Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47744
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林啟萬(chii-wann Lin)
dc.contributor.authorWei-Tso Linen
dc.contributor.author林威佐zh_TW
dc.date.accessioned2021-06-15T06:16:00Z-
dc.date.available2020-01-01
dc.date.copyright2010-08-18
dc.date.issued2010
dc.date.submitted2010-08-11
dc.identifier.citation[1] J. W. M. Geurts, et al., 'Radiofrequency Treatments in Low Back Pain,' Pain Practice, vol. 2, pp. 226-234, 2002.
[2] M. Hillman, et al., 'Prevalence of low back pain in the community: implications for service provision in Bradford, UK,' Journal of Epidemiology and Community Health, vol. 50, pp. 347-352, June 1996 1996.
[3] H. R. Guo, et al., 'Back pain prevalence in US industry and estimates of lost workdays,' Am J Public Health, vol. 89, pp. 1029-1035, July 1, 1999 1999.
[4] X. Luo, et al., 'Estimates and Patterns of Direct Health Care Expenditures Among Individuals With Back Pain in the United States,' Spine, vol. 29, pp. 79-86, 2004.
[5] J. N. Katz, 'Lumbar Disc Disorders and Low-Back Pain: Socioeconomic Factors and Consequences,' J Bone Joint Surg Am, vol. 88, pp. 21-24, April 1, 2006 2006.
[6] F. Boureau, et al., 'Tramadol in post-herpetic neuralgia: a randomized, double-blind, placebo-controlled trial,' Pain, vol. 104, pp. 323-331, 2003.
[7] P. L. I. Dellemijn and J. A. L. Vanneste, 'Randomised double-blind active-placebo-controlled crossover trial of intravenous fentanyl in neuropathic pain,' The Lancet, vol. 349, pp. 753-758, 1997.
[8] D. Bouhassira, et al., 'Prevalence of chronic pain with neuropathic characteristics in the general population,' Pain, vol. 136, pp. 380-387, 2008.
[9] 陳文翔. 下背痛的原因與治療. Available: (http://web2.cc.nctu.edu.tw/~hcsci/hospital/other/backpain.htm)
[10] D. J.-L. Pao. Available: http://www.ispinecare.com/spine_disease/LSS/cause.html
[11] R. MELZACK and P. D. WALL, 'Pain Mechanisms: A New Theory,' Survey of Anesthesiology, vol. 11, pp. 89-90, 1967.
[12] P.D.Wall, 'The Gate Control Theory of Pain Mechanisms,' Brain, vol. 101, pp. 1-18, 1978.
[13] P.W.Nathan, 'The Gate Control Theory of Pain,' Brain, vol. 99, pp. 123-158, 1976.
[14] internet. Available: http://static.howstuffworks.com/gif/pain-2.gif
[15] R. P. Joshi, et al., 'Model study of time-dependent muscle response to pulsed electrical stimulation,' Bioelectromagnetics, vol. 31, pp. 361-370, 2010.
[16] J. Petrofsky, 'The effect of the subcutaneous fat on the transfer of current through skin and into muscle,' Medical Engineering & Physics, vol. 30, pp. 1168-1176, 2008.
[17] J. Petrofsky, et al., 'The transfer of current through skin and muscle during electrical stimulation with sine, square, Russian and interferential waveforms,' Journal of Medical Engineering & Technology, vol. 33, pp. 170-181, 2009.
[18] J. A. Turner, et al., 'Spinal cord stimulation for patients with failed back surgery syndrome or complex regional pain syndrome: a systematic review of effectiveness and complications,' Pain, vol. 108, pp. 137-147, 2004.
[19] Internet, 'Add Spinal Cord Stimulation to Your Pain Cases.'
[20] Internet.
[21] M. Sluijter, Radiofrequency Part 1, 2003.
[22] S. Ho Kim and J. Mo Chung, 'An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat,' Pain, vol. 50, pp. 355-363, 1992.
[23] Z. e. Seltzer, et al., 'A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury,' Pain, vol. 43, pp. 205-218, 1990.
[24] C. J. W. Isabelle Decosterd, 'Spared nerve injury: an animal model of persistent peripheral neuropathic pain,' Pain, vol. 87, pp. 149-158, 2000.
[25] A. W. COOK and E. J. BROWDER, 'Function of Posterior Columns in Man,' Arch Neurol, vol. 12, pp. 72-79, January 1, 1965 1965.
[26] J. P. Rathmell, 'Pain Medicine: A Comprehensive Review,' Anesthesiology, vol. 84, p. 1271, 1996.
[27] C. J. Woolf and S. W. N. Thompson, 'The induction and maintenance of central sensitization is dependent on N-methyl-d-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states,' Pain, vol. 44, pp. 293-299, 1991.
[28] R. Dubner and M. A. Ruda, 'Activity-dependent neuronal plasticity following tissue injury and inflammation,' Trends in Neurosciences, vol. 15, pp. 96-103, 1992.
[29] J. Scholz and C. J. Woolf, 'The neuropathic pain triad: neurons, immune cells and glia,' Nat Neurosci, vol. 10, pp. 1361-1368, 2007.
[30] C. J. Woolf and R. J. Mannion, 'Neuropathic pain: aetiology, symptoms, mechanisms, and management,' The Lancet, vol. 353, pp. 1959-1964, 1999.
[31] R. A. Ophoff, et al., 'Familial Hemiplegic Migraine and Episodic Ataxia Type-2 Are Caused by Mutations in the Ca2+ Channel Gene CACNL1A4,' Cell, vol. 87, pp. 543-552, 1996.
[32] J. A. DeLeo, 'Basic Science of Pain,' J Bone Joint Surg Am, vol. 88, pp. 58-62, April 1, 2006 2006.
[33] L. Nikolajsen, et al., 'Randomised trial of epidural bupivacaine and morphine in prevention of stump and phantom pain in lower-limb amputation,' The Lancet, vol. 350, pp. 1353-1357, 1997.
[34] W. S. Kingery, 'A critical review of controlled clinical trials for peripheral neuropathic pain and complex regional pain syndromes,' Pain, vol. 73, pp. 123-139, 1997.
[35] M. Koltzenburg, 'Painful neuropathies,' Current Opinion in Neurology, vol. 11, pp. 515-521, 1998.
[36] R. Vallejo, et al., 'The Role of Glia and the Immune System in the Development and Maintenance of Neuropathic Pain,' Pain Practice, vol. 10, pp. 167-184, 2010.
[37] J. I. Morgan and T. Curran, 'Stimulus-Transcription Coupling in the Nervous System: Involvement of the Inducible Proto-Oncogenes fos and jun,' Annual Review of Neuroscience, vol. 14, pp. 421-451, 1991.
[38] R. Ji and G. Strichartz, 'Cell signaling and the genesis of neuropathic pain,' Sci STKE, vol. 2004, p. reE14, 2004.
[39] B. Cochran, et al., 'Expression of the c-fos gene and of an fos-related gene is stimulated by platelet-derived growth factor,' Science, vol. 226, pp. 1080-1082, November 30, 1984 1984.
[40] J. A. Harris, 'Using c-fos as a Neural Marker of Pain,' Brain Research Bulletin, vol. 45, pp. 1-8, 1998.
[41] J. Morgenweck, et al., 'Activation of peroxisome proliferator-activated receptor [gamma] in brain inhibits inflammatory pain, dorsal horn expression of Fos, and local edema,' Neuropharmacology, vol. 58, pp. 337-345, 2010.
[42] M. H. Rashid and H. Ueda, 'Pre-injury administration of morphine prevents development of neuropathic hyperalgesia through activation of descending monoaminergic mechanisms in the spinal cord in mice,' Molecular Pain, vol. 1, p. 19, 2005.
[43] S. Jin, et al., 'p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain,' J Neurosci, vol. 23, pp. 4017 - 4022, 2003.
[44] F. S. Letcher and S. Goldring, 'The Effect of Radiofrequency Current and Heat on Peripheral Nerve Action Potential in the Cat*,' Journal of Neurosurgery, vol. 29, pp. 42-47, 1968.
[45] Y. Kanpolat, et al., 'Percutaneous Controlled Radiofrequency Trigeminal Rhizotomy for the Treatment of Idiopathic Trigeminal Neuralgia: 25-year Experience with 1600 Patients,' Neurosurgery, vol. 48, pp. 524-534, 2001.
[46] R. Leclaire, et al., 'Radiofrequency Facet Joint Denervation in the Treatment of Low Back Pain: A Placebo-Controlled Clinical Trial to Assess Efficacy,' Spine, vol. 26, pp. 1411-1416, 2001.
