請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47738
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 沈湯龍 | |
dc.contributor.author | Chung-Ming Wang | en |
dc.contributor.author | 王崇名 | zh_TW |
dc.date.accessioned | 2021-06-15T06:15:40Z | - |
dc.date.available | 2015-08-13 | |
dc.date.copyright | 2010-08-13 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-11 | |
dc.identifier.citation | Agrawal, V.B., and Tsai, R.J. (2003). Corneal epithelial wound healing. Indian J Ophthalmol 51, 5-15.
Aikawa, R., Nagai, T., Kudoh, S., Zou, Y., Tanaka, M., Tamura, M., Akazawa, H., Takano, H., Nagai, R., and Komuro, I. (2002). Integrins play a critical role in mechanical stress-induced p38 MAPK activation. Hypertension 39, 233-238. Araki-Sasaki, K., Ohashi, Y., Sasabe, T., Hayashi, K., Watanabe, H., Tano, Y., and Handa, H. (1995). An SV40-immortalized human corneal epithelial cell line and its characterization. Invest Ophthalmol Vis Sci 36, 614-621. Barsacchi, R., Heider, H., Girault, J., and Meldolesi, J. (1999). Requirement of pyk2 for the activation of the MAP kinase cascade induced by Ca(2+) (but not by PKC or G protein) in PC12 cells. FEBS Lett 461, 273-276. Datta, S.R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y., and Greenberg, M.E. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231-241. Hanks, S.K., Ryzhova, L., Shin, N.Y., and Brabek, J. (2003). Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. Front Biosci 8, d982-996. Hildebrand, J.D., Schaller, M.D., and Parsons, J.T. (1993). Identification of sequences required for the efficient localization of the focal adhesion kinase, pp125FAK, to cellular focal adhesions. J Cell Biol 123, 993-1005. Huang, C., Jacobson, K., and Schaller, M.D. (2004a). MAP kinases and cell migration. J Cell Sci 117, 4619-4628. Huang, C., Jacobson, K., and Schaller, M.D. (2004b). A role for JNK-paxillin signaling in cell migration. Cell Cycle 3, 4-6. Imanishi, J., Kamiyama, K., Iguchi, I., Kita, M., Sotozono, C., and Kinoshita, S. (2000). Growth factors: importance in wound healing and maintenance of transparency of the cornea. Prog Retin Eye Res 19, 113-129. Kimura, K., Kawamoto, K., Teranishi, S., and Nishida, T. (2006). Role of Rac1 in fibronectin-induced adhesion and motility of human corneal epithelial cells. Invest Ophthalmol Vis Sci 47, 4323-4329. Lim, Y., Han, I., Jeon, J., Park, H., Bahk, Y.Y., and Oh, E.S. (2004). Phosphorylation of focal adhesion kinase at tyrosine 861 is crucial for Ras transformation of fibroblasts. J Biol Chem 279, 29060-29065. Liu, J.J., Kao, W.W., and Wilson, S.E. (1999). Corneal epithelium-specific mouse keratin K12 promoter. Exp Eye Res 68, 295-301. Mitra, S.K., Hanson, D.A., and Schlaepfer, D.D. (2005). Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6, 56-68. Netto, M.V., Mohan, R.R., Ambrosio, R., Jr., Hutcheon, A.E., Zieske, J.D., and Wilson, S.E. (2005). Wound healing in the cornea: a review of refractive surgery complications and new prospects for therapy. Cornea 24, 509-522. Owens, L.V., Xu, L., Craven, R.J., Dent, G.A., Weiner, T.M., Kornberg, L., Liu, E.T., and Cance, W.G. (1995). Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res 55, 2752-2755. Reif, S., Lang, A., Lindquist, J.N., Yata, Y., Gabele, E., Scanga, A., Brenner, D.A., and Rippe, R.A. (2003). The role of focal adhesion kinase-phosphatidylinositol 3-kinase-akt signaling in hepatic stellate cell proliferation and type I collagen expression. J Biol Chem 278, 8083-8090. Saika, S., Ohnishi, Y., Ooshima, A., Liu, C.Y., and Kao, W.W. (2002). Epithelial repair: roles of extracellular matrix. Cornea 21, S23-29. Saika, S., Okada, Y., Miyamoto, T., Yamanaka, O., Ohnishi, Y., Ooshima, A., Liu, C.Y., Weng, D., and Kao, W.W. (2004). Role of p38 MAP kinase in regulation of cell migration and proliferation in healing corneal epithelium. Invest Ophthalmol Vis Sci 45, 100-109. Schaller, M.D., and Parsons, J.T. (1995). pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk. Mol Cell Biol 15, 2635-2645. Sharma, G.D., He, J., and Bazan, H.E. (2003). p38 and ERK1/2 coordinate cellular migration and proliferation in epithelial wound healing: evidence of cross-talk activation between MAP kinase cascades. J Biol Chem 278, 21989-21997. Shen, T.L., Park, A.Y., Alcaraz, A., Peng, X., Jang, I., Koni, P., Flavell, R.A., Gu, H., and Guan, J.L. (2005). Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis. J Cell Biol 169, 941-952. Sonoda, Y., Watanabe, S., Matsumoto, Y., Aizu-Yokota, E., and Kasahara, T. (1999). FAK is the upstream signal protein of the phosphatidylinositol 3-kinase-Akt survival pathway in hydrogen peroxide-induced apoptosis of a human glioblastoma cell line. J Biol Chem 274, 10566-10570. Suzuki, K., Saito, J., Yanai, R., Yamada, N., Chikama, T., Seki, K., and Nishida, T. (2003). Cell-matrix and cell-cell interactions during corneal epithelial wound healing. Prog Retin Eye Res 22, 113-133. Toutant, M., Costa, A., Studler, J.M., Kadare, G., Carnaud, M., and Girault, J.A. (2002). Alternative splicing controls the mechanisms of FAK autophosphorylation. Mol Cell Biol 22, 7731-7743. Wang, J.G., Miyazu, M., Matsushita, E., Sokabe, M., and Naruse, K. (2001). Uniaxial cyclic stretch induces focal adhesion kinase (FAK) tyrosine phosphorylation followed by mitogen-activated protein kinase (MAPK) activation. Biochem Biophys Res Commun 288, 356-361. Wary, K.K., Mainiero, F., Isakoff, S.J., Marcantonio, E.E., and Giancotti, F.G. (1996). The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell 87, 733-743. Wu, X., Suetsugu, S., Cooper, L.A., Takenawa, T., and Guan, J.L. (2004). Focal adhesion kinase regulation of N-WASP subcellular localization and function. J Biol Chem 279, 9565-9576. Xia, H., Nho, R.S., Kahm, J., Kleidon, J., and Henke, C.A. (2004). Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a beta 1 integrin viability signaling pathway. J Biol Chem 279, 33024-33034. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47738 | - |
dc.description.abstract | Integrins 是一種於細胞膜上的受體,可與細胞外的基質 (extracellular matrix) 進行交互作用,調控細胞的黏著、移動和生長等細胞功能。 Focal adhesion kinase (FAK)是一種分子量125 kDa的酪胺酸激脢 (tyrosine kinase) ,經由與 talin 和 paxillin 等 focal adhesion complex 的蛋白質間交互作用,在 integrin 於細胞內部的一端形成聚合調控細胞遷移與增生的能力,扮演 integrin 的細胞訊息傳遞中重要的訊息分子。本研究中主要以基因剔除和基因轉殖小鼠做實驗,包含眼角膜專一性剔除 FAK 的小鼠 (K12-rtTA/tetO-Cre/ FAK f/Δ) 和 Akt 基因剔除小鼠來探討 FAK 與 Akt 在眼角膜上皮細胞增生與傷口癒合所扮演的角色。實驗結果可知, FAK 基因剔除會導致減慢眼角膜上皮細胞早期傷口癒合修復的速度,而且不同於 Akt 基因剔除小鼠會影響了晚期的傷口癒合。不僅如此,如果以 infection 的方式大量表現 FAK 這蛋白質於 FAK 基因剔除的小老鼠眼角膜上,可因此回復傷口癒合的速度。而實驗中藉由使用人類的角膜上皮細胞 (HCECs) 做 in vitro 傷口癒合的測試,發現當眼角膜上皮細胞受到細胞外機質 (collagen typeIV) 和 EGF 的刺激下, FAK 蛋白的表現以及活化有可能參與在調控細胞遷移的部份,這部份的實驗便印證了 in vivo 實驗的結果。除此之外,藉由加入不同 MAPK pathway 的抑制劑,例如 : PP2 (Src抑制劑)、SP600125 (Erk抑制劑) 和 SB203580 (p38抑制劑),我們發現 FAK 會藉由調控下游的 Src 和 p38 信息傳遞路徑來調控眼角膜上皮細胞的傷口癒合。所以總合上的研究就可以比較清楚了解 FAK 在眼角膜上皮細胞傷口癒合時所扮演的生理機能與角色。 | zh_TW |
dc.description.abstract | Given the importance in several cellular processes, including cell migration and proliferation, focal adhesion kinase (FAK) has attracted much interest on its role in physical and pathological relevance. The biological role of FAK is emerging to be elucidated due to the availability of genetic engineered mice, in particular the FAK floxed mice, by combining with and varied Cre mice, it allows us to examine the functionality of FAK in physiopathologic conditions which are precluded due to the embryonic lethality of the conventional FAK knockout. Taking advantage of the Cre/loxP driven FAK conditional knockout approach, we generated the K12-rtTA/tetO-Cre/ FAK f/Δ triple transgenic mice to specifically delete FAK in corneal epithelial cells (CE-FAK), which consequently resulted in an impairment of corneal epithelial wound healing compared with the control mice. The impaired wound healing in corneal epithelial cells predominantly occurred in the earlier stage of the healing process in contrast to the prominent delay of wound healing in the late stage in AKT1-/- mice. Furthermore, the defect in the corneal epithelial wound healing of CE-FAK mice was reversed by infection/overexpression with adenovirus-bearing wild type FAK but not Y397F or FRNK mutant. In agreement with the above in vivo result, we also demonstrated several analogous in vitro results using human corneal epithelial cells (HCECs), highlighting that increased FAK expression and activation are concurrently associated with the promotion of cell adhesion and migration toward collagen IV and EGF. These results indicate a pivotal role for FAK and its mediated signaling in response to corneal epithelial wound stimuli to promote its healing. In addition, via applying several pharmacological inhibitors, such as PP2 (an Src inhibitor), SP600125, and SB203580, we also found that Src and p38 are potential downstream effectors of FAK-mediated wound healing in corneal epithelial cells in mice. Taken together, this study provides comprehensive data for an important role of FAK in corneal epithelial wound healing and underscores the need for FAK in physiopathological maintenance. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:15:40Z (GMT). No. of bitstreams: 1 ntu-99-R97633021-1.pdf: 10989067 bytes, checksum: 7102a59041ee2d31d7b29b11c6772248 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | ABSTRACT i
中文摘要 iii INDEX v INTRODUCTION..............................................1 The important of Corneal Epithelial Wound Healing.........1 Focal adhesion kinase (FAK) and its downstream signaling..2 Aim.......................................................7 MATERIALS AND METHOD......................................9 Reagent...................................................9 Cell culture.............................................10 Transfection.............................................10 Infection ................................................11 Western blotting.........................................11 Immunofluorescence (Cell proliferation aassay ; BrdU assay)...................................................12 Immunohistochemistry.....................................13 Cell culture – Replating assay..........................15 In vitro wound healing assay (scratch –wound assay).....15 In vivo wound healing assay ..............................16 Boyden chamber assay (cell migration assay)..............17 RESULT...................................................18 FAK and its activation involve in human corneal epithelial cell in response to extracellular matrix and cell migration................................................18 The effects of FAK and its mutants on cell migration.....19 Effects of Src and p38 MAPK on corneal epithelial wound healing in HCECs.........................................21 FAK associates with the corneal wound healing in vivo....22 Generation of corneal epithelial cell specific FAK knockout mice............................................22 Delay in early stage of corneal epithelial wound healing in corneal epithelial cell specific FAK knockout mice....24 Effects of FAK or its mutants on corneal epithelial wound healing..................................................25 Delay in late stage of corneal epithelial wound healing in AKT knockout mice........................................25 Effects of Src and p38 MAPK on corneal epithelial wound healing in WT mice.......................................26 Rescues of FAK on corneal epithelial wound healing in FAK knockout mice............................................26 Discussion...............................................28 Figure...................................................32 Appendix.................................................55 Reference................................................56 | |
dc.language.iso | en | |
dc.title | FAK在眼角膜上皮細胞傷口癒合之角色 | zh_TW |
dc.title | The role of focal adhesion kinase in corneal
epithelial wound healing | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王一中,楊良棟 | |
dc.subject.keyword | 眼角膜上皮細胞,傷口癒合, | zh_TW |
dc.subject.keyword | corneal epithelial cell,wound healing,focal adhesion kinase,integrin,MAPK pathway, | en |
dc.relation.page | 59 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-11 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 10.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。