請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47809
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 繆希椿教授 | |
dc.contributor.author | Yi-Li Cho | en |
dc.contributor.author | 卓益立 | zh_TW |
dc.date.accessioned | 2021-06-15T06:19:51Z | - |
dc.date.available | 2020-12-31 | |
dc.date.copyright | 2010-09-09 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-10 | |
dc.identifier.citation | 1. Billiau A, Matthys P. Interferon-γ : A historical perspective. Cytokine & Growth Factor Reviews. 2009;20:97-113.
2. Hu X, Ivashkiv LB. Cross-regulation of Signaling Pathways by Interferon-γ : Implications for Immune Responses and Autoimmune Diseases. Immunity. 2009;31(4):539-550. 3. Chen J, Liu X. The role of interferon gamma in regulation of CD4+ T-cells and its clinical implications. Cellular immunology. 2009;254(2):85-90. 4. Glimcher LH, Townsend MJ, Sullivan BM, Lord GM. Recent developments in the transcriptional regulation of cytolytic effector cells. Nature reviews. Immunology. 2004;4(11):900-11. 5. Peng SL, Szabo SJ, Glimcher LH. T-bet regulates IgG class switching and pathogenic autoantibody production. PNAS. 2002;99(8):5545-5550. 6. Chaix J, Tessmer MS, Hoebe K, et al. Cutting Edge : Priming of NK Cells by IL-18. The Journal of Immunology. 2008;181:1627-1631. 7. Yin Z, Chen C, Szabo SJ, et al. T-Bet Expression and Failure of GATA-3 Cross-Regulation Lead to Default Production of IFN-γ by g dT Cells. The Journal of Immunology. 2002;168:1566-1571. 8. Papamichail M. In Vivo Antitumor Activity of NKT Cells Activated by the Combination of IL-12 and IL-18. The Journal of Immunology. 2002. 9. Frucht DM, Fukao T, Bogdan C, et al. IFN-γ production by antigen-presenting cells: mechanisms emerge. Trends in Immunology. 2001;22(10):556-560. 10. Hu J, Sahu N, Walsh E, August A. Memory phenotype CD8+ T cells with innate function selectively develop in the absence of active Itk. European journal of immunology. 2007;37(10):2892-9. 11. Bastos KR, Barboza R, Sardinha L, et al. Role of Endogenous IFN-γ in Macrophage Programming Induced by IL-12 and IL-18. Nitric Oxide. 2007;410:399-410. 12. Stober D, Schirmbeck R, Alerts E. IL-12/IL-18-Dependent IFN-γ Release by Murine Dendritic Cells. Public Health. 2010. 13. Rosmaraki EE, Douagi I, Roth C, et al. Identification of committed NK cell progenitors in adult murine bone marrow. European journal of immunology. 2001;31(6):1900-1909. 14. Kim S, Iizuka K, Kang HP, et al. In vivo developmental stages in murine natural killer cell maturation. Nature immunology. 2002;3(6):523-8. 15. Bendelac a, Rivera MN, Park SH, Roark JH. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annual review of immunology. 1997;15(6):535-62. 16. Kronenberg M, Gapin L. The unconventional lifestyle of NKT cells. Nature reviews. Immunology. 2002;2(8):557-68. 17. Sebzda E, Mariathasan S, Ohteki T, et al. Selection of The T cell Repertoire. Annu. Rev. Immunol. 1992;17:829-847. 18. Kamachi Y, Ogawa E, Asano M, et al. Purification of a mouse nuclear factor that binds to both the A and B cores of the polyomavirus enhancer. Journal of virology. 1990;64(10):4808-19. 19. Wang SW, Speck Na. Purification of core-binding factor, a protein that binds the conserved core site in murine leukemia virus enhancers. Molecular and cellular biology. 1992;12(1):89-102. 20. Shimizu K, Ohki M. t (8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene , AMLJ. PNAS. 1991:10431-10434. 21. Ito Y. Oncogenic potential of the Runx gene family: ‘overview’. Oncogene. 2004;23:4198-4208. 22. Hye-Ryun K, Oh B, Choi J, Bae S. Pim-1 Kinase Phosphorylates and Stabilizes RUNX3 and Alters Its Subcellular Localinzation. J. Cell. Biochem. 2008:1048-1058. 23. Li Y, Goh Y, Chi X, et al. Jab/CSN5 Induces the Cytoplasmic Localization and Degradation of RUNX3. J. Cell. Biochem. 2009:557-565. 24. Zeng C, Wijnen AJ, Stein JL, et al. Identification of a nuclear matrix targeting signal in the leukemia and bone-related AML/CBF-a transcription factors. Sciences-New York. 2010. 25. Stein GS, Lian JB, van Wijnen AJ, et al. Nuclear microenvironments support assembly and organization of the transcriptional regulatory machinery for cell proliferation and differentiation. Journal of cellular biochemistry. 2004;91(2):287-302. 26. Javed a, Guo B, Hiebert S, et al. Groucho/TLE/R-esp proteins associate with the nuclear matrix and repress RUNX (CBF(alpha)/AML/PEBP2(alpha)) dependent activation of tissue-specific gene transcription. Journal of cell science. 2000;113 ( Pt 1:2221-31. 27. Proliferation B, Brady G, Whiteman HJ, et al. Downregulation of RUNX1 by RUNX3 Requires the RUNX3 VWRPY Sequence and Is Essential for Epstein-Barr Virus-Driven. Society. 2009;83(13):6909-6916. 28. Taniuchi I, Osato M, Egawa T, et al. Differential Requirements for Runx Proteins in CD4 Repression and Epigenetic Silencing during T Lymphocyte Development. 2002;111:621-633. 29. Sato T, Ohno S, Hayashi T, et al. Dual Functions of Runx Proteins for Reactivating CD8 and Silencing CD4 at the Commitment Process into CD8 Thymocytes. Immunity. 2005:317-328. 30. Setoguchi R, Tachibana M, Naoe Y, et al. Repression of The Transcription Factor Th-POK by Runx Complexes in Cytotoxic T Cell Development. Science. 2008;319:822-825. 31. Cruz-guilloty F, Pipkin ME, Djuretic IM, et al. Runx3 and T-box proteins cooperate to establish the transcriptional program of eff ector CTLs. J. Exp. Med. 2009:51-59. 32. Djuretic IM, Levanon D, Negreanu V, et al. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nature Immunology. 2007:1-10. 33. Fainaru O, Woolf E, Yarmus M, et al. Runx3 regulates mouse TGF-β-mediated dendritic cell function and its absence results in airway inflammation. EMBO Journal. 2004;23(4):969-979. 34. Fainaru O, Shseyov D, Hantisteanu S, Groner Y. Accelerated chemokine receptor 7-mediated dendritic cell migration in Runx3 knockout mice and the spontaneous development of asthma-like disease. PNAS. 2005:7-12. 35. Song WJ, Sullivan MG, Legare RD, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nature genetics. 1999;23(2):166-75. 36. Mundlos S. Cleidocranial dysplasia: clinical and molecular genetics. Journal of medical genetics. 1999;36(3):177-82. 37. Li QL, Ito K, Sakakura C, et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell. 2002;109:113-124. 38. Farnham CA, Gapin L, Glimcher LH. T-bet regulates the terminal maturation and homeostasis of NK and Valpha14i NKT cells. Immunity. 2004;20:477-494. 39. Possemato R, Pen C, Lugo-villarino G, Maldonado-lo R, Glimcher LH. T-bet is required for optimal production of IFN-γ and antigen-specific T cell activation by dendritic cells. PNAS. 2003;100(13). 40. Yarmus M, Woolf E, Bernstein Y, et al. Groucho/transducin-like Enhancer-of-split (TLE)-dependent and -independent transcriptional regulation by Runx3. PNAS. 2006;103:7384-7389. 41. Ohno S, Sato T, Kohu K, et al. Runx proteins are involved in regulation of CD122 , Ly49 family and IFN-γ expression during NK cell differentiation. Society. 2007;20(1):71-79. 42. Wang L, Wildt KF, Castro E, et al. The Zinc Finger Transcription Factor Zbtb7b Represses CD8-Lineage Gene Expression in Peripheral CD4+ T cells. Immunity. 2008;29:876-887. 43. Clements JL, John SA, Garrett-Sinha LA. Impaired generation of CD8+ thymocytes in Ets-1-deficient mice. Journal of immunology. 2006;177(2):905-12. 44. Zamisch M, Tian L, Grenningloh R, et al. The transcription factor Ets1 is important for CD4 repression and Runx3 up-regulation during CD8 T cell differentiation in the thymus. The Journal of experimental medicine. 2009;206(12):2685-99. 45. Taghon T, Yui MA, Pant R, Diamond RA, Rothenberg EV. Developmental and molecular characterization of emerging beta- and gammadelta-selected pre-T cells in the adult mouse thymus. Immunity. 2006;24:53-64. 46. Hayashi K, Natsume W, Watanabe T, et al. Diminution of the AML1 Transcription Factor Function Causes Differential Effects on the Fates of CD4 and CD8 Single-Positive T Cells. The Journal of Immunology. 2010. 47. Komine O, Hayashi K, Natsume W, et al. The Runx1 Transcription Factor Inhibits the Differentiation of Naive CD4 ϩ T Cells into the Th2 Lineage by Repressing GATA3 Expression. J. Exp. Med. 2003;198(1). 48. Nakahira M, Tomura M, Iwasaki M, et al. An Absolute Requirement for STAT4 and a Role for IFN-γ as an Amplifyling Factor in IL-12 Induction of the Functional IL-18 Receptor Complex. J. Immunol. 2001:1306-1312. 49. Akira S. The role of IL-18 in innate immunity Shizuo Akira. Current Opinion in Immunology. 2000:59-63. 50. Zaidi SK, Javed A, Choi J, et al. A specific targeting signal directs Runx2 / Cbfa1 to subnuclear domains and contributes to transactivation of the osteocalcin gene. J. Cell Sci. 2001:3093-3102. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47809 | - |
dc.description.abstract | Runx 家族蛋白皆含有一段與異二聚體Cbfβ鍵結的保守區塊,Runt 區域。Runx家族蛋白並有三個成員Runx1,Runx2 和Runx3。Runx3 是家族中分子量最小的蛋白質,主要表現於第一型輔助細胞及細胞毒殺細胞中,更與轉錄因子T-bet 共同參與活化第一型干擾素的表現。然而,Runx3 蛋白中與T-bet 相互作用的區域及其參與調控第一型干擾素表現的機制尚待進一步探討。
中研院基因突變鼠核心實驗室所建立的P054 突變鼠含有C 端105 個胺基酸缺失的Runx3 蛋白,初步研究發現P054 小鼠的週邊淋巴器官有異常的CD4/CD8 細胞族群表現。進一步研究顯示P054 突變鼠的第一型輔助細胞及細胞毒殺細胞的第一型干擾素表現皆有減少的趨勢。由此可知 C 端胺基酸缺失的Runx3 蛋白是調控淋巴細胞發育及功能的重要元素。然而,突變的Runx3 蛋白並未造成細胞分布及蛋白質穩定性的異常。此外,深入探討得知 NMTS 區域是與T-bet 作用共同驅動第一型干擾素活化的主要區塊。總結以上結果推論 Runx3 蛋白中的NMTS 區域可能是參與淋巴細胞發育及第一干擾素表現的重要元素。 | zh_TW |
dc.description.abstract | Runx proteins, which contain a conserved Runt domain, are a heterodimer bound with cofactor, Cbfβ. Runx family contains three members, Runx1, Runx2, and Runx3. Runx3, the smallest protein of the family, mainly expressed in effector CD4+ Th1 cells and CD8+ T cells and cooperates with T-bet to activate IFN-γ gene expression. However, which domain(s) of Runx3 interacts/interact with T-bet to drive IFN-γ expression remains unknown. P054 mice, generated from ENU core in Academia Sinica, have a truncated Runx3 protein with 105 amino acid deletion in C-terminal. We observed abnormal profile of CD4/CD8 expression in P054 mice. Furthermore, decreased IFN-γ productions were identified in Th1 and CD8 of P054 mice. It indicates that the deleted C-terminal domain of Runx3 is important in T cell development and their effecor functions. However, loss of Runx3 C-terminal still maintains its cellular localization and protein stability. In addition, we observed that the NMTS domain of Runx3 is an important domain to cooperate with T-bet for the activation of IFN-γ. Take together, The NMTS domain of Runx3 might play a important role in lymphoid cell development and IFN-γ production. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:19:51Z (GMT). No. of bitstreams: 1 ntu-99-R97449006-1.pdf: 1527941 bytes, checksum: 294a8342f87a4b50d85e8aa1665b6e47 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | Abstract ii
摘要 iii Table of Contents iv List of Figures vi Chapter I Introduction 1 I. Overview of Interferon-γ 1 II. Development and Differentiation of Lymphoid Lineage Cell Populations 3 III. Runx Family 6 IV. The Regulations of Runx Protein in T Cell Lineage 7 V. Runx proteins nd Diseases 9 VI. Rationales 10 Chapter II Materials and Methods 12 I. Experimental Marials 12 1.1 Mice 12 1.2 Promoter and Expression Constructs 12 1.3 Chemicals and Reagents 14 1.4 Enzymes, Cytokines and Antibodies 17 1.5 Media, Solutions and Buffers 20 1.6 Commercial Kits 28 1.7 Instruments and Softwares 29 II. Experimental Methods 31 1.1 In vitro T cell differentiation and stimulation 31 1.2 IFN-γ induction of NK and NKT cells 31 1.3 Intracellular Cytokine Staining (ICS) 32 1.4 Enzyme-Linked Immunosorbent Assay (ELISA) 32 1.5 Luciferase assay 33 1.6 Protein stability analysis 33 1.7 Confocal microscopy 34 1.8 Nuclear Matrix-Intermediate Filament Extraction 34 1.9 Statistical Analysis 35 Chapter III Results 36 I. Truncated Runx3 Leads to Abnormal expression of Lymphoid cell population 36 II. Lower IFN-γ Expression in Lymphoid Cells of Runx3-Truncated Mice 38 III. Comparable Protein Stability and Cellular Distribution of Runx3 in P054 Mice 39 IV. NMTS Domain of Runx3 Is The Major Binding Site of T-bet to Cooperatively Regulate IFN-γ 40 Chapter IV Disscussions 43 Chapter V Figures 50 Chapter VI References 63 Appendix 68 | |
dc.language.iso | en | |
dc.title | Runx3調控丙型干擾素的探討 | zh_TW |
dc.title | Characterization of Runx3-modulated IFN-γ expression | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 伍安怡教授,孔祥智教授 | |
dc.subject.keyword | 丙型干擾素, | zh_TW |
dc.subject.keyword | Runx3,IFN-γ, | en |
dc.relation.page | 69 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-10 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 免疫學研究所 | zh_TW |
顯示於系所單位: | 免疫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 1.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。