Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47711
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈湯龍
dc.contributor.authorWen-Ling Yaoen
dc.contributor.author姚玟伶zh_TW
dc.date.accessioned2021-06-15T06:14:04Z-
dc.date.available2015-08-13
dc.date.copyright2010-08-13
dc.date.issued2010
dc.date.submitted2010-08-12
dc.identifier.citationAlgar, E.M., Khromykh, T., Smith, S.I., Blackburn, D.M., Bryson, G.J., and Smith, P.J.
(1996). A WT1 antisense oligonucleotide inhibits proliferation and induces
apoptosis in myeloid leukaemia cell lines. Oncogene 12, 1005-1014.
Arnaout, M.A., Mahalingam, B., and Xiong, J.P. (2005). Integrin structure, allostery,
and bidirectional signaling. Annu Rev Cell Dev Biol 21, 381-410.
Balatsos, N.A., Lallas, G., Havredaki, M., and Tsiapalis, C.M. (2001). Drug action on
poly(A) polymerase activity and isoforms during U937 cell apoptosis. J Exp
Clin Cancer Res 20, 63-69.
Batlle, E., Sancho, E., Franci, C., Dominguez, D., Monfar, M., Baulida, J., and de
Herreros, A.G. (2000). The transcription factor Snail is a repressor of E-cadherin
gene expression in epithelial tumour cells. Nature Cell Biology 2, 84-89.
Birchmeier, W., and Behrens, J. (1994). Cadherin expression in carcinomas: role in the
formation of cell junctions and the prevention of invasiveness. Biochim Biophys
Acta 1198, 11-26.
Boulares, A.H., Yakovlev, A.G., Ivanova, V., Stoica, B.A., Wang, G., Iyer, S., and
Smulson, M. (1999). Role of poly(ADP-ribose) polymerase (PARP) cleavage in
apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in
transfected cells. J Biol Chem 274, 22932-22940.
Bray, D., Levin, M.D., and Morton-Firth, C.J. (1998). Receptor clustering as a cellular
mechanism to control sensitivity. Nature 393, 85-88.
Cavallaro, U., and Christofori, G. (2004). Cell adhesion and signalling by cadherins and
Ig-CAMs in cancer. Nat Rev Cancer 4, 118-132.
Chen, H.C., Appeddu, P.A., Parsons, J.T., Hildebrand, J.D., Schaller, M.D., and Guan,
J.L. (1995). Interaction of focal adhesion kinase with cytoskeletal protein talin. J
Biol Chem 270, 16995-16999.
Comijn, J., Berx, G., Vermassen, P., Verschueren, K., van Grunsven, L., Bruyneel, E.,
Mareel, M., Huylebroeck, D., and van Roy, F. (2001). The two-handed E box
binding zinc finger protein SIP1 downregulates E-cadherin and induces
invasion. Molecular Cell 7, 1267-1278.
Dallosso, A.R., Hancock, A.L., Brown, K.W., Williams, A.C., Jackson, S., and Malik,
K. (2004). Genomic imprinting at the WT1 gene involves a novel coding
transcript (AWT1) that shows deregulation in Wilms' tumours. Hum Mol Genet
13, 405-415.
Desgrosellier, J.S., and Cheresh, D.A. (2010). Integrins in cancer: biological
implications and therapeutic opportunities. Nat Rev Cancer 10, 9-22.
Dong, C.H., and Yao, Y.J. (2008). In vitro evaluation of antioxidant activities of aqueous
extracts from natural and cultured mycelia of Cordyceps sinensis. Lwt-Food Sci
Technol 41, 669-677.
Fang, D., Hawke, D., Zheng, Y., Xia, Y., Meisenhelder, J., Nika, H., Mills, G.B.,
Kobayashi, R., Hunter, T., and Lu, Z. (2007). Phosphorylation of beta-catenin by
AKT promotes beta-catenin transcriptional activity. J Biol Chem 282,
11221-11229.
Fishman, P., Madi, L., Bar-Yehuda, S., Barer, F., Del Valle, L., and Khalili, K. (2002).
Evidence for involvement of Wnt signaling pathway in IB-MECA mediated
suppression of melanoma cells. Oncogene 21, 4060-4064.
Giancotti, F.G., and Ruoslahti, E. (1999). Transduction - Integrin signaling. Science
285, 1028-1032.
Gottardi, C.J., Wong, E., and Gumbiner, B.M. (2001). E-cadherin suppresses cellular
transformation by inhibiting beta-catenin signaling in an adhesion-independent
manner. J Cell Biol 153, 1049-1060.
Haber, D.A., Park, S., Maheswaran, S., Englert, C., Re, G.G., Hazen-Martin, D.J., Sens,
D.A., and Garvin, A.J. (1993). WT1-mediated growth suppression of Wilms
tumor cells expressing a WT1 splicing variant. Science 262, 2057-2059.
Hasko, G., Linden, J., Cronstein, B., and Pacher, P. (2008). Adenosine receptors:
therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug
Discov 7, 759-770.
Hazan, R.B., Phillips, G.R., Qiao, R.F., Norton, L., and Aaronson, S.A. (2000).
Exogenous expression of N-cadherin in breast cancer cells induces cell
migration, invasion, and metastasis (vol 148, pg 779, 2000). Journal of Cell
Biology 149, 239-239.
Hosen, N., Yanagihara, M., Nakazawa, T., Kanato, K., Nishida, S., Shirakata, T., Asada,
M., Masuda, T., Taniguchi, Y., Kawakami, M., et al. (2004). Identification of a
gene element essential for leukemia-specific expression of transgenes. Leukemia
18, 415-419.
Humphries, J.D., Byron, A., and Humphries, M.J. (2006). Integrin ligands at a glance. J
Cell Sci 119, 3901-3903.
Kodama, E.N., McCaffrey, R.P., Yusa, K., and Mitsuya, H. (2000). Antileukemic
activity and mechanism of action of cordycepin against terminal deoxynucleotidyl transferase-positive (TdT(+)) leukemic cells. Biochem
Pharmacol 59, 273-281.
Kren, A., Baeriswyl, V., Lehembre, F., Wunderlin, C., Strittmatter, K., Antoniadis, H.,
Fassler, R., Cavallaro, U., and Christofori, G. (2007). Increased tumor cell
dissemination and cellular senescence in the absence of beta1-integrin function.
EMBO J 26, 2832-2842.
Kuo, Y.C., Lin, C.Y., Tsai, W.J., Wu, C.L., Chen, C.F., and Shiao, M.S. (1994). Growth-
Inhibitors against Tumor-Cells in Cordyceps Sinensis Other Than Cordycepin
and Polysaccharides. Cancer Invest 12, 611-615.
Lee, M.H., Koria, P., Qu, J., and Andreadis, S.T. (2009). JNK phosphorylates betacatenin
and regulates adherens junctions. FASEB J 23, 3874-3883.
Li, S.P., Li, P., Dong, T.T.X., and Tsim, K.W.K. (2001). Determination of nucleosides in
natural Cordyceps sinensis and cultured Cordyceps mycelia by capillary
electrophoresis. Electrophoresis 22, 144-150.
Linden, J. (1991). Structure and function of A1 adenosine receptors. FASEB J 5,
2668-2676.
Liu, C., Li, Y., Semenov, M., Han, C., Baeg, G.H., Tan, Y., Zhang, Z., Lin, X., and He,
X. (2002). Control of beta-catenin phosphorylation/degradation by a dual-kinase
mechanism. Cell 108, 837-847.
Madi, L., Bar-Yehuda, S., Barer, F., Ardon, E., Ochaion, A., and Fishman, P. (2003). A3
adenosine receptor activation in melanoma cells: association between receptor
fate and tumor growth inhibition. J Biol Chem 278, 42121-42130.
Martin, K.H., Slack, J.K., Boerner, S.A., Martin, C.C., and Parsons, J.T. (2002). Integrin
connections map: to infinity and beyond. Science 296, 1652-1653.
Mayo, M.W., Wang, C.Y., Drouin, S.S., Madrid, L.V., Marshall, A.F., Reed, J.C.,
Weissman, B.E., and Baldwin, A.S. (1999). WT1 modulates apoptosis by
transcriptionally upregulating the bcl-2 proto-oncogene. EMBO J 18,
3990-4003.
Menke, A.L., van der Eb, A.J., and Jochemsen, A.G. (1998). The Wilms' tumor 1 gene:
oncogene or tumor suppressor gene? Int Rev Cytol 181, 151-212.
Miyamoto, S., Teramoto, H., Coso, O.A., Gutkind, J.S., Burbelo, P.D., Akiyama, S.K.,
and Yamada, K.M. (1995). Integrin function: molecular hierarchies of
cytoskeletal and signaling molecules. J Cell Biol 131, 791-805.
Nakamura, K., Konoha, K., Yoshikawa, N., Yamaguchi, Y., Kagota, S., Shinozuka, K.,
and Kunitomo, M. (2005). Effect of cordycepin (3 '-deoxyadenosine) on
hematogenic lung metastatic model mice. In Vivo 19, 137-141.
Nakamura, K., Yoshikawa, N., Yamaguchi, Y., Kagota, S., Shinozuka, K., and
Kunitomo, M. (2006). Antitumor effect of cordycepin (3 '-deoxyadenosine) on
mouse melanoma and lung carcinoma cells involves adenosine A(3) receptor
stimulation. Anticancer Res 26, 43-47.
Paterson, R.R.M. (2008). Cordyceps - A traditional Chinese medicine and another
fungal therapeutic biofactory? Phytochemistry 69, 1469-1495.
Reya, T., and Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature 434,
843-850.
Ridley, A.J., Schwartz, M.A., Burridge, K., Firtel, R.A., Ginsberg, M.H., Borisy, G.,
Parsons, J.T., and Horwitz, A.R. (2003). Cell migration: integrating signals from
front to back. Science 302, 1704-1709.
Stiles, G.L. (1990). Adenosine receptors and beyond: molecular mechanisms of
physiological regulation. Clin Res 38, 10-18.
Tepass, U., Truong, K., Godt, D., Ikura, M., and Peifer, M. (2000). Cadherins in
embryonic and neural morphogenesis. Nat Rev Mol Cell Bio 1, 91-100.
Thomadaki, H., Tsiapalis, C.M., and Scorilas, A. (2008). The effect of the
polyadenylation inhibitor cordycepin on human Molt-4 and Daudi leukaemia
and lymphoma cell lines. Cancer Chemoth Pharm 61, 703-711.
Torimura, T., Ueno, T., Kin, M., Ogata, R., Inuzuka, S., Sugawara, H., Kurotatsu, R.,
Shimada, M., Yano, H., Kojiro, M., et al. (1999). Integrin alpha6beta1 plays a
significant role in the attachment of hepatoma cells to laminin. J Hepatol 31,
734-740.
Wu, W.C., Hsiao, J.R., Lian, Y.Y., Lin, C.Y., and Huang, B.M. (2007). The apoptotic
effect of cordycepin on human OEC-M1 oral cancer cell line. Cancer Chemoth
Pharm 60, 103-111.
Yang, L., Han, Y., Saiz, F.S., and Minden, M.D. (2007a). A tumor suppressor and
oncogene: the WT1 story. Leukemia 21, 868-876.
Yang, L., Han, Y., Saiz, F.S., and Minden, M.D. (2007b). A tumor suppressor and
oncogene: the WT1 story (vol 21, pg 868, 2007). Leukemia 21, 1603-1603.
Yoshikawa, N., Nakamura, K., Yamaguchi, Y., Kagota, S., Shinozuka, K., and
Kunitomo, M. (2007). Cordycepin and Cordyceps sinensis reduce the growth of
human promyelocytic leukaemia cells through the Wnt signalling pathway. Clin
Exp Pharmacol P 34, S61-S63.
Yoshikawa, N., Yamada, S., Takeuchi, C., Kagota, S., Shinozuka, K., Kunitomo, M.,
and Nakamura, K. (2008). Cordycepin (3 '-deoxyadenosine) inhibits the growth of B16-BL6 mouse melanoma cells through the stimulation of adenosine A(3)
receptor followed by glycogen synthase kinase-3 beta activation and cyclin D-1
suppression. N-S Arch Pharmacol 377, 591-595.
Zhao, Z., Makaritsis, K., Francis, C.E., Gavras, H., and Ravid, K. (2000). A role for the
A3 adenosine receptor in determining tissue levels of cAMP and blood pressure:
studies in knock-out mice. Biochim Biophys Acta 1500, 280-290.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47711-
dc.description.abstractCordycepin (3’-deoxyadenosine) 為冬蟲夏草 (Cordyceps sinesis) 之萃取物。冬蟲夏草自古以來即為中國珍貴藥材之一,於古醫書中記載,其具有補益肺腎器官,協
定腎臟之功能,現今被認為可調節人體免疫系統,具有強身健體之效用,而其萃取物,Cordycepin 亦被認為具有抗腫瘤,抗菌之功用。然而,於先前研究之中,對於 Cordycepin 於抗癌作用上,相關的細胞及分子作用機制探討的並不多,故於此研究中,主要探討 Cordycepin 於癌細胞上所造成的抑制細胞遷移/侵入、增生、存活等現象之相關作用機制。我們發現 Cordycepin 會降低肝腫瘤細胞 (HCC)SK-Hep-1 與血癌細胞 (leukemia) U937 細胞之增生現象,並透過減少 integrin ɑ6β1及增加 E-cadherin 的表現量,進而抑制了 SK-Hep-1 細胞之遷移/侵入現象。根據研究結果顯示,Cordycepin 以調控 β-catenin 表現量之方式,影響了 U937 細胞之增生現象,而造成抗癌作用之產生;我們發現,Cordycepin 藉由降低 Akt 之磷酸化現象,進一步調節了其下游分子 Glycogen synthase kinase 3 (GSK-3) 的活性,促使了 β-atenin 進行降解作用,降低 β-catenin 進入核中的量,使得其下游分子cyclin D1 的表現量減少,最終抑制了 U937 細胞增生之現象。 Cordycepin 除了藉由調控 β-catenin 表現量之方式來控制細胞增生外,我們發現了另一轉錄因子,Wilms’tumor 1 (WT1),可能也參與了調控細胞增生作用;Cordycepin 可抑制 WT1 的位移作用,減少 WT1 進到核中的量,進而影響促使其下游分子 c-Myc及 Bcl-2 之表現,而抑制 U937 細胞之增生。藉由此研究,可得知 Cordycepin 抑制肝腫瘤及血癌細胞生長是經由不一樣的作用機制,而 Cordycepin 也可作為一具有潛力之抗癌藥物分子。
zh_TW
dc.description.abstractCordycepin (3’-deoxyadenosine), a well known bioactive compound extracted from a traditional Chinese medicine with complex of fungus (Cordyceps spp.) and infected caterpillar-grown, has been reported to contribute to the anti-tumor, insecticidal and anti-bacterial activity. However, the cellular and molecular effect of cordycepin to cause anti-cancer action has never been elucidated. In this study, we test the anti-migratory/invasive, anti-proliferative and anti-survival effects and evaluate the molecular targets
of cordycepin in human hepatocellular carcinoma (HCC) and human leukemia cells. We found that cordycepin significantly suppressed cell proliferation of SK-Hep-1 (a HCC cell line) and U937 (a human leukemic monocyte lymphoma) cells. Cordycepin inhibits cell migration/invasion which is correlated with decreased expression of adhesive molecules, integrin β1 and α6 with a concentration dependent manner in SK-Hep-1 cells. Furthermore, a hallmark suppressor of cancer cell epithelial-mesenchymal transition (EMT) and migration/invasion, E-cadherin, was increased by treatment of cordycepin in SK-Hep1 cells. In U937 leukemia cells, the expression of β-catenin and its downstream cell cycle regulator, cyclin D1 were decreased upon cordycepin treatment. Cordycepin reduces nuclear translocation of β-catenin and its stability through a proteasome-dependent protein degradation mechanism. Degradation of β-catenin can be restored by inhibitor of glycogen synthase kinase 3 (GSK-3) suggests the GSK-3/β-catenin plays an important role on cordycepin suppressed leukemia cell
proliferation. Furthermore, cordycepin represses the level of phosphorylated Akt which is well known to be the upstream signal regulator to control GSK-3 activity. Thus, cordycepin inhibits leukemia cell growth possibly via the PI3-K/Akt/GSK-3/β-catenin signal pathway. Moreover, it has been well characterized that a transcriptional factor, Wilms Tumor 1 (WT1) plays as an essential factor to regulate leukemia cell proliferation. We have observed that cordycepin inhibits the WT1 translocation and activation. Taken together, these results suggest that cordycepin suppresses HCC and leukemia cancer progression by distinct mechanisms. Cordycepin reduces HCC migration/invasion by affecting expression of cell adhesion molecules but inhibits leukemia cell proliferation by tightly controlling signal pathway and transcriptional regulators. In conclusion, our study reveals that cordycepin may serve as a potential small molecular agent for therapeutic strategy to suppress tumor growth and metastasis.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:14:04Z (GMT). No. of bitstreams: 1
ntu-99-R97633015-1.pdf: 23079714 bytes, checksum: e43df8e018c64029bf3d562d70b0c2c3 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsCONTENTS......................................................................................................Ⅰ
LIST of FIGURES.......................................................................................... Ⅲ
中文摘要...................................................................................................... Ⅳ
ABSTRACT................................................................................................... Ⅴ
INTRODUCTION............................................................................................ 1
MATERIALS and METHODS......................................................................... 11 Reagents.................................................................................................... 11
Cell culture..................................................................................................11
Western blotting analysis.............................................................................12
Cell migration assay....................................................................................12
Cell invasion assay......................................................................................13
Cell viability assay.......................................................................................13
Preparation of nuclear extraction................................................................ 13
RESULTS......................................................................................................15
Effect of cordycepin on morphological changes and cell viability in SK-Hep-1 cells.............................................................................................................15
Effect of cordycepin on cell migration and invasion in SK-Hep-1 cells........ 16
The expression profile of cell adhesion/migration molecules.......................16
Effects of cordycepin in U937 cells.............................................................. 17
The apoptotic effects of cordycepin in U937 cells.........................................18
The expression profile of cell adhesion/migration molecules in U937 cells...19
Cordycepin engaged in the degradation of β-catenin un U937 cells............ 20
Cordycepin involved in the degradation of β-catenin through GSK-3 and Akt pathway...................................................................................................... 21
Cordycepin engaged in WT1 translocation in U937 cells.............................. 22
Expression of downstream factors of WT1 in U937 cells.............................. 23
DISCUSSION................................................................................................. 24
FIGURES........................................................................................................29
REFERENCES................................................................................................. 50
dc.language.isoen
dc.subject細胞遷移/附著zh_TW
dc.subject血癌細胞zh_TW
dc.subject肝腫瘤細胞zh_TW
dc.subject細胞增生zh_TW
dc.subjectglycogen synthesis kinase 3en
dc.subjectcordycepinen
dc.subjecthepatocellular carcinomaen
dc.subjectleukemiaen
dc.subjectcell migration/adhesionen
dc.subjectcell proliferationen
dc.subjectintegrinsen
dc.subjectbeta-cateninen
dc.titleCordycepin 於癌細胞之細胞與分子機制之探討zh_TW
dc.titleThe Cellular and Molecular Effects of Cordycepin on Canceren
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉俊揚,徐松錕,郭呈欽
dc.subject.keyword肝腫瘤細胞,血癌細胞,細胞遷移/附著,細胞增生,zh_TW
dc.subject.keywordcordycepin,hepatocellular carcinoma,leukemia,cell migration/adhesion,cell proliferation,integrins,beta-catenin,glycogen synthesis kinase 3,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2010-08-12
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
22.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved