請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47708完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳世銘 | |
| dc.contributor.author | Chi-Wei Wang | en |
| dc.contributor.author | 王啟維 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:13:54Z | - |
| dc.date.available | 2016-08-22 | |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-19 | |
| dc.identifier.citation | 參考文獻
一丞通訊。1999。水果與堅果冷藏過程中之褐變研究。VOL.43。 謝騄璘。2006。飽和脈衝葉綠素螢光影像系統之建立及於植物光熱逆境生理之應用。碩士論文。台北:台灣大學生物產業機電工程學研究所。 謝騄璘、陳世銘、葉德銘、陳加增、楊宜璋、陳俊吉、廖信凱、蕭世傑。2006a。飽和脈衝葉綠素螢光影像系統之研發。出自”2006 年生物機電工程研討會論文集”,758-765。台北;台灣生物機電學會。 謝騄璘、陳世銘、葉德銘、陳加增、楊宜璋、羅聖傑、廖信凱、陳俊吉、蕭世傑。2006b。螢光指標強度影像檢測方式應用於植物光熱逆境檢測。出自”2006 年生物機電工程研討會論文集”,811-818。台北;台灣生物機電學會。 蕭世傑。2011。以多通道螢光光譜影像系統與螢光指標探討甘藍苗水份逆境之研究。博士論文。台北:台灣大學生物產業機電工程學研究所。 蕭世傑、陳世銘、楊宜璋、陳加增、莊永坤、陳毓良。2010。同步多通道螢光光譜影像系統建立及其檢測環境之研究。農業機械學刊19(4): 93-108。 羅聖傑。2007。以螢光指標偵測甘藍種苗含氮量之探討。學士論文。台北:台灣大學生物產業機電工程學系。 Ariana, D., D. E. Guyer, and B. Shrestha. 2006. Integrating multispectral reflectance and Fluorescence imaging for defect detection on apples. Computers and Electronics in Agriculture 50(2): 148-161. Baker, N., and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany 55(403): 1607-1621. Banks, N., and M. Joseph. 1991. Factors affecting resistance of banana fruit to compression and impact bruising. Journal of the Science of Food and Agriculture 56(3): 315-323. Barbagallo, R., K. Oxborough, K. Pallett, and N. Baker. 2003. Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiology. 132(2): 485. Bolhar-Nordenkampf, H., and G. Oquist. 1993. Chlorophyll fluorescence as a tool in photosynthesis research. Photosynthesis and production in a changing environment: A field and laboratory manual. 193-206. Beamlage, W., M. Drake, and W. Lord. 1973. The influence of mineral nutrition on the quality and storage performance of pome fruits grown in North America. International Society for Horticultural Science. Buschmann, C., G. Langsdorf, and H. Lichtenthaler. 2000. Imaging of the blue, green, and red fluorescence emission of plants: an overview. Photosynthetica 38(4): 483-491. Chaerle, L., D. Hagenbeek, E. De Bruyne, R. Valcke, and D. V. D. Straeten. 2004. Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage. Plant and Cell Physiology 45(7): 887-896. Chappelle, E., J. McMurtrey III, J. Wood, and W. Newcomb. 1984. Laser-induced fluorescence of green plants. 2: LIF caused by nutrient deficiencies in corn. Applied Optics 23(1): 139-142. Chappelle, E., F. Wood Jr, W. Newcomb, and J. McMurtrey III. 1985. Laser-induced fluorescence of green plants. 3: LIF spectral signatures of five major plant types. Applied Optics 24(1): 74-80. de Castro, E., D. Barrett, J. Jobling, and E. Mitcham. 2008. Biochemical factors associated with a CO2-induced flesh browning disorder of Pink Lady apples. Postharvest Biology and Technology 48(2): 182-191. Frank, D., I. Gould, and M. Millikan. 2004. Browning reactions during storage of low-moisture Australian sultanas: Evidence for arginine-mediated Maillard reactions. Australian Journal of Grape and Wine Research. 10(2): 151-163. Garcia, J., M. Ruiz-Altisent, and P. Barreiro. 