請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47740
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃美嬌 | |
dc.contributor.author | Tai-Ming Chang | en |
dc.contributor.author | 張泰鳴 | zh_TW |
dc.date.accessioned | 2021-06-15T06:15:47Z | - |
dc.date.available | 2015-12-19 | |
dc.date.copyright | 2010-08-18 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-11 | |
dc.identifier.citation | [1] F. J. DiSalvo (1999), “Thermoelectric cooling and power generation,” Science 285, 703-706.
[2] G. S. Nolas, G. A. Slack, J. L. Cohn, and S. B. Schujman (1998), “The next generation of thermoelectric materials,” in 17th International Conference on Thermoelectrics, Nagoya, Japan. [3] D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar (2003), “Thermal conductivity of individual silicon nanowires,” Appl. Phys. Lett. 83, 2934-2936. [4] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang (2008), “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451, 163-167. [5] Y. S. Ju and K. E. Goodson (1999), “Phonon scattering in silicon films with thickness of order 100 nm,” Appl. Phys. Lett. 74, 3005-3007. [6] W. Liu and M. Asheghi (2004), “Phonon-boundary scattering in ultrathin single-crystal silicon layers,” Appl. Phys. Lett. 84, 3819-3821. [7] T. Borca-Tasciuc, W. Liu, J. Liu, T. Zeng, D. W. Song, C. D. Moore, G. Chen, K. L. Wang, M. S. Goorsky, T. Radetic, R. Gronsky, T. Koga, and M. S. Dresselhaus (2000), “Thermal conductivity of symmetrically strained Si/Ge superlattices,” Superlattices Microstruct. 28, 199-206. [8] A. S. Barker, Jr., J. L. Merz, and A. C. Gossard (1978), “Study of zone-folding effects on phonons in alternating monolayers of GaAs-AlAs,” Phys. Rev. B 17, 3181-3196. [9] S. Tamura, Y. Tanaka, and H. J. Maris (1999), “Phonon group velocity and thermal conduction in superlattices,” Phys. Rev. B 60, 2627-2630. [10] T. Yao (1987), “Thermal properties of AlAs/GaAs superlattices,” Appl. Phys. Lett. 51, 1798-1800. [11] S. M. Lee, D. G. Cahill, and R. Venkatasubramanian (1997), “Thermal conductivity of Si-Ge superlattices”, Appl. Phys. Lett. 70, 2957-2959. [12] W. S. Capinski, M. Cardona, D. S. Katzer, H. J. Maris, K. Ploog, and T. Ruf (1999), “Thermal conductivity of GaAs/AlAs superlattices,” Physica B 263 -264, 530-532. [13] W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, and K. Ploog (1999), “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105-8113. [14] R. Venkatasubramanian (2000), “Lattice thermal conductivity reduction and phonon localization like behavior in superlattice structure,” Phys. Rev. B 61, 3091-3097. [15] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn (2001), “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413, 597-602. [16] K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis (2004), “Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit,” Science 303, 818-821. [17] J. L. Mi, T. J. Zhu, and X. B. Zhao (2007), “Nanostructuring and thermoelectric properties of bulk skutterudite compound CoSb3,” J. Appl. Phys. 101, 054314. [18] W. Kim, S. Singer, A. Majumdar, J. M. Zide, A. C. Gossard, and A. Shakouri (2005), “Role of nanostructures in reducing thermal conductivity below alloy limit in crystalline solids,” 2005 International Conference on Thermoelectrics, Clemson, South Carolina, USA. [19] W. Kim, S. L. Singer, A. Majumdar, D. Vashaee, Z. Bian, A. Shakouri, G. Zeng, J. E. Bowers, J. M. Zide, and A. C. Gossard (2006), “Cross-plane lattice and electronic thermal conductivities of ErAs:InGaAs/InGaAlAs superlattices,” Appl. Phys. Lett. 88, 242107. [20] J. L. Liu, A. Khitun, K. L. Wang, W. L. Liu, G. Chen, Q. H. Xie, and S. G. Thomas (2003), “Cross-plane thermal conductivity of self-assembled Ge quantum dot superlattices,” Phys. Rev. B 67, 165333. [21] Y. Bao, W. L. Liu, M. Shamsa, K. Alim, A. A. Balandin, and J. L. Liu (2005), “Electrical and thermal conductivity of Ge/Si quantum dot superlattices,” J. Electrochem. Soc. 152, G432-G435. [22] M. L. Lee and R. Venkatasubramanian (2008), “Effect of nanodot areal density and period on thermal conductivity in SiGe/Si nanodot superlattices,” Appl. Phys. Lett. 92, 053112. [23] J. Alvarez-Quintana, X. Alvarez, J. Rodriguez-Viejo, D. Jou, P. D. Lacharmoise, A. Bernardi, A. R. Goñi, and M. I. Alonso (2008), “Cross-plane thermal conductivity reduction of vertically uncorrelated Ge/Si quantum dot superlattice,” Appl. Phys. Lett. 93, 013112. [24] J. M. Ziman (2001), “Electrons and phonons,” Oxford University Press, Clarendon. [25] A. Khitun, A. Balandin, and K. L. Wang (1999), “Modification of the lattice thermal conductivity in silicon quantum wires due to spatial confinement of acoustic phonons”, Superlattices Microstruct. 26, 181-193. [26] J. Zou and A. Balandin (2001), “Phonon heat conduction in a semiconductor nanowire”, J. Appl. Phys. 89, 2932-2938. [27] M. J. Huang, W. Y. Chong, and T. M. Chang (2006), “The lattice thermal conductivity of a semiconductor nanowire”, J. Appl. Phys. 99, 114318. [28] A. Balandin and K. L. Wang (1998), “Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well”, Phys. Rev. B 58, 1544-1549. [29] M. J. Huang, T. M. Chang, and W. Y. Chong (2007), “A new lattice thermal conductivity model of a thin film semiconductor,” Int. J. Heat Mass Transfer 50, 67-74. [30] P. Hyldgaard and G. D. Mahan (1996), “Phonon knudsen flow in GaAs/AlAs superlattices,” Thermal Conductivity 23, 172-182. [31] G. Chen (1997), “Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures”, J. Heat Tran. 119, 220-229. [32] A. Khitun, A. Balandin, J. L. Liu, and K. L. Wang (2000), “In-plane lattice thermal conductivity of a quantum-dot superlattice,” J. Appl. Phys. 88, 696-699. [33] A. Khitun, J. L. Liu, and K. L. Wang (2004), “On the modeling of lattice thermal conductivity in semiconductor quantum dot superlattices,” Appl. Phys. Lett. 84, 1762-1764. [34] M. Shamsa, W. Liu, A. Balandin, and J. Liu (2005), “Phonon-hopping thermal conduction in quantum dot superlattices,” Appl. Phys. Lett. 87, 202105. [35] P. K. Schelling, S. R. Phillpo, and P. Keblinski (2002), “Comparison of atomic-level simulation methods for computing thermal conductivity,” Phys. Rev. B 65, 144306. [36] M. P. Allen, D. J. Tildesley (1987), “Computer simulation of liquids,” Oxford. [37] S. Kotake and S. Wakuri (1994), “Molecular dynamics study of heat conduction in solid materials,” JSME Inter. J. B. 37, 103-108. [38] J. R. Lukes, D. T. Li, X. G. Liang, and C. L. Tien (2000), “Molecular dynamics study of solid thin-film thermal conductivity,” Transaction of the ASME 122, 536-543. [39] Y. Chen, D. Li, J. R. Lukes, Z. Ni, and M. Chen (2005), “Minimum superlattice thermal conductivity from molecular dynamics,” Phys. Rev. B 72, 174302. [40] X. G. Liang, B. Yue (2006), “The interface roughness effect on the in-plane thermal conductivity in nanoscale,” Journal of Engineering Thermophysics 27(3). [41] R. J. Stevens, L. V. Zhigilei, and P. M. Norris (2007), “Effect of temperature and disorder on thermal boundary conductance at solid-solid interface: Nonequilibrium molecular dynamics simulations,” Int. J. Heat Mass Transfer 50, 3977-3989. [42] F. H. Stillinger and T. A. Weber (1985), “Computer simulation of local order in condensed phases of silicon,” Phys. Rev. B 31, 5262-5271. [43] M. I. Baskes (1992), “Modified embedded-atom potentials for cubic materials and impurities,” Phys. Rev. B 46, 2727-2742. [44] J. Tersoff (1986), “New empirical model for the structural properties of silicon,” Phys. Rev. Lett. 56, 632-635. [45] J. F. Justo, M. Z. Bazant, E. Kaxiras, and V. V. Bulatov (1998), “Interatomic potential for silicon defects and disordered phases,” Phys. Rev. B 58, 2539-2550. [46] P. Heino (2007), “Dispersion and thermal resistivity in silicon nanofilms by molecular dynamics,” Eur. Phys. J. B. 60, 171-179. [47] L. J. Porter, J. F. Justo, and S. Yip (1997), “The importance of Gruneisen parameters in developing interatomic potentials,” J. Appl. Phys. 82, 5378-5381. [48] S. G. Volz and G. Chen (1999), “Molecular dynamics simulation of thermal conductivity of silicon nanowires,” Appl. Phys. Lett. 75, 2056-2058. [49] S. G. Volz and G. Chen (2000), “Molecular-dynamics simulation of thermal conductivity of silicon crystals,” Phys. Rev. B 61, 2651-2656. [50] S. G. Volz, J. B. Saulnier, G. Chen, and P. Beauchamp (2000), 'Computation of thermal conductivity of Si/Ge superlattices by molecular dynamics techniques,” Microelectr. J. 31, 815-819. [51] C. J. Gomes, M. Madrid, J. V. Goicochea, C. H. Amon (2006), “In-plane and out-of-plane thermal conductivity of silicon thin films predicted by molecular dynamics,” J. Heat Transfer 128, 1114-1121. [52] C. J. Gomes, M. Madrid, and C. H. Amon (2004), “Thin film in-plane silicon thermal conductivity dependence on molecular dynamics surface boundary conditions,” 2004 ASME International Mechanical Engineering Congress and Exposition 345-351. [53] K. Miyazaki and D. Nagai (2008), “Molecular dynamics simulations of heat conduction in thin film with nano-holes,” Proceedings of MicroNano08 ,70327. [54] X. L. Feng, Z. X. Li, and Z. Y. Guo (2003), “Molecular dynamics simulation of thermal conductivity of nanoscale thin silicon films,” Microscale. Therm. Eng. 7, 153-161. [55] Z. H. Wang and Z. X. Li (2006), “Research on the out-of-plane thermal conductivity of nanometer silicon film,” Thin Solid Films 515, 2203-2206. [56] E. S. Landry, A. J. H. McGaughey (2009), “Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations,” Phys. Rev. B 80, 165304. [57] X. P. Huang, X. L. Huai, S. Q. Liang, and X. W. Wang (2009), “Thermal transport in Si/Ge nanocomposites,” J. Phys. D: Appl. Phys. 42, 095416. [58] S. Plimpton (1995), “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117, 1-19. [59] J. Irving and J. Kirkwood (1950), “The statistical mechanical theory of transport properties. IV. The equations of hydrodynamics,” J. Chem. Phys. 18, 817-829. [60] M. Born and R. Oppenheimer (1927), “On the quantum theory of molecules,” Ann. Phys. (N.Y.) 84, 457-484. [61] J. E. Jones (1924), “On the determination of molecular fields. II. From the equation of state of a gas,” Proc. Roy. Soc. A 106, 463-477. [62] P. M. Morse (1929), “Diatomic molecules according to the wave mechanics. II. vibrational levels,” Phys. Rev. 34, 57-64. [63] Kejian Ding and H. C. Anderson (1986). “Molecular-dynamics simulation of amorphous germanium,” Phys. Rev. B 34, 6987-6991. [64] W. M. Yim and R. J. Paff (1974), “Thermal expansion of AlN, sapphire, and silicon,” J. Appl. Phys. 45, 1456-1457. [65] M. Aono, Y. Hou, C. Oshima, and Y. Ishizawa (1982), “Low-energy ion scattering from the Si(001) surface,” Phys. Rev. Lett. 49, 567–570. [66] D. J. Evans (1983), “Homogeneous NEMD algorithm for thermal conductivity application of non-canonical linear response theory,” Phys. Lett. A 91, 457-460. [67] T. Ikeshoji and B. Hafskjold (1994), “Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface,” Mol. Phys 81, 251-261. [68] F. Muller-Plathe (1997), “A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity,” J. Chem. Phys. 106, 6082-6085. [69] W. G. Hoover (1983), “Nonequilibrium molecular dynamics,” Ann. Rev. Phys. Chem. 34, 103-127. [70] A. Tenenbaum, G. Ciccotti, and R. Gallico (1982), “Stationary nonequilibrium states by molecular dynamics-Fourier’s law,” Phys. Rev. A 29, 2778-2787. [71] R. D. Mountain and R. A. MacDonald (1983), “Thermal conductivity of crystals: A molecular-dynamics study of heat flow in a two-dimensional crystal,” Phys. Rev. B 28, 3022-3025. [72] S. Nosé (1984), “A unified formulation of the constant temperature molecular dynamics method,” J. Chem. Phys. 81, 511-519. [73] S. Nosé (1984), “A molecular dynamics method for simulation in the canonical ensemble,” Mol. Phys. 52, 255-268. [74] W. G. Hoover (1985), “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A 31, 1695-1697. [75] S. A. Adelman and J. D. Doll (1976), “Generalized Langevin equation approach for atom-solid-surface scattering – General formulation for classical scattering off harmonic solids,” J. Chem. Phys. 64, 2375-2388. [76] H. J. C. Berendsen, M. P. J. Postma, W. F. van Grusteren, A. Dinola, and J. R. Haak (1984), “Molecular dynamics with coupling to an external bath,” J. Chem. Phys. 81, 3684-3690. [77] P. Jund and R. Jullien (1999), “Molecular-dynamics calculation of the thermal conductivity of vitreous silica,” Phys. Rev. B 59, 13707-13711. [78] N. W. Ashcroft and N. D. Mermin (1976), “Solid state physics,” Holt, Reinhart and Winston, New York. [79] V. Yu. Trubitsyn, and E. B. Dolgusheva (2007), “Molecular dynamics calculations of anharmonic properties of the vibrational spectrum of BCC zirconium under pressure,” Phys. Solid. State 49, 1345–1352. [80] J. M. Dickey, A. Paskin (1969), “Computer simulation of the lattice dynamics of solids,” Phys. Rev. 188, 3. [81] N. I. Papanicolaou, I. E. Lagaris, and G. A. Evangelakis (1995), “Modification of phonon spectral densities of the (001) copper surface due to copper adatoms by molecular dynamics simulation,” Surface Science 337, 819-824. [82] S. Srinivasan and R. S. Miller (2007), “On parallel nonequilibrium molecular dynamics simulations of heat conduction in heterogeneous materials with three-body potentials: Si/Ge superlattice,” Numerical Hear Transfer Part B 52, 297-321. [83] A. Skye, P. K. Schelling (2008), “Thermal resistivity of Si-Ge alloys by molecular dynamics simulation,” J. Appl. Phys. 103, 113524 1-6. [84] 翁健洲 (2009), “以分子動力學模擬矽鍺材料在奈米尺度下支熱傳相關性質,” 碩士論文. [85] Zi Jian, Zhang Kaiming, Xie Xide (1990), “Modification of Stillinger-Weber potentials for Si and Ge,” Phys. Rev. B 41, 12915-12918. [86] J. Q. Broughton, X. P. Li (1987), “Phase diagram of silicon by molecular dynamics,” Phys. Rev. B 35, 9120-9127. [87] S. P. Nikanorov, Y. A. Burenkov, and A. V. Stepanov (1972), “Elastic properties of silicon,” Sov. Phys. Solid State 13, 2516-2518. [88] E. S. Landry, A. J. H. McGaughey, and M. I. Hussein (2007), “Molecular dynamics prediction of the thermal conductivity of Si/Ge superlattices,” 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference. [89] V. Samvedi and V. Tomara (2009), “Role of heat flow direction, monolayer film thickness, and periodicity in controlling thermal conductivity of a Si–Ge superlattice system,” J. Appl. Phys. 105, 013541. [90] H. Zhao and J. B. Freund (2005), “Lattice-dynamical calculation of phonon scattering at ideal Si-Ge interfaces,” J. Appl. Phys., 97, 024903. [91] Kechrakos (1991), “The role of interface disorder in thermal boundary conductivity between two crystals,” J. Phys. Condens. Matter 3, 1443–1452. [92] P. K. Schelling, S. R. Phillpot, and P. Keblinski (2002), “Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics simulation,” Appl. Phys. Lett. 80, 2484-2486. [93] P. K. Schelling and S. R. Phillpot (2003), “Multiscale simulation of phonon transport in superlattices,” J. Appl. Phys. 93, 5377-5387. [94] P. K. Schelling, S. R. Phillpot, and P. Keblinski (2004), “Kapitza conductance and phonon scattering at grain boundaries by simulation,” J. Appl. Phys. 95, 6082-6091. [95] L. Sun and J. Y. Murthy (2008), “Molecular dynamics simulation of phonon scattering at rough semiconductor interfaces,” in: ITherm, Orlando, Florida, May 2008, 1078–1086. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47740 | - |
dc.description.abstract | 近年來因低維度材料的低熱傳導係數能改善熱電元件的效率,所以受到廣泛的研究。在過去的理論與實驗中皆發現薄膜、奈米線、超晶格、量子點超晶格等低維度材料之晶格熱傳導係數能低於塊材1~2個數量級;然而對於複雜的奈米結構以理論分析或是在實驗製程上皆不易進行。因此本論文企圖建立以非平衡分子動力學(NEMD)模擬方法來計算低維度材料的熱傳性質,其中先以單晶矽薄膜進行模擬,藉此整理並建立合理的模擬方法,而後再對複雜的矽鍺量子點異質結構進行模擬,觀察量子點對熱傳性質之影響。模擬中,矽、鍺原子的作用力採用兼具二體與三體勢能的Stillinger-Weber勢能函數。
在薄膜的模擬過程中,由於MD的溫度計算屬古典力學之方法,若模擬溫度比材料的Debye溫度來得低並不適用,因此需要對模擬溫度進行量子修正。在過去的文獻中皆以Debye模型或塊材的聲子態密度進行修正,而本論文採用平衡分子動力學(EMD)模擬得到的薄膜聲子態密度來做修正。此外,在有限模擬尺寸的薄膜平面下會失去長波長聲子的貢獻,稱為數值有限尺寸效應;為了得到無窮域的結果,本論文模擬了數個不同平面長度的薄膜,並藉由前人研究中的外插技巧來求得無窮域薄膜的結果。從模擬結果來看,當MD模擬溫度在室溫附近時必須進行量子修正,且以本論文所提出以薄膜態密度進行修正最為合理,與理論聲子波茲曼方程式在某一表面粗糙度下的預測結果相當一致。 至於矽鍺異質結構的模擬,首先比較NEMD常用的兩種熱傳模擬方式:控制熱流量法與控制溫度法,從模擬過程中發現在異質結構中因介面的影響而需相當長的熱傳穩態時間與取樣平均步數,而結果顯示控制溫度法能有較好的收斂情形。接著為了瞭解量子點對熱傳的影響,本論文模擬三種異質結構:矽/鍺量子點/鍺、矽/鍺量子點/矽異質結構與矽鍺量子點超晶格。由前兩種的模擬結果顯示,嵌入的量子點反而可減緩異質結構介面處的聲頻不匹配(acoustic mismatch);然而若濕潤層存在時,熱傳導係數可能因量子點佔有相當大的鍺材料比例,或濕潤層與量子點之間有波的破壞性干涉而下降。而量子點超晶格的模擬結果顯示,在多個介面的影響下熱傳導係數只隨著量子點密度增加而降低,此結果在定性上甚至定量上與實驗量測結果相當一致。 | zh_TW |
dc.description.abstract | The low-dimensional structures have been widely investigated because of their low thermal conductivities for improving the efficiency of thermoelectric materials. Past theoretical and experimental studies found that the lattice thermal conductivity of thin-film, nanowire, superlattice, quantum dot (QD) superlattice etc., can further reduce 1~ 2 order of magnitude to their bulk counter parts. Nonetheless, it’s much difficult to analyze or fabricate the complicated nanostructures through the theoretical model or the experiment. Hence, in this thesis we attempt to establish the NEMD simulation to calculate the thermal properties of low-dimensional materials. We first arrange and build a reasonable procedure of NEMD approach by employing the simulation of single crystal of the silicon thin film, and further simulate the QD heterostructures to observe the influence on thermal properties of QD. The Stillinger-Weber potential which contains two-body and three-body interactions is adopted for silicon and germanium in the simulation.
In the simulation of thin film, since the calculation of temperature in MD belongs to classical mechanics, it’s necessary to make the quantum correction of temperature when lower than Debye temperature. Most of investigations made the correction by using the Debye or bulk DOS. In this thesis, however, we adopt the thin film DOS via EMD simulation. Besides, the so-called finite-size-effect is caused by absence of phonons with long wave lengths in the finite size of in-plane thin film. To obtain the results of infinite domain, samples of various lengths are simulated and an extrapolation technique is employed. The investigation shows the thermal conductivities should be corrected when simulated temperature is close to room temperature. Moreover, the corrected results by the thin-film DOS presented in this thesis are reasonable and agree excellently with the theoretical predictions having a similar surface roughness based on the phonon Boltzmann equation. As for simulation of Si/Ge heterostructures, two commonly used methods, control heat flux and control temperature, are compared first for producing the heat transfer in the NEMD simulation. It is found that the longer simulation time is required to attain the steady state and to take the time average because of the existence of interface. Besides, the use of control temperature method has the better convergence. Next, to clarify QD phenomenon, we employed three heterostructures, a Si/Ge QD/Ge heterostructure, a Si/Ge QD/Si heterostructure, and a QD superlattice in this thesis. From the simulation results of former two heterostructures, we found that acoustic mismatch can be alleviated by the QDs embedded inside. However, the existence of the wetting layer may create an additional interface and cause the destruction of phonon transport by wave interference. The large Ge concentration of QD may also lead to reduction the effective thermal conductivity because the low thermal conductivity of Ge material. Since many interfaces are existed in the QD superlattices, the effective thermal conductivity only decreases with the increasing QD density, and it qualitatively and quantitatively agree with the experimental measurements. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:15:47Z (GMT). No. of bitstreams: 1 ntu-99-D94522009-1.pdf: 9649275 bytes, checksum: 417203885fd11f33731b542e6f5e85f1 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書 i 誌謝 ii 中文摘要 iii 英文摘要 v 表目錄 xi 圖目錄 xii 符號說明 xviii 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-2-1 實驗量測 2 1-2-2 理論模型 6 1-2-3 分子動力學模擬 7 1-3 研究動機與目的 10 1-4 論文架構 12 第二章 分子動力學理論 13 2-1 勢能函數 13 2-2 初始與邊界條件 17 2-2-1 初始位置與速度 17 2-2-2 週期性邊界條件 18 2-2-3 表面勢能 18 2-3 溫度控制 20 2-4 非平衡分子動力學 20 2-4-1 控制熱流量法 21 2-4-2 控制溫度法 22 2-4-3 熱傳導係數求法 23 2-4-4 量子修正與聲子頻譜模擬 25 2-4-5 消除有限尺寸效應影響 28 2-5 模擬之收斂測試規劃 29 第三章 分子動力學數值方法 30 3-1 無因次化 30 3-2 運動方程式 32 3-3 截止半徑法 33 3-3-1 Verlet list表列法 33 3-3-2 Cell link表列法 34 3-3-3 Verlet list+Cell link表列法 35 3-4 平行計算 35 3-4-1 原子分割法 36 3-4-2 作用力分割法 36 3-4-3 空間分割法 37 3-5 模擬流程與平行效率評估 39 第四章 矽奈米薄膜之熱傳導係數 41 4-1 穩態判斷與資料選取 41 4-2 聲子色散關係與態密度 44 4-3 量子修正 48 4-4 熱傳導係數計算與有限尺寸效應 49 4-5 溫度與表面粗糙度對矽薄膜熱傳導係數之影響 51 第五章 矽鍺量子點異質結構之熱傳性質分析 54 5-1 異質結構之模擬設置與驗證 54 5-2 量子點異質結構之幾何外型 60 5-3 矽/鍺量子點/鍺異質結構 61 5-3-1 穩態判斷與資料選取 61 5-3-2 計算有效熱傳導係數與量子點熱阻 61 5-3-3 模擬結果 62 5-4 矽/鍺量子點/矽異質結構 63 5-4-1 穩態判斷與資料選取 64 5-4-2 計算有效熱傳導係數與量子點熱阻 64 5-4-3 模擬結果 65 5-5 矽鍺量子點超晶格 66 5-5-1 穩態判斷與資料選取 66 5-5-2 計算有效熱傳導係數 67 5-5-3 模擬結果 67 第六章 結論與未來展望 69 6-1 結論 69 6-1-1 矽薄膜 69 6-1-2 矽鍺量子點異質結構 71 6-2 未來展望 72 附錄A 異質結構介面處之原子振動頻譜分析 75 參考文獻 77 表目錄 表2.1 矽/鍺材料及SW勢能之參數 87 表2.2 SW二體勢能在不同矽/鍺材料組合下之參數 87 表2.3 SW三體勢能在不同矽/鍺材料組合下之參數 88 表3.1 各物理量之無因次化 89 表3.2 Verlet list半徑rv值之測試 89 表3.3 國立台灣大學HP高效能運算叢集電腦之規格 90 表4.1 矽薄膜不同尺寸與溫度下之模擬 91 表4.2 矽薄膜模擬時使用之參數 91 表4.3 不同膜厚與尺寸下所選取之非線性區域大小(Lz為模擬長度) 92 表4.4 矽薄膜量子修正後之真實初始溫度 92 表4.5 矽薄膜態密度量子修正的無窮大矽薄膜之熱傳導係數 92 表4.6 未經量子修正的無窮大矽薄膜之熱傳導係數 92 表4.7 Debye模型量子修正的無窮大矽薄膜之熱傳導係數 93 表4.8 塊材態密度量子修正的無窮大矽薄膜之熱傳導係數 93 表4.9 矽薄膜之表面粗糙度 93 表5.1 矽/鍺隔絕介面熱阻之模擬設置條件 94 表5.2 矽/鍺量子點/鍺異質結構之模擬例與對應的量子點密度 94 表5.3 矽/鍺量子點/鍺模擬結果在三階多項式擬合下之參數 95 表5.4 矽/鍺量子點/鍺異質結構兩端矽材料與鍺材料的熱傳導係數 95 表5.5 矽/鍺量子點/矽異質結構之模擬例與對應的量子點密度 96 表5.6 矽/鍺量子點/矽模擬結果在三階多項式擬合下之參數 96 表5.7 矽/鍺量子點/矽異質結構兩端矽材料與鍺材料的熱傳導係數 97 表5.8 矽鍺量子點超晶格之模擬例與對應的量子點密度 97 圖目錄 圖1.1 (A)熱電致冷器(B)熱電發電器之元件操作示意圖[1] 98 圖1.2 矽鍺超晶格結構在微觀下之照片[2],其中一個週期厚度矽(7 nm)/鍺(7 nm)。 98 圖1.3 鍺量子點超晶格在微觀下之照片[3],其中(a)前10層橫截面的TEM照片;(b)表面之AFM照片。 99 圖2.1 無因次化的二體勢能(f2)與原子間距離(rij)關係圖[42]。 100 圖2.2 三體位能中θjik與hjik的示意圖 100 圖2.3 鑽石結構排列示意圖,A與B為一組基元。 101 圖2.4 週期性邊界條件示意圖。 101 圖2.5 表面位能的參考平面示意圖。 102 圖2.6 表面原子排列情形。 102 圖2.7 均質NEMD法模擬系統之示意圖。 102 圖2.8 非均質NEMD模擬系統之示意圖。 102 圖2.9 1.蒲朗克振子系統、2.薛丁格振子系統、3.古典振子系統之能量與溫度之關係圖[78]。 103 圖3.1 Velocity-Verlet法計算流程。 104 圖3.2 Verlet list表列法示意圖。 104 圖3.3 Cell link示意圖。 105 圖3.4 Verlet list + cell link表列法示意圖。 105 圖3.5 原子分割法之示意圖。 106 圖3.6 作用力分割法之示意圖。 106 圖3.7 空間分割法之示意圖。 107 圖3.8 鄰近原子傳遞之流程。 107 圖3.9 鄰近原子傳遞範圍之示意圖。 108 圖3.10 NEMD法之平行化模擬流程圖。 109 圖3.11 空間分割法在不同處理器個數下的(a)總運算時間,(b)加速比之關係圖。. 110 圖4.1 矽薄膜之NEMD模擬示意圖。T1、T3分別距離熱槽區與冷槽區中心8 nm奈米線,T2位於熱冷槽區之間的中心位置。 111 圖4.2 矽薄膜之能量隨模擬步數之變化圖,能量為無因次化值,資料每1000時步輸出一次。(a)為總能量變化圖,(b)為總動能變化圖,(c)為總位能變化圖。 111 圖4.3 六個薄層的平均溫度隨取樣步數M變化之情形。薄層位置兩兩對稱於熱槽區或冷槽區,如圖4.1所示。 112 圖4.4 矽薄膜在z方向之溫度分布曲線(量子修正前),沿z軸均分621個薄層區域,而虛線內為熱/冷槽區域。 113 圖4.5 矽薄膜在z方向之熱通量分布曲線,沿z軸均分621個薄層區域,而虛線為模擬初始設定的之熱通量。 114 圖4.6 厚度2.2nm矽薄膜的Res與平均步數的關係圖。 114 圖4.7 厚度2.2 nm矽薄膜之聲子色散曲線,實線為以SW勢能函數理論計算所得之塊材色散關係[47],橫軸為z方向的波數,縱軸為頻率(THz),從左至右依序為縱波、偏振方向為x方向(薄膜厚度方向)的橫波、偏振方向為y方向的橫波。 115 圖4.8 厚度2.2 nm矽薄膜之聲子色散曲線,使用彈性連續體模型法(elastic continuummodel)計算而得[29],從左至右分別為擴張(dilatational)模式、彎曲(flexural)模式、切變(shear)模式。 115 圖4.9 (a) 原子速度自相關係數γv(t) (厚度2.2nm矽薄膜)。(b) 圖(a)中0~500 fs之局部放大圖。 116 圖4.10 薄膜聲子態密度,呈現塊材與不同薄膜厚度下的模擬結果。 117 圖4.11 在不同溫度下,矽薄膜膜厚為2.2 nm的聲子態密度。 117 圖4.12 量子修正溫度與MD溫度之關係圖,分別以Debye模型、模擬塊材、薄膜之聲子態密度修正。Tc與Ta為Gomes et al. [51]之結果。綠色實線為未修正之參考線。 118 圖4.13 矽薄膜沿著z方向的溫度分布曲線(量子修正後)。點虛線間為熱/冷槽區中心,雙虛線間為非線性區域。 118 圖4.14 三種不同厚度的矽薄膜溫度分布線性擬合結果,點為資料點,線為以最小平方法擬合出直線。 119 圖4.15 三種不同膜厚的非線性區域Lcut與熱傳導係數之關係圖。虛線之右邊判斷已不受非線性區域之影響,並以此值定義非線性區大小。 120 圖4.16 1/k和1/Lz之關係圖,此圖呈現五種初始溫度、三種不同膜厚之薄膜模擬結果。初始溫度T0,MD 分別為 (a) 300 K、(b) 400 K、(c) 500 K、(d) 600 K、(e) 700 K。 121 圖4.17 在消除有限尺寸之影響後,矽薄膜的熱傳導係數隨溫度之變化圖,線為cubic spline之擬合結果。 122 圖4.18 薄膜熱傳導係數模擬結果,分別列出量子修正前的結果,以及使用Debye模型、塊材聲子態密度、薄膜聲子態密度等量子修正後之結果,實線為理論計算[29]的結果。薄膜厚度分別為 (a) 2.2 nm (b) 4.4 nm (c) 11 nm。 123 圖5.1 Landry et al. [56]模擬矽/鍺異質結構的隔絕介面熱阻。(a) NEMD法模擬示意圖,(b)穩態後的溫度分布。 124 圖5.2 矽/鍺異質結構在z方向每層原子平面之距離。 124 圖5.3 控制熱流法與控制溫度法模擬矽鍺隔絕介面熱阻之能量隨模擬步數之變化圖,能量為無因次化值,資料每1000時步輸出一次。 125 圖5.4 由控制熱流法所得到的矽/鍺異質結構之溫度分布曲線,其中呈現在穩態後的三個不同時段取樣平均結果,而取樣數皆為500萬步。虛線外為熱/冷槽區域。 125 圖5.5 由控制熱流法所得到的矽/鍺異質結構之熱通量分布曲線,其中呈現在穩態後的三個不同時段取樣平均結果,而取樣數皆為500萬步。虛線外為熱/冷槽區域。 126 圖5.6 由控制熱流法所得到的矽/鍺異質結構之熱通量分布曲線,其中呈現在穩態後的三個不同取樣數下所得到的結果。虛線外為熱/冷槽區域。 126 圖5.7 (a)由控制熱流法(b)由控制溫度法所得到的矽/鍺異質結構之熱通量震盪情形,其中呈現在穩態後的三個不同時段取樣平均結果,而取樣數皆為200萬步。虛線外為熱/冷槽區域。 127 圖5.8 由控制溫度法所得到的矽/鍺異質結構之熱通量分布曲線,其中呈現在穩態後的三個不同取樣數下所得到的結果。虛線外為熱/冷槽區域。 127 圖5.9 由控制溫度法所加入矽/鍺異質結構之能量與取樣數的變化關係。 128 圖5.10 由控制熱流法與控制溫度法所得到的矽/鍺異質結構之溫度分布曲線,其中分別進行1800萬與2800萬步的取樣平均。 128 圖5.11 由控制熱流量與控制溫度法所求得之矽/鍺隔絕介面熱阻與(a)取樣數的變化關係,其中截斷長度Lcut=20UC;(b)截斷長度Lcut的變化關係,其中分別進行1800萬與2800萬步的取樣平均。 129 圖5.12 量子點(紅色原子)與濕潤層(綠色原子)幾何外型之示意圖。 130 圖5.13 (a)矽/鍺量子點/矽異質結構(b)矽/鍺量子點/矽異質結構(c)矽鍺量子點超晶格之示意圖。 130 圖5.14 矽/鍺量子點/鍺異質結構的動能、位能及總能量隨模擬步數之變化圖。 131 圖5.15 矽/鍺量子點/鍺異質結構在取樣平均後系統沿z方向的溫度分布圖,其中取樣範圍在2000萬~4800萬步、Lcut=4UC。 132 圖5.16 矽/鍺量子點/鍺異質結構之熱傳導係數(a)與取樣樣本數的變化關係,其中選擇截斷長度Lcut=4UC來進行溫度線性擬合;(b)與截斷長度Lcut的變化關係,其中選擇2800萬步來進行取樣平均。 132 圖5.17 矽/鍺量子點/鍺異質結構之有效熱傳導係數隨量子點密度的變化關係。其中實線是將所有模擬結果以三階多項式擬合後的結果。 133 圖5.18 矽/鍺量子點/鍺異質結構之量子點熱阻隨量子點密度的變化關係。其中實線是將所有模擬結果以三階多項式擬合後的結果。 133 圖5.19 矽/鍺量子點/矽異質結構的動能、位能及總能量隨模擬步數之變化圖。 134 圖5.20 矽/鍺量子點/矽異質結構在取樣平均後系統沿z方向的溫度分布圖,其中取樣範圍在2000萬~7200萬步、Lcut=4UC。 134 圖5.21 矽/鍺量子點/矽異質結構之熱傳導係數(a)與取樣樣本數的變化關係,其中選擇截斷長度Lcut=4UC來進行溫度線性擬合;(b)與截斷長度Lcut的變化關係,其中選擇5200萬步來進行取樣平均。 135 圖5.22 矽/鍺量子點/矽異質結構之有效熱傳導係數隨量子點密度的變化關係。其中實線是將所有模擬結果以三階多項式擬合後的結果。 136 圖5.23 矽/鍺量子點/矽異質結構之量子點熱阻隨量子點密度的變化關係。其中實線是將所有模擬結果以三階多項式擬合後的結果。 136 圖5.24 矽鍺量子點超晶格動能、位能及總能量隨模擬步數之變化圖。 137 圖5.25 矽鍺量子點超晶格在取樣平均後系統沿z方向的溫度分布圖,其中取樣範圍在2000萬~4800萬步,兩條虛線之間代表超晶格的一個週期。 137 圖5.26 矽鍺量子點超晶格在取樣平均後系統沿z方向的溫度分布圖,其中取樣範圍在2000萬~4800萬步,兩條虛線之間代表超晶格的一個週期。 138 圖5.27 矽鍺量子點超晶格之熱傳導係數隨量子點密度變化關係圖,其中模擬所考慮兩種矽間隔層厚度分別為2.7 nm和10.9 nm;而實驗量測[22]的矽間隔層厚度分別為3.8 nm與10.5 nm。 139 圖A.1 在兩種異質結構中頻譜分析所選取之原子位置示意圖。其中(a)矽/鍺量子點/鍺異質結構,(b)矽/鍺量子點/矽異質結構。 140 圖A.2 矽/鍺量子點/鍺異質結構在δQD=1.0下中央原子之頻譜圖。 140 圖A.3 矽/鍺量子點/鍺異質結構之中央原子與底邊原子之頻譜圖,其中頻率範圍在0~1 THz。(a)δQD=1.0;(b)δQD=0.16。 141 圖A.4 矽/鍺量子點/矽異質結構之中央原子與底邊原子之頻譜圖,其中頻率範圍在0~1 THz。(a)δQD=1.0;(b)δQD=0.16。 142 圖A.5 矽/鍺量子點/鍺異質結構之中央原子與底邊原子之頻譜圖,其中頻率範圍在1.5~6 THz。(a)δQD=1.0;(b)δQD=0.16。 143 圖A.6 矽/鍺量子點/矽異質結構之中央原子與底邊原子之頻譜圖,其中頻率範圍在1.5~6 THz。(a)δQD=1.0;(b)δQD=0.16。 144 | |
dc.language.iso | zh-TW | |
dc.title | 矽鍺低維度材料熱傳性質之非平衡分子動力學模擬研究 | zh_TW |
dc.title | An Investigation of the Lattice Thermal Transport Phenomenon in Low-Dimensional Si/Ge via the Molecular Dynamics Simulation | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 李石頓,楊照彥,宋齊有,吳宗信,劉君愷 | |
dc.subject.keyword | 薄膜,超晶格,量子點,晶格熱傳導係數,態密度,非平衡分子動力學, | zh_TW |
dc.subject.keyword | Thin-film,Superlattice,Quantum dot,Lattice thermal conductivity,Density of states,Non-equilibrium molecular dynamics, | en |
dc.relation.page | 144 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-11 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 9.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。