Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47756
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞峰
dc.contributor.authorJen-Wei Kuoen
dc.contributor.author郭任瑋zh_TW
dc.date.accessioned2021-06-15T06:16:45Z-
dc.date.available2013-08-18
dc.date.copyright2010-08-18
dc.date.issued2010
dc.date.submitted2010-08-11
dc.identifier.citation[1] D. M. Regner, et al., 'Breast lesions: Evaluation with US strain imaging - Clinical experience of multiple observers,' Radiology, vol. 238, pp. 425-437, Feb 2006.
[2] E. S. Burnside, et al., 'Differentiating benign from malignant solid breast masses with US strain imaging,' Radiology, vol. 245, pp. 401-410, 2007.
[3] B. S. Garra, et al., 'Elastography of breast lesions: Initial clinical results,' Radiology, vol. 202, pp. 79-86, Jan 1997.
[4] A. Itoh, et al., 'Breast disease: Clinical application of US elastography for diagnosis,' Radiology, vol. 239, pp. 341-350, May 2006.
[5] A. L. McKnight, et al., 'MR elastography of breast cancer: Preliminary results,' American Journal of Roentgenology, vol. 178, Jun 2002.
[6] K. C. Siegmann, et al., 'Diagnostic value of MR elastography in addition to contrast-enhanced MR imaging of the breast-initial clinical results,' European Radiology, vol. 20, pp. 318-325, Feb 2010.
[7] T. J. Hall, et al., 'In vivo real-time freehand palpation imaging,' Ultrasound in Medicine and Biology, vol. 29, pp. 427-435, 2003.
[8] Y. M. Sohn, et al., 'Sonographic Elastography Combined With Conventional Sonography How Much Is It Helpful for Diagnostic Performance?,' Journal of Ultrasound in Medicine, vol. 28, pp. 413-420, 2009.
[9] S. Raza, et al., 'Using Real-time Tissue Elastography for Breast Lesion Evaluation Our Initial Experience,' Journal of Ultrasound in Medicine, vol. 29, pp. 551-563, 2010.
[10] Q. L. Zhu, et al., 'Real-time ultrasound elastography: Its potential role in assessment of breast lesions,' Ultrasound in Medicine and Biology, vol. 34, pp. 1232-1238, 2008.
[11] H. Zhi, et al., 'Comparison of ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions,' Journal of Ultrasound in Medicine, vol. 26, pp. 807-815, 2007.
[12] A. Thomas, et al., 'Real-time elastography - an advanced method of ultrasound: first results in 108 patients with breast lesions,' Ultrasound in Obstetrics & Gynecology, vol. 28, pp. 335-340, Sep 2006.
[13] A. Thomas, et al., 'Tissue Doppler and strain imaging for evaluating tissue elasticity of breast lesions,' Academic Radiology, vol. 14, pp. 522-529, 2007.
[14] N. Cho, et al., 'Nonpalpable breast masses: Evaluation by US elastography,' Korean Journal of Radiology, vol. 9, pp. 111-118, 2008.
[15] W. K. Moon, et al., 'Analysis of elastographic and B-mode features at sonoelastography for breast tumor classification,' Ultrasound in Medicine and Biology, vol. 35, pp. 1794-802, Nov 2009.
[16] N. Nitta, et al., 'Tissue elasticity imaging based on combined autocorrelation method and 3-D tissue model,' in Ultrasonics Symposium, 1998. Proceedings., 1998 IEEE, 1998, pp. 1447-1450 vol.2.
[17] R. C. Gonzalez, et al., Digital image processing, third ed. Upper Saddle River, New Jersey: Pearson Prentice Hall, 2008.
[18] R.-F. Chang, et al., 'Computer-aided diagnosis of breast color elastography,' in Medical Imaging 2008: Computer-Aided Diagnosis, San Diego, CA, USA, 2008, pp. 69150I-9.
[19] A. Thitaikumar, et al., 'Signal-to-noise ratio, contrast-to-noise ratio and their trade-offs with resolution in axial-shear strain elastography,' Physics in Medicine and Biology, vol. 52, pp. 13-28, Jan 7 2007.
[20] U. Techavipoo and T. Varghese, 'Improvements in elastographic contrast-to-noise ratio using spatial-angular compounding,' Ultrasound in Medicine and Biology, vol. 31, pp. 529-536, Apr 2005.
[21] S. Srinivasan, et al., 'Trade-offs between the axial resolution and the signal-to-noise ratio in elastography,' Ultrasound in Medicine and Biology, vol. 29, pp. 847-866, Jun 2003.
[22] R. Chandrasekhar, et al., 'Elastographic image quality vs. tissue motion in vivo,' Ultrasound in Medicine and Biology, vol. 32, pp. 847-855, Jun 2006.
[23] T. Varghese and J. Ophir, 'A theoretical framework for performance characterization of elastography: the strain filter,' IEEE Trans Ultrason Ferroelectr Freq Control, vol. 44, pp. 164-72, 1997.
[24] S. Osher and J. A. Sethian, 'Fronts Propagating with Curvature-Dependent Speed - Algorithms Based on Hamilton-Jacobi Formulations,' Journal of Computational Physics, vol. 79, pp. 12-49, Nov 1988.
[25] R. Malladi, et al., 'Shape Modeling with Front Propagation - a Level Set Approach,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, pp. 158-175, Feb 1995.
[26] J. S. Suri, Advances in diagnostic and therapeutic ultrasound imaging. Boston ; London: Artech House, 2008.
[27] R. Deriche, 'Fast Algorithms for Low-Level Vision,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, pp. 78-87, Jan 1990.
[28] J. Serra, 'Biomedical Image Analysis by Mathematical Morphology,' Pathologie Biologie, vol. 27, pp. 205-207, 1979.
[29] S. R. Sternberg, 'Grayscale Morphology,' Computer Vision Graphics and Image Processing, vol. 35, pp. 333-355, Sep 1986.
[30] H. J. A. M. Heijmans, 'Theoretical Aspects of Gray-Level Morphology,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, pp. 568-582, Jun 1991.
[31] R. C. Gonzalez, et al., Digital image processing, third ed. Upper Saddle River, New Jersey: Pearson Prentice Hall, 2009.
[32] J. A. Sethian, 'Numerical Algorithms for Propagating Interfaces - Hamilton-Jacobi Equations and Conservation-Laws,' Journal of Differential Geometry, vol. 31, pp. 131-161, Jan 1990.
[33] J. Saniie and M. A. Mohamed, 'Ultrasonic Flaw Detection Based on Mathematical Morphology,' IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 41, pp. 150-160, Jan 1994.
[34] W. C. Shen, et al., 'Computer aided classification system for breast ultrasound based on breast imaging reporting and data system (BI-RADS),' Ultrasound in Medicine and Biology, vol. 33, pp. 1688-1698, Nov 2007.
[35] W. C. Shen, et al., 'Breast ultrasound computer-aided diagnosis using BI-RADS features,' Academic Radiology, vol. 14, pp. 928-939, Aug 2007.
[36] A. K. Jain, Fundamentals of digital image processing. Englewood Cliffs, NJ: Prentice-Hall, 1989.
[37] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. Upper Saddle River, NJ: Prentice-Hall, 2008.
[38] R. M. Haralick, et al., 'Textural Features for Image Classification,' Ieee Transactions on Systems Man and Cybernetics, vol. Smc3, pp. 610-621, 1973.
[39] R. M. Haralick, 'Statistical and Structural Approaches to Texture,' Proceedings of the Ieee, vol. 67, pp. 786-804, 1979.
[40] W. Chen, et al., 'Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images,' Magnetic Resonance in Medicine, vol. 58, pp. 562-71, Sep 2007.
[41] D. W. Hosmer and S. Lemeshow, Applied logistic regression, 2nd ed. New York: Wiley, 2000.
[42] E. Alpaydin, Introduction to machine learning. Cambridge, Mass.: MIT Press, 2004.
[43] A. P. Field, Discovering statistics using SPSS, 3rd ed. Los Angeles: SAGE Publications, 2009.
[44] J. A. Davis, Elementary survey analysis. Englewood Cliffs, N.J.,: Prentice-Hall, 1971.
[45] N. Cho, et al., 'Real-time US elastography in the differentiation of suspicious microcalcifications on mammography,' Eur Radiol, vol. 19, pp. 1621-8, Jul 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47756-
dc.description.abstract乳癌一直是全球婦女的主要死因之一。近年來,乳房彈性超音波已被使用來測量腫瘤彈性,醫生需要對腫瘤組織施與輕微的壓力以便取得一段動態彈性視訊,藉由腫瘤組織的位移得到軟硬資訊,最後,醫生將會從視訊中選出一張代表性的影像來協助腫瘤的診斷。此篇論文的目的為使用影像量化的方法來自動地選出最具代表性的一張影像,並且自動切割出腫瘤輪廓來擷取特徵診斷腫瘤。首先,根據腫瘤內部的一致性(信號雜訊比,SNRe)以及腫瘤與周圍正常組織的對比性(對比雜訊比,CNRe)分別取得兩種彈性影像品質比率來找到代表性的彈性影像,接著使用Level Set方法來切割出腫瘤輪廓,最後藉由腫瘤輪廓來擷取B-mode與彈性特徵,並且結合兩者來診斷腫瘤。本實驗中以151個經過病理驗證的病例進行測試,包含89個良性以及62個惡性的病例,並且使用本篇論文的方法所選之影像比較醫生所選的影像。經由實驗結果,當使用彈性特徵時,CNRe的準確率為82.12%,SNRe為82.12%,醫生選圖則是82.78%;當使用B-mode特徵時,CNRe的準確率為80.78%,SNRe為87.42%,醫生選圖則是84.11%;當結合B-mode與彈性特徵時,CNRe的準確率為86.09%,SNRe為90.07%,醫生選圖則是89.40%。因此,使用SNRe與CNRe所選擇的代表性影像可以取代醫生所選,並且將B-mode與彈性特徵結合時會有明顯的提升。zh_TW
dc.description.abstractThe breast cancer is always the main causes of death for women. In recent years, the sonoelastography has been used to measure the tumor strain. In the sonoelastography, the physicians need to lightly compress a tumor to obtain a dynamic elastographic image sequence. According to the displacement of the tumor, the tumor strain will be obtained on sonoelastography video. Finally, the physicians will choose the representative slice from the dynamic elastographic image sequence to diagnose the tumor. The purpose of this study is to use image quantification method to automatically choose a representative slice, and automatically segment the tumor contour to evaluate the features to diagnose the tumor. First, according to the uniformity inside the tumor (the signal to noise ratio, SNRe) or the contrast of the tumor and the surrounding normal tissue (contrast to noise ratio, CNRe), the two kinds of quality quantification methods will be used to select the representative slice. Then, the level set method is used to segment the tumor contour. Finally, the B-mode and elastography features by the tumor contour are extracted for diagnosis. Furthermore, the two kinds of features are combined to diagnose the tumors to improve the performance. In this study, 151 biopsy-proved sonoelastography composed of 89 benign and 62 malignant masses are used to evaluate the performance of the quantification methods and the representative slices selected by the proposed methods will be compared to the physician-selected slice. In the experiment result, as using elastography features, the diagnosis performance of accuracy is 82.12% (124/151) on representative slice of CNRe, 82.12% (124/151) on representative slice of SNRe, 82.78% (125/151) on the physician-selected slice; as using B-mode features, the diagnosis performance of accuracy is 80.79% (122/151) on representative slice of CNRe, 87.42% (132/151) on representative slice of SNRe, 84.11% (127/151) on the physician-selected slice; as combining the B-mode and elastography features, the diagnosis performance of accuracy is 86.09% (130/151) on representative slice of CNRe, 90.07% (136/151) on representative slice of SNRe, 89.40% (135/151) on the physician-selected slice. Therefore, the representative slice selected by SNRe and CNRe colud replace the physician-selected slice to reduce the physician’s load, and combining the B-mode and elastography features will increase the diagnosis performance.en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:16:45Z (GMT). No. of bitstreams: 1
ntu-99-R97922084-1.pdf: 3420847 bytes, checksum: 92580903aee0b98a6b23ba6d0c14364c (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 i
ACKNOWLEDGEMENTS ii
摘要 iv
Abstract vi
LIST OF FIGURES x
LIST OF TABLES xv
Chapter 1 Introduction 1
Chapter 2 Material 3
2.1 Patients 3
2.2 Elastography 3
Chapter 3 The Proposed Method 5
3.1 Elasticity Extraction 6
3.2 Representative Slice 7
3.2.2 SNR Image Quantification 7
3.2.3 CNR Image Quantification 9
3.3 Segmentation 11
3.3.1 The Contrast-enhanced Gradient Image 12
3.3.1.1 Sigmoid image filter 12
3.3.1.2 Gradient magnitude filter 13
3.3.2 Level Set Method 14
3.3.3 Hole Filling Using Morphology Closing Operation 15
3.4 Tumor Analysis 16
3.4.1 Computerized BI-RADS B-mode US Features 17
3.4.1.1 Shape 17
3.4.1.2 Orientation 18
3.4.1.3 Margin 19
3.4.1.4 Lesion boundary 20
3.4.1.5 Echo pattern 21
3.4.1.6 Posterior acoustic feature 22
3.4.1.7 GLCM texture features 23
3.4.2 Computerized Elastographic Features 25
3.4.2.1 Stiffness Ratio 25
3.4.2.2 Elasticity mean 26
3.4.2.3 Lesion boundary elasticity 26
Chapter 4 Experiment result 28
4.1 Statistic Analysis 29
4.2 Elastographic and B-mode Features analysis 30
4.3 Tumor Classification 33
4.4 Discussion 47
Chapter 5 Conclusion and Future Works 49
References 51
dc.language.isoen
dc.title動態乳房彈性超音波之腫瘤診斷zh_TW
dc.titleTumor Diagnosis of Dynamic Breast Elastographyen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃俊升,張允中
dc.subject.keyword彈性超音波,乳房,腫瘤,信號雜訊比,對比雜訊比,zh_TW
dc.subject.keywordsonoelastography,breast,tumor,SNRe,CNRe,en
dc.relation.page54
dc.rights.note有償授權
dc.date.accepted2010-08-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
3.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved