Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47742
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor方煒(Wei Fang)
dc.contributor.authorPei-Ru Chongen
dc.contributor.author鍾佩如zh_TW
dc.date.accessioned2021-06-15T06:15:54Z-
dc.date.available2010-08-16
dc.date.copyright2010-08-16
dc.date.issued2010
dc.date.submitted2010-08-11
dc.identifier.citation1. 三宅真名、那須玄明、山下光治。2003。大鼠吸入霧化的弱酸性次氯酸溶液對其血及生化值的影響。實驗動物與環境11:42-47。
2. 方煒、張明毅、康世緯、莊啟佑。2009。系統工程課程-機能水研究。台北:國立臺灣大學生機系。網址:http://www.ecaa.ntu.edu.tw/weifang/water/water.htm。上網日期:2010-05-29。
3. 王奕程。2008。自製無隔膜電解水應用於抑制蝴蝶蘭主要病原菌。碩士論文。臺北:國立臺灣大學生物產業機電工程研究所。
4. 行政院農業委員會。2003。公告灌溉用水水質標準。台北:行政院農業委員會。網址:http://www.coa.gov.tw/。上網日期:2010-07-12。
5. 何申雅。2006。含氯溶液對蔬菜種植上之可利用性評估。碩士論文。屏東:
屏東科技大學食品科學系。
6. 李邦彥。1990。次氯酸的平行反應。中國中學教學百科全書(化學卷),188。沈陽:沈陽出版社。
7. 林永鴻。2004。蓮霧合理施肥技術。台中:中華永續農業協會。網址:http://www.tari.gov.tw/。上網日期:2010-07-12。
8. 林明仁、洪東奇。2008。訂定農業用溫室標準圖樣及其結構計算書簡介。
農政與農情。(188)。
9. 吳得聖。2002。電解水對蔬菜清洗品質及效果之評估。碩士論文。屏東:屏東科技大學食品科學系。
10. 周致偉、馬鴻祥。2003。整流二極體與濾波電容器的原理與應用。桃園:元智大學最佳化設計實驗室。網址:http://designer.mech.yzu.edu.tw/。上網日期:2008-11-20。
11. 徐菁輿。2005。製備電解強酸水及電解次氯酸水與殺菌效果之探討。碩士論文。臺北:國立臺灣大學生物產業機電工程研究所。
12. 陳華、彭東升。1999。三種常用飲用水消毒劑的應用和前景評價。中國環保產業03:022。
13. 康世緯。2010。多用途電解滅菌自動化系統之研發與應用。碩士論文。臺北:國立臺灣大學生物產業機電工程研究所。
14. 張祖亮。1998。養液栽培之應用技術。台北:國立臺灣大學生機系。網址:http://www.ecaa.ntu.edu.tw/weifang/hort/Chap08.htm。上網日期:2009-09-23。
15. 黃運濤、彭喬。2006。溫度的變化對海水電解陽極過程的影響。遼寧化工。35(4)。
16. 喬治查爾斯電子電路網。2005。NE555震盪器、計時IC說明及應用。網址:http://gc.digitw.com/new_page_5.htm。上網日期:2008-10-25。
17. 喬治查爾斯電子電路網。2009。好用的LM317(穩壓IC)。網址:http://gc.digitw.com/new_page_28.htm。上網日期:2008-10-25。
18. 詹舒斐、陳仁仲、王今方。2002。電解水基礎研究。節水季刊(21)。
19. 楊建肖、王桂榮、張永升、江東嶺、崔彥宏。2008。鉀對玉米種子萌發及其生理特性的影響。華北農學報23(4)。
20. 楊壽麟。2006。台灣農產品農藥殘留管制的簡介。全球變遷通訊雜誌50:19-25。
21. 臺北自來水事業處水質科。2010。水處各淨水場原水水質。網址:http://waterpark.twd.gov.tw/www/water_kn/quality/quality_3.html。上網日期:2010-08-01。
22. 龔泰石。2001。強酸性電解水的消毒研究進展。解放軍預防醫學雜誌19 (005):388-390。
23. Akira, A. and A. Koji. 1998. Effects of electrolytic water sprays on apple fruit development. J. Japan. Soc. Hort. Sci. 67(1): 130-132.
24. Albrich, J. M., C. A. McCarthy, and J. K. Hurst. 1981. Biological reactivity of hypochlorous acid-implications for microbicidal mechanisms of leukocyte myeloperoxidase. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences 78 (1): 210-214.
25. Al-Haq, M., J. Sugiyama, and S. Isobe. 2005. Applications of electrolyzed water in agriculture & food Industries. Food Science and Technology Research 11 (2): 135-150.
