitive binding interaction. The Journal of biological chemistry. 2011; 286:41466-78. 60. Cole AR, Causeret F, Yadirgi G, Hastie CJ, McLauchlan H, McManus EJ, et al. Distinct priming kinases contribute to differential regulation of collapsin response mediator proteins by glycogen synthase kinase-3 in vivo. The Journal of biological chemistry. 2006; 281:16591-8. 61. Buel GR, Rush J, Ballif BA. Fyn promotes phosphorylation of collapsin response mediator protein 1 at tyrosine 504, a novel, isoform-specific regulatory site. Journal of cellular biochemistry. 2010; 111:20-8. 62. Yamashita N, Nakamura F, Goshima Y. [Role of Cdk5 in axon guidance and synapse development]. Tanpakushitsu kakusan koso Protein, nucleic acid, enzyme. 2009; 54:802-7. 63. Steeg PS. Collapsin response mediator protein-1: a lung cancer invasion suppressor gene with nerve. Journal of the National Cancer Institute. 2001; 93:1364-5. 64. Yang PC, Luh KT, Wu R, Wu CW. Characterization of the mucin differentiation in human lung adenocarcinoma cell lines. American journal of respiratory cell and molecular biology. 1992; 7:161-71. 65. Chu YW, Yang PC, Yang SC, Shyu YC, Hendrix MJ, Wu R, et al. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. American journal of respiratory cell and molecular biology. 1997; 17:353-60. 66. Shih JY, Yang SC, Hong TM, Yuan A, Chen JJ, Yu CJ, et al. Collapsin response mediator protein-1 and the invasion and metastasis of cancer cells. Journal of the National Cancer Institute. 2001; 93:1392-400. 67. Gao M, Yeh PY, Lu YS, Chang WC, Kuo ML, Cheng AL. NF-kappaB p50 promotes tumor cell invasion through negative regulation of invasion suppressor gene CRMP-1 in human lung adenocarcinoma cells. Biochemical and biophysical research communications. 2008; 376:283-7. 68. Yasumitsu H, Ozeki Y, Kawsar SM, Fujii Y, Sakagami M, Matuo Y, et al. RAMA stain: a fast, sensitive and less protein-modifying CBB R250 stain. Electrophoresis. 2010; 31:1913-7. 69. Vincentelli R, Canaan S, Campanacci V, Valencia C, Maurin D, Frassinetti F, et al. High-throughput automated refolding screening of inclusion bodies. Protein science : a publication of the Protein Society. 2004; 13:2782-92. 70. Dechavanne V, Barrillat N, Borlat F, Hermant A, Magnenat L, Paquet M, et al. A high-throughput protein refolding screen in 96-well format combined with design of experiments to optimize the refolding conditions. Protein expression and purification. 2011; 75:192-203. 71. Huang T, Long M, Huo B. Competitive Binding to Cuprous Ions of Protein and BCA in the Bicinchoninic Acid Protein Assay. The open biomedical engineering journal. 2010; 4:271-8. 72. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Analytical biochemistry. 1985; 150:76-85. 73. McKinney RM, Spillane JT, Pearce GW. Factors Affecting the Rate of Reaction of Fluorescein Isothiocyanate with Serum Proteins. Journal of immunology. 1964; 93:232-42. 74. The TH, Feltkamp TE. Conjugation of fluorescein isothiocyanate to antibodies. I. Experiments on the conditions of conjugation. Immunology. 1970; 18:865-73. 75. Carlsson J, Drevin H, Axen R. Protein thiolation and reversible protein-protein conjugation. N-Succinimidyl 3-(2-pyridyldithio)propionate, a new heterobifunctional reagent. The Biochemical journal. 1978; 173:723-37. 76. Liu Y, Peterson DA, Kimura H, Schubert D. Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. Journal of neurochemistry. 1997; 69:581-93. 77. Keepers YP, Pizao PE, Peters GJ, van Ark-Otte J, Winograd B, Pinedo HM. Comparison of the sulforhodamine B protein and tetrazolium (MTT) assays for in vitro chemosensitivity testing. European journal of cancer. 1991; 27:897-900. 78. Lei SP, Lin HC, Wang SS, Callaway J, Wilcox G. Characterization of the Erwinia carotovora pelB gene and its product pectate lyase. Journal of bacteriology. 1987; 169:4379-83. 79. Lu H, Zang Y, Ze Y, Zhu J, Chen T, Han J, et al. Expression, refolding, and characterization of a novel recombinant dual human stem cell factor. Protein expression and purification. 2005; 43:126-32. 80. Song HN, Jang JH, Kim YW, Kim DH, Park SG, Lee MK, et al. Refolded scFv Antibody Fragment against Myoglobin Shows Rapid Reaction Kinetics. International journal of molecular sciences. 2014; 15:23658-71. 81. Mukherjee KJ, Rowe DCD, Watkins NA, Summers DK. Studies of Single-Chain Antibody Expression in Quiescent Escherichia coli. Applied and Environmental Microbiology. 2004; 70:3005-12. 82. Hill J, Montgomery DS, Kay J. Human cathepsin E produced in E. coli. FEBS letters. 1993; 326:101-4. 83. Lin K, Crocker JC, Prasad VV, Schofield A, Weitz DA, Lubensky TC, et al. Entropically driven colloidal crystallization on patterned surfaces. Physical review letters. 2000; 85:1770-3. 84. Lau AW, Lin KH, Yodh AG. Entropic interactions in suspensions of semiflexible rods: short-range effects of flexibility. Physical review E, Statistical, nonlinear, and soft matter physics. 2002; 66:020401. 85. Ackerson BJ, Pusey PN. Shear-induced order in suspensions of hard spheres. Physical review letters. 1988; 61:1033-6. 86. Jungbauer A, Kaar W, Schlegl R. Folding and refolding of proteins in chromatographic beds. Curr Opin Biotechnol. 2004; 15:487-94. 87. Clark EDB. Refolding of recombinant proteins. Curr Opin Biotech. 1998; 9:157-63. 88. Mittal S, Singh LR. Denatured state structural property determines protein stabilization by macromolecular crowding: a thermodynamic and structural approach. PloS one. 2013; 8:e78936. 89. Bell CW, Fricks BE, Rocca JD, Steinweg JM, McMahon SK, Wallenstein MD. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. Journal of visualized experiments : JoVE. 2013:e50961. 90. Good NE, Winget GD, Winter W, Connolly TN, Izawa S, Singh RM. Hydrogen ion buffers for biological research. Biochemistry. 1966; 5:467-77. 91. Patel K, Borchardt RT. Chemical pathways of peptide degradation. II. Kinetics of deamidation of an asparaginyl residue in a model hexapeptide. Pharmaceutical research. 1990; 7:703-11. 92. Tomizawa H, Yamada H, Wada K, Imoto T. Stabilization of lysozyme against irreversible inactivation by suppression of chemical reactions. Journal of biochemistry. 1995; 117:635-40. 93. Lu H, Zhang H, Wang Q, Yuan H, He W, Zhao Z, et al. Purification, refolding of hybrid hIFNgamma-kringle 5 expressed in Escherichia coli. Current microbiology. 2001; 42:211-6. 94. Kerwin BA, Heller MC, Levin SH, Randolph TW. Effects of Tween 80 and sucrose on acute short-term stability and long-term storage at -20 degrees C of a recombinant hemoglobin. Journal of pharmaceutical sciences. 