1995. Factors influencing mechanical properties and bruise susceptibility of apples and pears. Journal of Agricultural Engineering Research 61(1): 11-18. Govindjee, D. W. J. S., D. C. Fork, and P. A. Armond. 1981. Chlorophyll a fluorescence transient as an indicator of water potential of leaves. Plant Sci. Lett. 20: 191-194. Havaux, M., and R. Lannoye. 1983. Chlorophyll fluorescence induction: A sensitive indicator of water stress in maize plants. Irrigation Sci. 4(2): 147-151. Hsiao, S.C., S. Chen and C. T. Chen. 2002 Hyper-spectra and fluorescence analyses of the chlorophyll content in vegetable. In 'Proceedings of International Symposium on Automation and Mechatronics of Agricultural and Bioproduction Systems', 669-673. Chiayi, Taiwan : National Chiayi University. Hsiao, S.C., S. Chen, I. C. Yang, C. T. Chen, C. Y. Tsai, Y. K. Chuang, F. J. Wang, Y. L. Chen, T. S. Lin and Y. M. Lo. 2010. Evaluation of plant seedling water stress using dynamic fluorescence index with blue LED-based fluorescence imaging. Computers and Electronics in Agriculture 72 (2): 127-133. James, H., G. Brown, E. Mitcham, D. Tanner, S. Tustin, I. Wilkinson, A. Zanella, and J. Jobling. 2005. Flesh browning in Pink Lady apples: Research results have helped to change market specifications for blush colour which is an added bonus for growers. Acta Horticulturae 175-180. Kim, M., Y. Chen, B. Cho, K. Chao, C. Yang, A. Lefcourt, and D. Chan. 2007. Hyperspectral reflectance and fluorescence line-scan imaging for online defect and fecal contamination inspection of apples. Sensing and Instrumentation for Food Quality and Safety. 1(3): 151-159 Kim, M., Y. Chen, and P. M. Mehl. 2001. Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Transactions of the ASAE 44(3): 721-729. Kim, M., A. Lefcourt, Y. Chen, and Y. Tao. 2005. Automated detection of fecal contamination of apples based on multispectral fluorescence image fusion. Journal of Food Engineering 71(1): 85-91. Kim, M., Y. R. Chen, and P. M. Mehl. 2002. Multispectral Detection of Fecal Contamination on Apples Based on Hyperspectral Imagery: Part2. Application of Hyperspectral Fluorescence Imaging. Transactions of the ASAE 45(6): 2039-2047. Lang, M., P. Siffel, Z. Braunova, and H. Lichtenthaler. 1992. Investigations of the blue-green fluorescence emission of plant leaves. Botanica Acta 105(6): 435-440. Langsdorf, G., C. Buschmann, M. Sowinska, F. Babani, M. Mokry, F. Timmermann, and H. K. Lichtenthaler. 2000. Multicoloru fluorescence imaging of sugar beet leaves with different nitrogen status by flash lamp UV-excitation. Photosynthetica 38(4): 539-551. Larrigaudiere, C., I. Lentheric, E. Pinto, and M. Vendrell. 2001. Short-term effects of air and controlled atmosphere storage on antioxidant metabolism in Conference pears. Journal of Plant Physiology 158(8): 1015-1022. Lau, O. 1998. Effect of growing season, harvest maturity, waxing, low O2 and elevated CO2 on flesh browning disorders in Braeburn'apples. Postharvest Biology and Technology 14(2): 131-141. Lozano, J. E. 2006. Fruit Manufacturing. 163-182. Argentina: Springer. Naumann, J., J. Anderson, and D. Young. 2008. Linking physiological responses, chlorophyll fluorescence and hyperspectral imagery to detect salinity stress using the physiological reflectance index in the coastal shrub, Myrica cerifera. Remote Sensing of Environment 112(10): 3865-3875. Obenland, D., and P. Neipp. 2005. Chlorophyll fluorescence imaging allows early detection and localization of lemon rind injury following hot water treatment. Hort Science 40(6): 1821-1823. Otsu, N. 1979. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics SMC-9(1): 62-66. Thomas, J., and H. Nijhuis. 1968. Relative stability of chlorophyll complexes in vivo. Biochimica et Biophysica Acta (BBA)-Bioenergetics 153(4): 868-877. Tian, S., Y. Xu, A. Jiang, and Q. Gong. 2002. Physiological and quality responses of longan fruit to high O2 or high CO2 atmospheres in storage. Postharvest Biology and Technology 24(3): 335-340. Toribio, J., and J. Lozano. 1984. Nonenzymatic browning in apple juice concentrate during storage. Journal of Food Science 49(3): 889-892. Vargas, A., M. Kim, Y. Tao, A. Lefcourt, Y. Chen, Y. Luo, Y. Song, and R. Buchanan. 2005. Detection of fecal contamination on cantaloupes using hyperspectral fluorescence imagery. Journal of Food Science 70(8): e471-e476. Veltman, R., M. Sanders, S. Persijn, H. Pemppelenbos, and J. Oosterhaven. 1999. Decreased ascorbic acid levels and brown core development in pears (Pyrus communis L. cv. Conference). Physiologia Plantarum 107(1): 39-45. Volz, R., W. Biasi, J. Grant, and E. Mitcham. 1998. Prediction of controlled atmosphere-induced flesh browning in Fuji apple. Postharvest Biology and Technology 13(2): 97-107. Xing, J., R. Karoui, and J. De Baerdemaeker. 2007. Combining multispectral reflectance and fluorescence imaging for identifying bruises and stem-end/calyx regions on Golden Delicious apples. Sensing and Instrumentation for Food Quality and Safety 1(3): 105-112. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47708 | - |
| dc.description.abstract | 水果品質檢測是農業發展上一大課題,水果經過完善品質檢測後,除了能夠保障消費者的權益,也能夠提高農民的收益。褐變是水果內部產生化學變化使果皮或果肉顏色產生黑褐色改變的現象;造成水果褐變的原因有很多,如儲存於不當之氣調環境下、運輸過程中發生碰撞等,上述兩者皆是因為水果中的多酚氧化酶polyphenoloxidase(PPO)催化酚類化合物使其氧化並聚合成不溶的深咖啡色聚合物美拉寧(melanins)而造成,如果能以非破壞的檢測方法篩選內部已褐變但外觀尚未有明顯變化的水果,即能確保水果之品質。葉綠素螢光量測為一種非破壞性的檢測方法,早期大都採用單點量測,對象物以植物葉片居多,近期則發展二維影像的多光譜螢光影像系統,可應用於生物材料之內部品質檢測。水果淺層之撞擊型褐變,對表層的葉綠素與酚類化合物造成影響,進而改變兩者之螢光反應。因此本研究建立一包含UV-A為激發光源,且能同步擷取四通道影像之多光譜螢光影像系統,其中特徵波長以遙測光譜儀GER 2600搭配UV-A為激發光源之實驗分析所確定。本研究成功選擇出530 nm、680 nm與740 nm為蘋果碰撞造成褐變之相關特徵波長,並以累加連續時間拍得之螢光影像,達到類似增加曝光時間又不喪失時間軸解析度的方法。本研究將上述三個波長下擷取之螢光影像隨時間轉換成螢光強度曲線,以主成份與PLS-DA進行定性分析,主成份分析結果中,蘋果組織褐變之螢光差異性於波長530 nm最大,PC-1變異量即達99.79 %,累計至PC-3,變異量更高達99.95 %;而以PLS-DA定性分析預測蘋果組織褐變與否,於波長530 nm結果最佳,累計前四個LV的變異量可達97.59 %,足以100 %正確預測蘋果組織褐變。 | zh_TW |
| dc.description.abstract | The quality inspection of fruits is a major issue on agricultural development; it can not only protect consumer’s rights, but also improve farmers' income. There are chemical changes inside the fruit when internal browning occurs, flesh color will be changed into dark brown after browning. There are many situations may cause fruit browning, for examples, stored in improper controlled atmosphere, impact during transport, etc. Above mentioned browning are caused by polyphenoloxidase, which is contained in fruit and will induce the oxidation of phenolic compounds, then is polymerized into insoluble dark brown polymer (melanins). Browning will reduce the economic value of fruits, using non-destructive sorting of fruits can ensure the quality of fruits. Chlorophyll fluorescence measurement is a non-destructive method. Recently, there are two-dimensional multispectral fluorescence imaging system used for internal quality inspection of bio-materials. Fruit browning which is caused by impact will change the fluorescence responses. A multispectral fluorescence imaging system with UV-A light as an excitation light source was developed in this study, and was able to capture four images simultaneously. The multispectral bands (530, 680, 740 nm) used in the system can discriminate apples browning. Accumulated consequent fluorescent images to increase fluorescence intensity can overcome the problem of inadequate sensitivity of camera. This study transformed fluorescent images into fluorescent intensity curve, and principal component analysis (PCA) and PLS-DA (Partial Least Squares - Discriminant Analysis) were used for qualitative analyses. Principal component analysis showed that fluorescence at 530 nm had maximum difference of tissue browning, the variance of PC-1 amounted to 99.79 %, and to 99.95 % (accumulated PC-1 to PC-3). PLS-DA also showed best results when fluorescence was measured at 530 nm, and was able to predict browning of apple tissues. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:13:54Z (GMT). No. of bitstreams: 1 ntu-100-R98631016-1.pdf: 2758918 bytes, checksum: 9ba73d2c81a5301a5d9ba8258c759908 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 目 錄
口試委員會審定書 i 誌謝 ii 摘要 iii Abstract iv 圖目錄 viii 表目錄 xii 第一章 前言與研究目的 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻探討 3 2.1 褐變 3 2.1.1 非酵素型褐變 3 2.1.2 酵素型褐變 4 2.1.2.1 碰撞產生之褐變 5 2.2 植物的螢光 6 2.2.1 葉綠素螢光 6 2.2.2 其它之螢光 7 2.3 螢光的量測 8 2.3.1 葉綠素螢光指標檢測技術 8 2.3.2葉綠素螢光影像檢測技術 10 2.3.2 多光譜螢光影像檢測技術 15 第三章 材料與方法 18 3.1 樣本選擇與處理 18 3.1.1 樣本來源 18 3.1.2 撞擊蘋果使用之單擺 19 3.1.3 製造樣本褐變之方法 20 3.2 多光譜螢光影像系統之建立 21 3.2.1 攜帶式遙測光譜儀 GER 2600與實驗步驟 21 3.2.2 多光譜營光影像系統 23 3.2.2.1系統光源選擇 23 3.2.2.2 系統光源控制 27 3.2.2.3影像擷取系統 29 3.2.2.4影像擷取室 32 3.2.2.5系統控制程式 32 3.2.2.6 影像分析程式 36 3.2.2.7 以主成分分析方法做定性分析 40 3.2.2.8以 PLS-DA 建立蘋果組織間分類之定性模式 42 第四章 結果與討論 44 4.1 GER 2600量測蘋果褐變差異之結果 44 4.2 以UV-A燈管(XX-15A)為激發光源得到之螢光影像結果 53 4.3 以UV-A LED燈為激發光源得到之螢光影像結果 56 4.3.1 蘋果褐變前後之螢光差異 57 4.3.1.1 主成分分析褐變前後之差異 59 4.3.2 蘋果褐變後組織間之螢光差異 63 4.3.2.1 主成分分析組織間之差異 65 4.3.2.2 以PLS-DA 預測組織間差異結果 69 4.4 實驗結果討論 73 第五章 結論與建議 75 5.1 結論 75 5.2 建議 76 參考文獻 77 | |
| dc.language.iso | zh-TW | |
| dc.subject | 水果 | zh_TW |
| dc.subject | 褐變 | zh_TW |
| dc.subject | 葉綠素螢光 | zh_TW |
| dc.subject | 多光譜螢光影像 | zh_TW |
| dc.subject | Browning | en |
| dc.subject | Fruits | en |
| dc.subject | Multispectral fluorescence imaging | en |
| dc.subject | Chlorophyll fluorescence | en |
| dc.title | 以螢光影像技術檢測蘋果之褐變 | zh_TW |
| dc.title | Inspection of Apple Browning Using Fluorescence Imaging Technology | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林聖泉,邱奕志,李允中,周呈霙 | |
| dc.subject.keyword | 褐變,葉綠素螢光,多光譜螢光影像,水果, | zh_TW |
| dc.subject.keyword | Browning,Chlorophyll fluorescence,Multispectral fluorescence imaging,Fruits, | en |
| dc.relation.page | 80 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