26. Allie, D. E. 2006. Super-oxidized dermacyn in lower-extremity wounds. Supplement to January 2006 Wounds: 3.
27. Allende, A., F. A. Tomás-Barberán, and M. I. Gil. 2006. Minimal processing for healthy traditional foods. Trends in Food Science & Technology. 17(9): 513-519.
28. Ariel, M. A. 2006. Reducing bacterial infectious complications from burn wounds. Supplement to January 2006 Wounds: 17.
29. Barrette, W. C. J., D. M. Hannum, W. D. Wheeler, and J. K. Hurst. 1989. General mechanism for the bacterial toxicity of hypochilorous acid abolition of ATP production. Biochemistry 28 (23): 9172-9178.
30. Bongiovanni, C. 2006. Superoxidized water improves wound care outcomes in diabetic patients. Diabetic Microvasc Complications Today 3: 11-14.
31. Buck, J. W., M. W. Iersel, R. D. Oetting, and Y. C. Hung. 2003. Evaluation of acidic electrolyzed water for phytotoxic symptoms on foliage and flowers of bedding plants. Crop Protection. 22(1): 73-77.
32. Cui, X., Y. Shang, Z. Shi, H. Xin, and W. Cao. 2009. Physicochemical properties and bactericidal efficiency of neutral and acidic electrolyzed water under different storage conditions. Journal of Food Engineering. 91(4): 582-586.
33. Deininger, R., A. Ancheta, and A. Ziegler. 1998. Chlorine dioxide. Paper presented at the “ PAHO Symposium: Water Quality: Effective Disinfection ”, 117-128. The Pan American Center for Sanitary Engineering and Environmental Sciences (PAHO/CEPIS).
34. Deng, L. X., C. Huang, S. M. Zhao, W. Cao, and J. Deng. 2010. The effect of electrolyzed water on chinese cabbage seeds germination. Journal of Agricultural Mechanization Research. 32( 2): 133-136.
35. Fujiwara, K., M. Iimoto, M. Fujiwara, R. Doi, and Q. C. Shi. 1998. Fundamental studies on crop disease control by spraying electrolyzed strong acid water. Environ. Control in Biol. 36(4): 137-143, 245-249.
36. Fujiwara, K., M. Iimoto, R. Doi, and A. Yano. 2000. Fundamental studies on crop disease control by spraying electrolyzed strong acid water (3) effects of spraying electrolyzed anode-side water and pH-available chlorine concentration-regulated water on the severity of powdery mildew infection and percentage of leaves with a leaf burn-like physiological disorder on cucumber leaves. Environ. Control in Biol. 38(1): 33-38.
37. Fujiwara, K., M. Iimoto, R. Doi, and T. Fujii. 2000. Fundamental studies on crop disease control by spraying electrolyzed strong acid water (4) effects of pH and available chlorine concentration on the severity of powdery mildew infection and percentage of leaves with a leaf burn-like physiological disorder on tomato leaves. Environ. Control in Biol. 38(4): 263-271.
38. Gao, X. H., Z. B. Zhang, S. R. Guo, C. X. He, and H. S. Wang. 2005. Effect of electrolyzed water sprays with different concentrations on tomato yeilds and quality in protected field. Chinese Agricultural Science Bulletin. 21(4): 236-237.
39. Horiba, N., K. Hiratsuka, T. Onoe, T. Yoshida, K. Suzuki, T. Matsumoto, and H. Nakamura. 1999. Bactericidal effect of electrolyzed neutral water on bacteria isolated from infected root canals. Oral Surgery Oral Medicine Oral Pathology. 87(1): 83-87.
40. Hsu, S. Y. 2003. Effects of water flow rate, salt concentration and water temperature on efficiency of an electrolyzed oxidizing water generator. Journal of Food Engineering. 60(4): 469-473.
41. Hsu, S. Y. and H. Y. Kao. 2004. Effects of storage conditions on chemical and physical properties of electrolyzed oxidizing water. Journal of Food Engineering. 65(3): 465-471.
42. Hsu, S. Y. 2005. Effects of flow rate, temperature and salt concentration on chemical and physical properties of electrolyzed oxidizing water. Journal of Food Engineering. 66(2): 171-176.
43. Huang, Y. R., Y. C. Hung, S. Y. Hsu, Y. W. Huang, and D. F. Hwang. 2008. Application of electrolyzed water in the food industry. Food Control. 19(4): 329-345.
44. Hurst, J. K., W. C. Barrette, B. R. Michel, and H. Rosen. 1991. Hypochlorous acid and myeloperoxidase-catalyzed oxidation of iron-sulfur clusters in bacterial respiratory dehydrogenases. European Journal of Biochemistry 202 (3): 1275-1282.
45. Len, S., Y. Hung, D. Chung, J. Anderson, M. Erickson, and K. Morita. 2002. Effects of storage conditions and pH on chlorine loss in electrolyzed oxidizing (EO) water. J. Agric. Food Chem. 50(1): 209-212.