1998; 87:1062-8. 95. Bondos SE, Bicknell A. Detection and prevention of protein aggregation before, during, and after purification. Analytical biochemistry. 2003; 316:223-31. 96. Shaltiel-Karyo R, Frenkel-Pinter M, Rockenstein E, Patrick C, Levy-Sakin M, Schiller A, et al. A blood-brain barrier (BBB) disrupter is also a potent alpha-synuclein (alpha-syn) aggregation inhibitor: a novel dual mechanism of mannitol for the treatment of Parkinson disease (PD). The Journal of biological chemistry. 2013; 288:17579-88. 97. Gekko K, Morikawa T. Preferential hydration of bovine serum albumin in polyhydric alcohol-water mixtures. Journal of biochemistry. 1981; 90:39-50. 98. Xie GF, Timasheff SN. Mechanism of the stabilization of ribonuclease A by sorbitol: Preferential hydration is greater for the denatured than for the native protein. Protein Science. 1997; 6:211-21. 99. El-Andaloussi S, Jarver P, Johansson HJ, Langel U. Cargo-dependent cytotoxicity and delivery efficacy of cell-penetrating peptides: a comparative study. The Biochemical journal. 2007; 407:285-92. 100. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. Journal of the National Cancer Institute. 1990; 82:1107-12. 101. Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nature protocols. 2006; 1:1112-6. 102. Chakrabarti R, Kundu S, Kumar S, Chakrabarti R. Vitamin A as an enzyme that catalyzes the reduction of MTT to formazan by vitamin C. Journal of cellular biochemistry. 2000; 80:133-8. 103. Pagliacci MC, Spinozzi F, Migliorati G, Fumi G, Smacchia M, Grignani F, et al. Genistein inhibits tumour cell growth in vitro but enhances mitochondrial reduction of tetrazolium salts: a further pitfall in the use of the MTT assay for evaluating cell growth and survival. European journal of cancer. 1993; 29a:1573-7. 104. Bernhard D, Schwaiger W, Crazzolara R, Tinhofer I, Kofler R, Csordas A. Enhanced MTT-reducing activity under growth inhibition by resveratrol in CEM-C7H2 lymphocytic leukemia cells. Cancer letters. 2003; 195:193-9. 105. Funk D, Schrenk H-H, Frei E. Serum albumin leads to false-positive results in the XTT and the MTT assay. BioTechniques. 2007; 43:178-86. 106. Pan SH, Chao YC, Hung PF, Chen HY, Yang SC, Chang YL, et al. The ability of LCRMP-1 to promote cancer invasion by enhancing filopodia formation is antagonized by CRMP-1. The Journal of clinical investigation. 2011; 121:3189-205. 107. Tavare JM, Fletcher LM, Welsh GI. Review - Using green fluorescent protein to study intracellular signalling. J Endocrinol. 2001; 170:297-306. 108. Rusnati M, Tulipano G, Spillmann D, Tanghetti E, Oreste P, Zoppetti G, et al. Multiple interactions of HIV-I Tat protein with size-defined heparin oligosaccharides. The Journal of biological chemistry. 1999; 274:28198-205. 109. Ziegler A, Seelig J. Binding and clustering of glycosaminoglycans: a common property of mono- and multivalent cell-penetrating compounds. Biophysical journal. 2008; 94:2142-9. 110. David G. Integral membrane heparan sulfate proteoglycans. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 1993; 7:1023-30. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4780 | - |
dc.description.abstract | Collapsin response mediator protein-1 (CRMP-1) 是一種能促進神經細胞生長椎崩塌 (growth cone collapse) 及軸突誘導 (axonal guidance) 的蛋白質,CRMP-1和癌細胞的侵襲能力也具有相關性。CL1-5是具有高度侵襲能力的人類肺腺癌細胞,其細胞內CRMP-1的表現量較侵襲能力低的CL1-0少,以基因轉染 (gene transfection) 的方式增加CL1-5的CRMP-1表現量,可抑制其侵襲能力並減少絲狀偽足的產生。肝素結合凝血附著素 (heparin-binding haemagglutinin adhesin,HBHA) 是從結核桿菌 (Mycobacterium tuberoculosis) 中發現的蛋白質,其C端區域是與宿主肺部表皮細胞黏合的重要區段,此段結構主要是由兩個片段重覆排列而成:KKAAPA (R1) 和KKAAAKK (R2)。過去我們發現以1R1 + 2R2 方式組合而成的胜肽HBHAc,能成功地攜帶重組精胺酸去亞胺酶 (recombinant arginine deiminase,rADI) 進入人類乳癌細胞 (MCF-7)。為了增加CL1-5內CRMP-1的量,本研究利用大腸桿菌 (Escherichia coli) 所製造出重組之CRMP-1 (rCRMP-1),以高通量篩選的方式尋找rCRMP-1的再摺疊條件,接著透過化學修飾接上HBHAc,預期rCRMP-1能夠經由HBHAc的幫助進入到CL1-5。
首先,我們利用Ni-NTA管柱以梯度沖提的方式將rCRMP-1從包涵體中純化出來,接著以高通量篩選的方式找出rCRMP-1摺疊的最佳條件,依此條件進行rCRMP-1的透析與再摺疊,透析完成後,將rCRMP-1標記上FITC及接上HBHAc。細胞實驗部分,我們選擇CL1-5作為模式細胞株,以SRB assay及MTT assay測試HBHAc-rCRMP-1是否會影響CL1-5的存活率,接著,以流式細胞儀分析HBHAc-CRMP-1進入細胞的效率,確認HBHAc-rCRMP-1能有效地進入細胞後,再以F-actin 染色試驗來評估HBHA-rCRMP-1的活性。 研究結果顯示,本研究的純化方法能成功地純化出高純度的rCRMP-1,我們找出50 mM Tris、0.1% 甘露醇 (pH 9.0) 為rCRMP-1再摺疊的最佳條件,透析完成後我們將rCRMP-1置換到1X PBS (pH 9.0) 的環境下,並順利地將rCRMP-1標記FITC及接上HBHAc,我們發現以「先接HBHAc,再接FITC」的順序反應,可使得rCRMP-1及HBHAc-rCRMP-1的螢光量較為一致。在細胞存活率部分,SRB assay結果顯示HBHAc-rCRMP-1及rCRMP-1皆不會造成細胞毒性,但投予HBHAc-rCRMP-1會使得CL1-5的型態產生改變;而利用MTT assay會得到偽陽性的結果,無法準確評估細胞毒性。在細胞活性試驗的部分,我們投予不同劑量的HBHAc-rCRMP-1及rCRMP-1,對F-actin進行螢光染色觀察,結果顯示CL1-5細胞投予30 nM和100 nM的HBHAc-rCRMP-1後,其細胞帶有絲狀偽足的比率有減少的趨勢。在細胞攝取實驗,以EGFP作為報導可觀察到HBHAc能有效地將EGFP送入CL1-5,證明HBHAc在CL1-5具有遞送的功能;接著我們投予300 nM的rCRMP-1及HBHAc-rCRMP-1,培養兩小時後,HBHAc-rCRMP-1與rCRMP-1進入細胞的比率皆高於對照組 (p<0.05),但兩者間的差異在統計上並不顯著;我們同樣投予300 nM的HBHAc-rCRMP-1與rCRMP-1至MCF-7,HBHAc-rCRMP-1進入細胞的比率約為30%,rCRMP-1的比率為6%,然而我們需要更多的結果去確認HBHAc-rCRMP-1是否在CL1-5與MCF-7的細胞攝取有所差異。 本研究成功地純化出rCRMP-1、找到rCRMP-1摺疊的適當條件,並且製備出HBHAc-rCRMP-1的接合體,但PBS的環境並不適於rCRMP-1的保存。HBHAc-rCRMP-1會使CL1-5的型態產生改變並減少CL1-5細胞絲狀偽足的表現量,卻不會影響其細胞存活率。HBHAc能成功地遞送EGFP及rCRMP-1到CL1-5細胞,且HBHAc遞送rCRMP-1的能力會因細胞株不同而有所差異。而我們因為rCRMP-1的來源有限,利用化學鍵結的方式結合穿胞胜肽與蛋白質雖是有效地蛋白質遞送策略,但未來我們需要更多的結果去確認。 | zh_TW |
dc.description.abstract | Collapsin response mediator protein-1 (CRMP-1) is a protein inducing growth cone collapse and axonal guidance of neural cells. It is also related to the invasive ability of cancer cells. CL1-5 cells are human lung adenocarcinoma cells with highly invasive ability compared to CL1-0 cells. The expression of CRMP-1 in CL1-5 is lower than that in CL1-0. The increase of the expression of CRMP-1 in CL1-5 by gene transfection inhibited invasive activity and reduced the formation of filopodia. Heparin-binding haemagglutinin adhesion (HBHA) is a protein discovered from Mycobacterium tuberoculosis. Its C-terminal domain is an important part to adhere pulmonary epithelial cells of host, and this domain is composed of two repeated motifs : KKAAPA motif (R1) and KKAAAKK (R2). In our previous study, the peptide with the sequence of 1R1 +2R2 named HBHAc successfully carried recombinant arginine deiminase (rADI) into human breast cancer cells (MCF-7) intracellulatly. In order to increase the intracellular amount of CRMP-1 in CL1-5, this study used the recombinant CRMP-1 (rCRMP-1) produced from Escherichia coli and found the best refolding condition of rCRMP-1 with a high-throughput screening method. The next, the rCRMP-1 was conjugated with HBHAc by chemical modification, and further confirmed the biological activity of HBHAc modified rCRMP-1 in CL1-5.
First, we used the nickel-nitrilotriacetic acid (Ni-NTA) column to purify rCRMP-1 from inclusion bodies with gradient elution. We found the best refolding condition with a high-throughput screening method and chose this condition to dialyze and refold the rCRMP-1. After the completion of dialysis, the rCRMP-1 was labeled with FITC and linked with HBHAc. In cell experiments, we choose CL1-5 as a model cell line, and used SRB assay and MTT assay to investigate whether HBHAc-rCRMP-1 affect the cell viability. We subsequently used flow cytometry to analyze the uptake efficiency of HBHAc-rCRMP-1, after confirming HBHAc-rCRMP-1 could effectively enter the cells, we evaluated the activity of HBHAc-rCRMP-1 by actin staining assay. We obtained the rCRMP-1 from the inclusion bodies with a highly purity, we also found the best buffer (50 mM Tris, 0.1% mannitol, pH 9.0) condition for rCRMP-1 refolding. After dialysis, we changed the buffer into 1X PBS (pH 9.0) and rCRMP-1 was labeled with FITC and linked with HBHAc. In cell viability experiment, the SRB assay results showed both HBHAc-rCRMP-1 and rCRMP-1 didn’t cause the cytotoxicity, but the cell morphology of CL1-5 was changed after treating with HBHAc-rCRMP-1. In contrast, MTT assay showed a false-positive result because of some interference released from cells. In actin staining assay, we treated the cells with different dose of proteins, then we stained the F-actin to observe its distribution. The results showed the percentage of CL1-5 cells with filopodia was reduced after treating with 30 nM and 100 nM of HBHAc-rCRMP-1. In cellular uptake study, we used enhanced green fluorescence protein (EGFP) as a reporter to observe the delivery ability of HBHAc, and HBHAc could carry EGFP into CL1-5. We further treated CL1-5 with 300 nM of HBHAc-rCRMP-1 and rCRMP-1, after 2 hours incubation, the percentage of fluorescence positive cells of both treatment group was higher than that of control group (p<0.05), but the differences between them were not statistically significant. We also treated MCF-7 with the same dose of proteins, the HBHAc-rCRMP-1 group showed 30% of fluorescence positive cells, but only 6% in rCRMP-1 group. However, we need further results to confirm that whether HBHAc-rCRMP-1 had different uptake efficiency in different cell lines. In conclusion, we successfully purified the rCRMP-1, found the suitable condition for rCRMP-1 refolding, and prepared the HBHAc-rCRMP-1 conjugates. The PBS was not an appropriate buffer for rCRMP-1 perservation. HBHAc-rCRMP-1 changed the cell morphology and reduced the expression of filopodia in CL1-5 cells, but not affected the cell viability. HBHAc had the ability to carry EGFP and rCRMP-1 into CL1-5 cells, and HBHAc-rCRMP-1 showed different uptake efficiency in CL1-5 and MCF-7 cells. However due to the limited availability of rCRMP-1, the conjugation of cell-penetrating peptides and proteins may be a useful protein delivery strategy, we need to confirm the results in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-05-14T17:47:04Z (GMT). No. of bitstreams: 1 ntu-104-R01423024-1.pdf: 2314661 bytes, checksum: 64ab941eb6ec1fce0ebe6b6b7f6933e1 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 中文摘要 II
Abstract V 目錄 VIII 圖目錄 XI 表目錄 XII 縮寫表 XIII 第一章 緒論 1 1.1 蛋白質藥物 1 1.2 細胞穿透胜肽 (Cell-penetrating peptides,CPPs) 2 1.3細胞穿透胜肽的分類 3 1.4 細胞穿透胜肽的應用與限制 3 1.5 肝素結合凝血附著素 (Heparin-binding haemagglutinin adhesion,HBHA) 4 1.6 Collapsin response mediator protein-1 (CRMP-1) 5 1.7 CRMP-1於癌症轉移的研究 6 第二章 研究目的 8 第三章 實驗材料與方法 9 3.1 實驗材料 9 3.2 緩衝液配方 12 3.3 蛋白質之純化與分析 13 3.3.1 rCRMP-1的純化 13 3.3.2 rCRMP-1再折疊條件之最佳化與透析 14 3.3.3 蛋白質濃度測定 15 3.3.4 蛋白質膠體電泳分析 15 3.4 蛋白質修飾 16 3.4.1 rCRMP-1標記螢光素FITC 16 3.4.2 蛋白質之化學性結合物製備 17 3.5 細胞培養 18 3.6 細胞存活率試驗 18 3.6.1 SRB assay 19 3.6.2 MTT assay 19 3.6.3細胞存活率計算 19 3.7 rCRMP-1之細胞活性試驗 (F-actin 染色試驗) 20 3.8 細胞攝取試驗 20 3.9 統計分析 21 第四章 實驗結果 22 4.1 rCRMP-1的純化與HBHAc-rCRMP-1的製備 22 4.2 HBHAc-rCRMP-1 對CL1-5的細胞存活率分析 24 4.3 HBHAc-rCRMP-1對actin聚合之影響 25 4.4 穿胞胜肽HBHAc於CL1-5細胞的細胞攝取試驗 26 4.4.1 HBHAc-EGFP進入CL1-5的效率分析 26 4.4.2 HBHAc-rCRMP-1進入CL1-5的效率分析 27 4.4.3 HBHAc-rCRMP-1進入MCF-7的效率分析 28 第五章 討論 29 5.1 CRMP-1與rCRMP-1結構之差異 29 5.2 rCRMP-1再摺疊條件之最佳化 30 5.3 HBHAc-rCRMP-1對CL1-5無顯著的細胞毒性 31 5.4 HBHAc-rCRMP-1促使MTT assay產生偽陽性結果 32 5.5 HBHAc-rCRMP-1於CL1-5細胞的活性試驗 33 5.6 HBHAc於CL1-5細胞的蛋白質遞送之探討 34 5.7 本研究之實驗限制 35 第六章 結論 36 參考文獻 64 | |
dc.language.iso | zh-TW | |
dc.title | Collapsin response mediator protein-1與穿胞胜肽接合體之製備及其於肺腺癌細胞之胞內運輸研究 | zh_TW |
dc.title | Preparation of collapsing response mediator protein-1 (CRMP-1) and cell-penetrating peptide conjugates and
study on its intracellular delivery in lung adenocarcinoma cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 孔繁璐(Fan-Lu Kung),潘思樺(Szu-Hua Pan) | |
dc.subject.keyword | 肝素結合凝血附著素,細胞穿透胜?,蛋白質純化,CRMP-1,人類肺腺癌細胞, | zh_TW |
dc.subject.keyword | heparin-binding haemagglutinin adhesin,cell-penetrating peptides,protein purification,collapsin response mediator protein-1,human lung adenocarcinoma, | en |
dc.relation.page | 76 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2015-02-24 | |
dc.contributor.author-college | 藥學專業學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
Appears in Collections: | 藥學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-104-1.pdf | 2.26 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.