[47] G. A. M. Barendse, et al., 'Randomized Controlled Trial of Percutaneous Intradiscal Radiofrequency Thermocoagulation for Chronic Discogenic Back Pain: Lack of Effect From a 90-Second 70 C Lesion,' Spine, vol. 26, pp. 287-292, 2001.
[48] G. J. McDonald, et al., 'Long-term Follow-up of Patients Treated with Cervical Radiofrequency Neurotomy for Chronic Neck Pain,' Neurosurgery, vol. 45, p. 61, 1999.
[49] S. Rossi, et al., 'Percutaneous RF interstitial thermal ablation in the treatment of hepatic cancer,' Am. J. Roentgenol., vol. 167, pp. 759-768, September 1, 1996 1996.
[50] K. Chung, et al., 'Sympathetic sprouting in the dorsal root ganglia of the injured peripheral nerve in a rat neuropathic pain model,' The Journal of Comparative Neurology, vol. 376, pp. 241-252, 1996.
[51] J. F. Howe, et al., 'Mechanosensitivity of dorsal root ganglia and chronically injured axons: A physiological basis for the radicular pain of nerve root compression,' Pain, vol. 3, pp. 25-41, 1977.
[52] K. Omarker and R. R. Myers, 'Pathogenesis of sciatic pain: role of herniated nucleus pulposus and deformation of spinal nerve root and dorsal root ganglion,' Pain, vol. 78, pp. 99-105, 1998.
[53] R. Slappendel, 'The efficacy of radiofrequency lesioning of the cervical spinal dorsal root ganglion in a double blinded randomized study: no difference between 40°C and 67°C,' Pain, vol. 73, pp. 159-163, 1997.
[54] M. E. Sluijter and M. v. Kleef, 'Characteristics and mode of action of radiofrequency lesions ' Current Pain and Headache Reports, vol. 2, pp. 143-150, 1998.
[55] M. Sluijter and G. Racz, 'Technical Aspects of Radiofrequency,' Pain Practice, vol. 2, pp. 195-200, 2002.
[56] R. Munglani, 'The long term effect of pulsed radiofrequency for neuropathic pain.'
[57] Y. Higuchi, et al., 'Exposure of the Dorsal Root Ganglion in Rats to Pulsed Radiofrequency Currents Activates Dorsal Horn Lamina I and II Neurons,' Neurosurgery, vol. 50, pp. 850-856, 2002.
[58] J. V. Zundert and A. Cahana, 'Pulsed Radiofrequency in Chronic Pain Management: Looking for the Best Use of Electrical Current,' Pain Practice, vol. 5, pp. 74-76, 2005.
[59] R. J. Podhajsky, et al., 'The Histologic Effects of Pulsed and Continuous Radiofrequency Lesions at 42[degrees]C to Rat Dorsal Root Ganglion and Sciatic Nerve,' Spine, vol. 30, pp. 1008-1013 10.1097/01.brs.0000161005.31398.58, 2005.
[60] W. Hamann, et al., 'Pulsed radiofrequency applied to dorsal root ganglia causes a selective increase in ATF3 in small neurons,' European Journal of Pain, vol. 10, pp. 171-176, 2006.
[61] D. Vatansever, et al., 'A Comparison of the Neuroablative Effects of Conventional and Pulsed Radiofrequency Techniques,' The Clinical Journal of Pain, vol. 24, pp. 717-724 10.1097/AJP.0b013e318173c27a, 2008.
[62] S. Hagiwara, et al., 'Mechanisms of analgesic action of pulsed radiofrequency on adjuvant-induced pain in the rat: Roles of descending adrenergic and serotonergic systems,' European Journal of Pain, vol. 13, pp. 249-252, 2009.
[63] K. Tun, et al., 'Ultrastructural evaluation of pulsed radiofrequency and conventional radiofrequency lesions in rat sciatic nerve,' Surgical Neurology, vol. 72, pp. 496-500, 2009.
[64] S. Erdine, et al., 'Effects of pulsed versus conventional radiofrequency current on rabbit dorsal root ganglion morphology,' European Journal of Pain, vol. 9, pp. 251-256, 2005.
[65] A. J. A. d. Louw, et al., 'The morphological effects of a radio frequency lesion adjacent to the dorsal root ganglion (RF-DRG)--an experimental study in the goat,' European Journal of Pain, vol. 5, pp. 169-174, 2001.