46. Liao, C. F., Y. C. Chen, W. C. Hisiao, K. J. Huang, and J. Y. L. Yu. 2006. Application of hypochlorous acid in management of the laboratory animal facility. Chinese - Taipei Society of Laboratory Animal Sciences. Academia Sinica, Taipei.
47. McPherson, L. 1993. Understanding ORP's role in the disinfection process. Water engineering & management 140 (11): 29-31.
48. Paola, L. D. 2006. Treating diabetic foot ulcers with super-oxidized water. Supplement to January 2006 Wounds: 14.
49. Scouten, A. J. and L. R. Beuchat. 2002. Combined effects of chemical, heat and ultrasound treatments to kill Salmonella and Escherichia coli O157:H7 on alfalfa seeds. Journal of Applied Microbiology. Journal of Applied Microbiology. (92): 668–674.
50. Seymour, I. J., D. Burfoot, R. L. Smith, L. A. Cox, and A. Lockwood. 2002. Ultrasound decontamination of minimally processed fruits and vegetables. International Journal of Food Science and Technology. (37): 547–557.
51. Sharma, R. R., and A. Demirci. 2003. Treatment of Escherichia coli O157:H7 inoculated alfalfa seeds and sprouts with electrolyzed oxidizing water. International Journal of Food Microbiology. 86: 231– 237.
52. World Health Organization. 2003. Disinfection and sterilization in laboratory biosafety manual.
53. Wolvos, T. A. 2006. Advanced wound care with stable, super-oxidized water. Supplement to January 2006 Wounds: 11.
54. Wu, G., X. Yu, and Z. Gu. 2008. Ultrasonically nebulised electrolysed oxidizing water: a promising new infection control programme for impressions, metals and gypsum casts used in dental hospitals. Journal of Hospital Infection. 68(4): 348-354.
55. Xu, W. Z., L. X. Zhu, and J. H. Chen. 2006. Application of electricity funtional water in agriculture. Acta Agriculturac Jiangxi. 18(6): 137-140.
56. Yamasaki, M., S. Kusakari, K. Narita, K. Osamura, and M. Nagai. 2006. Control of root rot disease of tomatoes by using weak acidic electrolyzed water ( WAEW ) in the hydroponic culture solution. Bokin Bobai.34(9): 543-549.
57. Zuo, G. C. 2005. The influence of eletrolytic water on the seed development and growth. Journal of Liaoing Agricultural College. 7(2): 9-10.
58. Zhu, Z. W., B. M. Li, Y. Zhang, Z. X. Shi, and W. Cao. 2008. Physicochemical characteristics of acidic electrolyzed water with different treatments. Food Science and Technology. (5): 119-122.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47742-
dc.description.abstract本研究旨在探討低鹽無隔膜電解水的特性與製作條件,並據以開發低鹽電解水產製系統應用於空氣滅菌。以電流效率為設備產製自由氯的能力指標,以導電度為氯化鉀(KCl)溶液含鹽度的判斷標準。
研究結果指出,電解水的導電度與電解前KCl溶液的導電度相同,可直接經由調控KCl溶液的濃度來控制電解水的導電度。低溫、遮光與密封皆可延長電解水的保存時間。將鹼性電解水遮光與密封保存是較佳的長期保存方式;但由於弱酸性電解水有較佳的抑菌效力,因此應於調酸後立即使用,或直接以低濃度KCl溶液產製電解水,可避免因自由氯濃度快速下降,而影響電解水的抑菌效力。
適合製作低鹽電解水的KCl濃度為0.3∼0.4 M,適宜產製自由氯的電解水溫度為15∼45oC,降溫的設計對於低鹽電解水的製程是必要的。
結合自動化調配鹽濃度與調酸功能,本研究開發了低鹽電解水產製系統。可自動生產弱酸性低鹽電解水(pH=6∼6.5,FAC = 50 ppm,EC = 0.26 mS/cm),能有效用於農業抑菌且無鹽害的問題。本研究亦結合低鹽電解水產製系統與超音波造霧,開發了批次與連續式兩型設備可應用於局部空間之滅菌。
zh_TW
dc.description.abstractThe purposes of this study were to investigated the properties of low salinity membrane-less electrolyzed water (LS-MLEW) and the operating conditions to generate such water. Electrolysis-current-efficiency was used as an index to evaluate the capability of system developed in producing free available chlorine (FAC). The electrical conductivity (EC) was used as another index for the determination of the salinity of potassium chloride solution (KCl).
Experimental results indicate that the EC value of electrolyzed water (EW) remains unchanged before and after the electrolysis process, thus making EC a suitable index for the control of salinity of EW. EW should be stored in low temperature, dark, and sealed conditions. For long-term storage, EW at pH equals 10 is better than pH equals 6. However, EW at pH equals 6 is better than pH equals 10 in terms of disinfection capability. In conclusion, it is better to use EW immediately after pH adjustment (from 10 to 6) to prevent dissipation of FAC.
The proper range of electrolyte concentration for generating LS-MLEW was 0.3∼0.4 M. And the suitable temperature of electrolysis was 15∼45oC. Cooling is required when developing LS-MLEW electrolysis equipments.
A system consists of LS-MLEW electrolysis component, salinity concentration adjustment component and pH-adjustment component was developed. The system can generate LS-MLEW (pH=6∼6.5,FAC = 50 ppm,EC = 0.26 mS/cm).
The system described above can produced EW in either batch type or continuous type. Both types were combined with ultrasonic atomizing component to develop two machines to be used for disinfection of indoor air.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:15:54Z (GMT). No. of bitstreams: 1
ntu-99-R97631036-1.pdf: 3300680 bytes, checksum: 1eedf96e516cc39c9f7a7f50a431cec0 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents第一章 前言與研究目的 1
第二章 文獻探討 3
2.1 電解水製造原理 3
2.1.1 有隔膜電解水 4
2.1.2 無隔膜電解水 4
2.2 電解水抑菌機制與安全性 6
2.2.1 氧化還原電位 6
2.2.2 自由氯濃度 6
2.2.3 溶液的酸鹼值 7
2.2.4 電解水的安全性 8
2.3 電解水的操作條件 10
2.3.1 導電度 11
2.3.2 酸鹼值調整 12
2.3.3 電解水的保存 13
2.3.4 溫度 15
2.4 法拉第定律 16
2.5 電解水生成裝置 17
2.6 常見的含氯抑菌劑 18
2.7 低鹽電解水抑菌應用 20
2.7.1 電解水於醫療之應用 20
2.7.2 電解水於作物栽培之應用 23
2.8 抑菌水結合超音波之應用 27
2.8.1 超音波震盪 27
2.8.2 超音波水霧 27
第三章 材料與方法 28
3.1 材料與量測設備 29
3.2 量測與分析方法 30
3.3 電解質濃度與電流效率 34
3.4 電解前後導電度變化 34
3.5 電解水保存性試驗 37
3.6 低鹽電解水電解條件探討-電解質濃度 39
3.7 電解副反應之探究-電解的溫度 40
3.7.1 以氯化鈉為電解質之電解反應 41
3.7.2 以氯化鉀為電解質之電解反應 42
3.8 連續式低鹽無隔膜電解水產製系統 43
3.8.1 實驗設備 43
3.8.2 電解管設計 43
3.8.3 電解時間與α參數之關係 44
3.8.4 水浴溫度與α參數之關係 45
3.9 低鹽電解水結合超音波之機構設計 46
3.9.1 電解水霧抑菌模組(批次式電解) 46
3.9.2 電解水霧抑菌機(連續式電解) 52
第四章 結果與討論 57
4.1 電解質濃度與電流效率之關係 57
4.2 電解前後導電度變化之觀察 59
4.3 電解水保存性試驗 61
4.3.1 高自由氯濃度電解水 62
4.3.2 中低自由氯濃度電解水(經稀釋) 66
4.3.3 光照與酸鹼之影響 69
4.4 低鹽電解水製作條件之評估 74
4.5 電解副反應之探究 77
4.5.1 電解鹽水之副反應 77
4.5.2 氯化鈉之電解反應 78
4.5.3 氯化鉀之電解反應 82
4.6 連續式低鹽無隔膜電解水產製系統 85
4.6.1 連續式低鹽無隔膜電解水產製系統 85
4.6.2 連續式低鹽無隔膜電解水產製系統運轉性能測試 86
4.7 低鹽電解水結合超音波之機構設計 94
4.7.1 電解水霧抑菌模組(批次式電解) 94
4.7.2 電解水霧抑菌機(連續式電解) 96
第五章 結論 100
第六章 建議 101
參考文獻 102
附錄 109
dc.language.isozh-TW
dc.title製備與保存低鹽無隔膜電解水之理論探討與設備開發zh_TW
dc.titleTheoretical Investigation and Development of the Equipment for Producing and Preserving Low Salinity Electrolyzed Wateren
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳林祈(Lin-Chi Chen),黃振康(Chen-Kang Huang)
dc.subject.keyword無隔膜電解水,導電度,自由氯,保存,滅菌,zh_TW
dc.subject.keywordmembrane-less electrolyzed water,EC,FAC,storage,disinfection,en
dc.relation.page109
dc.rights.note有償授權
dc.date.accepted2010-08-11
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
3.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved