請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47737
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鍾孝文 | |
dc.contributor.author | Hsuan-Chung Niu | en |
dc.contributor.author | 牛暄中 | zh_TW |
dc.date.accessioned | 2021-06-15T06:15:37Z | - |
dc.date.available | 2010-08-18 | |
dc.date.copyright | 2010-08-18 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-11 | |
dc.identifier.citation | 1. Provencher, S.W., Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med, 1993. 30(6): p. 672-9.
2. Chen, C.-N. and D.I. Hoult, Biomedical Magnetic Resonance Technology. 1989: Adam Hilger, Bristol and New York. 3. Liu, G. and S. Ogawa, EPI image reconstruction with correction of distortion and signal losses. J Magn Reson Imaging, 2006. 24(3): p. 683-9. 4. Hennig, J., et al., Parallel imaging in non-bijective, curvilinear magnetic field gradients: a concept study. MAGMA, 2008. 21(1-2): p. 5-14. 5. Schultz, G., et al., Reconstruction of MRI Data Encoded With Arbitrarily Shaped, Curvilinear, Nonbijective Magnetic Fields. Magnetic Resonance in Medicine, 2010. 6. Holliday, D., R. Resnick, and J. Walker, Fundamentals of physics. 2005: Hoboken, NJ : Wiley. 7. Feynman, R.P., The Feynman lectures on physics. 2006: San Francisco : Pearson/Addison-Wesley. 8. Stewart, C. and Bushong, Magnetic resonance imaging : physical and biological principles. 1995: Mosby-Year Book, Inc. 9. Ludeke, K.M., P. Roschmann, and R. Tischler, Susceptibility artefacts in NMR imaging. Magn Reson Imaging, 1985. 3(4): p. 329-43. 10. Rick, J., et al., Optimized EPI for fMRI using a slice-dependent template-based gradient compensation method to recover local susceptibility-induced signal loss. MAGMA, 2010. 23(3): p. 165-76. 11. Partain, C.L., Magnetic resonance imaging. 1988: Philadelphia, Pa. : Saunders. 12. Rao, N.N., Elements of Engineering Electromagnetics. 2004: Pearson Prentice Hall. 13. Reber, P.J., et al., Correction of off resonance-related distortion in echo-planar imaging using EPI-based field maps. Magn Reson Med, 1998. 39(2): p. 328-30. 14. Martirosian, P., et al., Control of susceptibility-related image contrast by spin-lock techniques. Magn Reson Imaging, 2008. 26(10): p. 1381-7. 15. Yeo, D.T., et al., Zero and first-order phase shift correction for field map estimation with dual-echo GRE using bipolar gradients. Magn Reson Imaging, 2007. 25(9): p. 1263-71. 16. Underhill, H.R., C. Yuan, and C.E. Hayes, A combined solenoid-surface RF coil for high-resolution whole-brain rat imaging on a 3.0 tesla clinical MR scanner. Magn Reson Med, 2010. 17. Lin, F.H., et al., K-space reconstruction of magnetic resonance inverse imaging (K-InI) of human visuomotor systems. Neuroimage, 2010. 49(4): p. 3086-98. 18. Bottomley, P.A., Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci, 1987. 508: p. 333-48. 19. Chang, H.-C., Geometrical distortion correction in echo planar imaging using a modify reversed gradient method : techniques & applications. 2006. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47737 | - |
dc.description.abstract | 磁振造影系統主磁場均勻度直接影響影像品質及核磁共振頻譜精確度。由於硬體上面的限制,現今磁場均勻度校正技術無法有效解決磁化率假影。以人腦為例,使用面回訊影像技術產生之腦部額葉與顳葉影像,因其組織與空氣磁化率不一,界面產生巨大磁場變動,導致影像品質因假影產生而無法有效提升。然而,最近幾年區域梯度平行影像技術的發展,磁振造影系統在硬體上有了重大的變革。本論文中將使用在平行影像技術上的區域梯度磁場應用於磁場均勻度校正技術,提出“切面磁場校正技術”,並進行關於應用此技術可行性之探討。在這個研究中,模擬了8張不同高度之人腦腦部切面在不同磁場均勻度校正技術下的核磁共振影像,利用影像所產生相位圖之客觀數據比較其影像品質高低。此外,論文中將利用影像相位圖更進一步產生腦部核磁共振頻譜,以頻譜半高全寬數值當作其精確度標準依據,進而比較不同磁場均勻度校正技術對於磁化率假影改善之程度。研究結果顯示,應用區域梯度磁場,切面磁場校正技術可以提升現有技術無法達到之主磁場均勻度,進而有效改善磁化率假影。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:15:37Z (GMT). No. of bitstreams: 1 ntu-99-R97945049-1.pdf: 1369143 bytes, checksum: c67c0b941b523fbafe759385416b7d1a (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | Chapter 1 Introduction……………………………………………………… 1
Chapter 2 Theories and Methods…………………………………………… 4 2.1 Inhomogeneity…………………………………………… 4 2.2 Susceptibility Artifacts…………………………… 5 2.3 Shimming………………………………………………… 10 2.4 Shim Coils……………………………………………… 11 2.5 Field Map Acquisition……………………………… 19 2.6 PatLoc System………………………………………… 20 2.7 Data Acquisition and Analysis…………………… 24 2.8 Shimming Method……………………………………… 26 2.9 Magnetic Resonance Spectroscopy………………… 29 2.10 Simulation of Data Processing…………………… 31 Chapter 3 Results…………………………………………………………… 33 3.1 Magnetic Field Map………………………………… 33 3.2 MR Spectroscopy……………………………………… 41 Chapter 4 Discussions and Conclusions………………………………… 48 4.1 Discussion of Slice Shimming Method…………… 48 4.2 MR Spectroscopy by Slice Shimming……………… 51 4.3 Conclusion……………………………………………… 51 Reference………………………………………………………… 53 | |
dc.language.iso | en | |
dc.title | 利用區域梯度平行影像技術校正切面磁場改善磁化率假影 | zh_TW |
dc.title | Slice Shimming Method for Reduction of Susceptibility Artifacts with PatLoc System | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林發暄,吳文超,黃騰毅,蔡尚岳 | |
dc.subject.keyword | 磁振造影,核磁共振頻譜,磁化率假影,平行影像,區域梯度磁場, | zh_TW |
dc.subject.keyword | MRI,MRS,Susceptibility Artifact,PatLoc, | en |
dc.relation.page | 54 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-11 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 1.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。