[66] R. V. Shah and G. B. Racz, 'Long-term relief of posttraumatic headache by sphenopalatine ganglion pulsed radiofrequency lesioning: a case report,' Archives of Physical Medicine and Rehabilitation, vol. 85, pp. 1013-1016, 2004.
[67] J. Van Zundert, et al., 'Pulsed radiofrequency treatment of the Gasserian ganglion in patients with idiopathic trigeminal neuralgia,' Pain, vol. 104, pp. 449-452, 2003.
[68] O. J. J. M. Rohof, 'Radiofrequency Treatment of Peripheral Nerves,' Pain Practice, vol. 2, pp. 257-260, 2002.
[69] S. P. Cohen and A. Foster, 'Pulsed radiofrequency as a treatment for groin pain and orchialgia,' Urology, vol. 61, pp. 645-645, 2003.
[70] G. Mikeladze, et al., 'Pulsed radiofrequency application in treatment of chronic zygapophyseal joint pain,' The Spine Journal, vol. 3, pp. 360-362, 2003.
[71] R. Munglani, 'The longer term effect of pulsed radiofrequency for neuropathic pain,' Pain, vol. 80, pp. 437-439, 1999.
[72] J. V. Zundert, et al., 'Percutaneous Pulsed Radiofrequency Treatment of the Cervical Dorsal Root Ganglion in the Treatment of Chronic Cervical Pain Syndromes: A Clinical Audit,' Neuromodulation, vol. 6, pp. 6-14, 2003.
[73] A. Cahana, et al., 'Pulsed Radiofrequency: Current Clinical and Biological Literature Available,' Pain Medicine, vol. 7, pp. 411-423, 2006.
[74] D. F. Stubbs, 'Visual Analogue Scale,' Br J Clin Pharmacol, vol. 7, p. 124, 1979.
[75] C. LATI, et al., 'Comparison of the Construct Validity and Sensitivity to Change of the Visual Analog Scale and a Modified Rating Scale as Measures of Patient Global Assessment in Rheumatoid Arthritis,' The Journal of Rheumatology, vol. 37, pp. 717-722, April 2010 2010.
[76] S.-C. Chao, et al., 'Percutaneous pulsed radiofrequency in the treatment of cervical and lumbar radicular pain,' Surgical Neurology, vol. 70, pp. 59-65, 2008.
[77] C. R. Butson and C. C. McIntyre, 'Differences among implanted pulse generator waveforms cause variations in the neural response to deep brain stimulation,' Clinical Neurophysiology, vol. 118, pp. 1889-1894, 2007.
[78] T. Khan, et al., 'Electrical Field Distribution Within the Injured Cat Spinal Cord: Injury Potentials and Field Distribution,' Journal of Neurotrauma, vol. 11, pp. 699-710, 2009.
[79] S. D. Bennie, et al., 'Toward the optimal waveform for electrical stimulation of human muscle ' European Journal of Applied Physiology, vol. 88, pp. 13-19, 2002.
[80] D. N. Taylor, et al., 'Sine-Wave Auricular TENS Produces Frequency-Dependent Hypesthesia in the Trigeminal Nerve,' The Clinical Journal of Pain, vol. 9, pp. 216-219, 1993.
[81] P. H. Peckham and J. S. Knutson, 'FUNCTIONAL ELECTRICAL STIMULATION FOR NEUROMUSCULAR APPLICATIONS*,' Annual Review of Biomedical Engineering, vol. 7, pp. 327-360, 2005.
[82] L. L. Baker, et al., 'Effects of electrical stimulation on wound healing in patients with diabetic ulcers,' Diabetes Care, vol. 20, pp. 405-412, March 1997 1997.
[83] I. Vivodtzev, et al., 'Neuromuscular Electrical Stimulation of the Lower Limbs in Patients With Chronic Obstructive Pulmonary Disease,' Journal of Cardiopulmonary Rehabilitation and Prevention, vol. 28, pp. 79-91 10.1097/01.HCR.0000314201.02053.a3, 2008.
[84] J. R. de Kroon, et al., 'Therapeutic electrical stimulation to improve motor control and functional abilities of the upper extremity after stroke: a systematic review,' Clinical Rehabilitation, vol. 16, pp. 350-360, April 2002 2002.
[85] A. Delitto and S. J. Rose, 'Comparative Comfort of Three Waveforms Used in Electrically Eliciting Quadriceps Femoris Muscle Contractions,' PHYS THER, vol. 66, pp. 1704-1707, November 1, 1986 1986.
[86] T. Changfeng, et al., 'Simulation of nerve block by high-frequency sinusoidal electrical current based on the Hodgkin-Huxley model,' Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 13, pp. 415-422, 2005.
[87] C.-H. Chang, 'Feasibility study of implantable Pulsed-Radiofrequency stimulator with verification on sciatica rat model,' 碩士論文, 2009.
[88] W. J. Dixon, 'The Up-and-Down Method for Small Samples,' American Statistical Association,, vol. 60, pp. 967-978, 1965.
[89] S. R. Chaplan, et al., 'Quantitative assessment of tactile allodynia in the rat paw,' Journal of Neuroscience Methods, vol. 53, pp. 55-63, 1994.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47744-
dc.description.abstract現行臨床雖已使用射頻(RadioFrequency,RF)電刺激治療神經病變性疼痛及相關疾病。臨床上針對背根神經節(Dorsal Root Ganglion, DRG)做脈衝射頻(Pulse RF,PRF)電刺激治療後,通常僅能維持三到六個月的效果,目前雖也有植入式電刺激器採低頻刺激方式,讓病人不用一再回診進行治療,但因有體積龐大、需定期更換電池、價格昂貴、手術風險高、容易感染之問題。
本研究目標在於利用研究團隊完成之SoC技術與無線傳輸模組,發展一無電池植入式低功率PRF電刺激器,藉由雙極式電極於背根神經節的刺激達到疼痛抑制的效果。因目前文獻上僅有探討低頻電刺激波形於治療上的差異,但缺乏在脈衝射頻的波形研究,故本研究以探討PRF電刺激之輸出波形(方波與弦波)對小動物的疼痛行為影響為重點。方法上將L5脊椎神經結紮後執行單次脈衝射頻電刺激療程,利用Von Frey方法評估動物疼痛耐受閥值,並用脊椎組織切片因疼痛發炎反應的表現蛋白(c-fos、pp38)變化做PRF效果評估。
結果發現在相同PRF參數下(射頻頻率500KHz、脈衝頻率2Hz、脈衝持續時間25ms、電壓1.25V),脈衝射頻治療都能提升耐受閥值,此效果相較於控制組能維持五天之顯著差異(P<0.05),且弦波相較於方波更具有提高耐受閥值之效果,在不同弦波電壓下(2.5V vs 1.25V),有劑量相關性(Dose-Dependent)之趨勢。在弦波電壓2.5V下,手術一天後c-fos有顯著減少而三天後pp38也有減少的趨勢。但在方波電壓1.25V下,手術三天後c-fos與pp38仍有大量表現。根據以上的動物行為及脊髓切片的實驗結果,方波與弦波都有提高對疼痛反應耐受力閥值之效果,但方波在低電壓下相較於控制組仍造成發炎分子的大量表現,而2.5V弦波則具有抑制蛋白分子的表現。
zh_TW
dc.description.abstractIt has been a common practice in clinics to use Radiofrequency (RF) for the treatment of neuropathic pains and associated diseases in recent years. However, even the state of art, i.e. using Pulsed Radio-Frequency (PRF) on Dorsal root ganglion (DRG), the effect can only last for 3-6 months and thus require repeated procedures for some patients. The implantable stimulator with low frequency stimulation has been used for long term applications to overcome above mentioned issue. However, current devices have technical challenges in size due to battery, replacement of battery, high cost, risks due to surgical procedures, and infections, etc.
The long term goal of this research is to develop a batterless implantable PRF stimulator for pain control based on low power system-on-chip (SoC) and wireless coupling module with bi-polar electrode on DRG. Due to the fact that stimulating waveforms has been an active study area in low frequency stimulator but not systematically study in PRF stimulation, this study focuses on the pain control effects of PRF stimulating waveform (square vs. sinusoidal) in animal model. After ligation of the L5 spinal nerve, a single PRF treatment was delivered to the DRG via a pair of bi-polar electrodes. The pain relief effect due to PRF is evaluated by using Von Frey method (VF score) for the pain threshold index based on behavior response to mechanical stimulus of various strengths. Both fast and secondary expressed proteins of c-fos and pp38 are measured from spinal cord tissue sectioning slides to characterize the pain associated inflammatory responses and their responses due to PRF stimulation.
From experimental results, it was found that both square and sinusoidal waveforms of the specific PRF parameters (RF 500KHz, Pulse frequency 2Hz, Pulse duration 25 msec, and amplitude 1.25 V) can have significant effects on the VF scores up to 5 days comparing to the control group. The responses are higher in the sinusoidal group than the square ones. It also exhibits dose-dependent responses under different stimulating amplitude (2.5 V vs. 1.25 V) of sinusoidal waveform. Moreover, we found at 2.5 V of sinusoidal stimulation both c-fos and pp38 were significantly reduced after one day and three days, respectively. However, at 1.25 V of square stimulation, both proteins over-expressed significantly at day 3 after procedure. According to the above mentioned behavior and molecular studies, it clearly demonstrates that both square and sinusoidal stimulation can increase the pain threshold. And yet square wave might induce inflammatory responses even at low amplitude of 1.25 V, while sinusoidal wave can effectively inhibit the expression of inflammatory proteins.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:16:00Z (GMT). No. of bitstreams: 1
ntu-99-R97548045-1.pdf: 1958290 bytes, checksum: 9f0ee567a6abc41f9541fc455edbaa8d (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 I
圖目錄 IV
表目錄 VI
誌謝 VII
中文摘要 VIII
英文摘要 IX
第一章 研究簡介 1
1.1 下背痛相關背景 1
1.2 研究目的 13
第二章 下背痛病理機制與治療方法 15
2.1 神經病變性疼痛 15
2.2 脊髓背角於生物分子染色 18
2.2.1 c-fos 早期基因 19
2.2.2 磷酸化p38 21
2.3 射頻與脈衝射頻於疼痛之研究 24
2.3.1 射頻電刺激 24
2.3.2 脈衝射頻電刺激 25
2.4 射頻電刺激/脈衝式射頻電刺激於臨床之應用 28
2.4.1 臨床射頻電刺激治療方式 28
2.4.2 臨床射頻電刺激治療流程 29
2.4.3 臨床疼痛量表(Visual Analogue Scale, VAS) 32
2.5 電刺激波形之效應相關研究現況與發展 33
第三章 實驗方法 36
3.1 脈衝射頻電刺激系統架設 36
3.1.1 單次刺激晶片系統 36
3.1.2 植入式晶片系統 37
3.2 不同波形應用於相同參數實驗設計 43
3.3 大白鼠電極與封裝設計 44
3.3.1 單次刺激電極 44
3.3.2 大白鼠植入用電極 45
3.3.3 大白鼠植入式晶片封裝 46
3.4 動物實驗及手術設計 47
3.4.1 動物準備 47
3.4.2 大老鼠疼痛模型之建立 47
3.4.3 老鼠手術步驟及方法 47
3.4.4 大白鼠行為觀察 50
3.4.5 大老鼠行為測試 50
3.5 老鼠取樣脊髓生物分子實驗步驟 54
3.5.1 固定液之灌流程序 54
3.5.2 取出大白鼠脊髓及背根神經節取出之程序 56
3.5.3 脊髓與背根神經節冷凍包埋方法及步驟 57
3.5.4 脊髓及背根神經節切片方法 58
3.5.5 生物分子於脊髓與背根神經節染色方法: 59
第四章 結果與討論 60
4.1 大白鼠植入晶片之實驗 60
4.1.1 大白鼠電極植入 60
4.1.2 大白鼠晶片系統整合 61
4.1.3 防水功能測試 61
4.2 脈衝射頻電刺激結果驗證 64
4.2.1 動物行為 64
4.2.2 脈衝射頻電刺激於脊髓背角切片染色結果 65
4.2.3 脈衝射頻電刺激於波形之比較 69
第五章 結論與未來工作 75
5.1 結論 75
5.2 未來工作 75
參考文獻 79
dc.language.isozh-TW
dc.title植入式電刺激器脈衝射頻波形於神經性疼痛抑制之效應研究zh_TW
dc.titleThe Effect of Waveform Parameters of Implantable Pulsed RadioFrequency Electrical Stimulator for Neuropathic Pain controlen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee施文彬(Wen-Pin Shih),溫永銳(Yeong-Ray Wen),楊燿州(Yao-Joe Yang),邱弘緯,呂學士
dc.subject.keyword植入式電刺激器,脈衝射頻電刺激,波形,c-fos,pp38,zh_TW
dc.subject.keywordimplantable stimulator,pulse radiofrequency stimulation,waveform,c-fos,pp38,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2010-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
1.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved