Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47700
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張孟基(Men-Chi Chang)
dc.contributor.authorWei-Fu Chienen
dc.contributor.author簡維甫zh_TW
dc.date.accessioned2021-06-15T06:13:27Z-
dc.date.available2010-08-16
dc.date.copyright2010-08-16
dc.date.issued2010
dc.date.submitted2010-08-12
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47700-
dc.description.abstract碳水化合物(Carbohydrate)在植物逆境生理中扮演許多重要角色,如:養分提供、保護膜系、滲透壓調節及訊息傳導分子,碳水化合物可存在於細胞質、液胞及細胞壁。而根據結構可以單糖、雙糖、寡糖及多醣構造存在,越來越多研究指出碳水化合物與各種非生物性逆境間具有相關連性。本論文以細胞內可溶性多醣為萃取目標,首先了解台農67號地上部在低溫下多醣變化,包含多醣產率、多醣分子量及單糖組成。多醣分子量上有一低分子量720~770 Da多醣體隨低溫處理其含量隨之增加從6%升至13%,單糖組成上葡萄糖及果糖隨低溫處理其含量分別由20及36 μmol/g PS增加至32及54 μmol/g PS,而阿拉伯糖、岩藻糖、山梨醇及肌醇隨低溫處理其量則由102,9,2及0.6 μmol/g PS減少至50,5,0.94及0.43 μmol/g PS。除此之外,本試驗也進行台農67號於低溫處理下基因表現之microarray分析,其中特別針對碳水化合物代謝相關基因進行探討。最後更結合糖類變化與碳水化合物代謝相關基因之資料數據模擬水稻於低溫下碳水化合物代謝途徑之改變,結果顯示基因表現及代謝物之變化兩者相關程度可達八至九成。此外以定量real-time PCR確認該些基因之表現。為了更深入探討糖類在植物耐冷性之角色,以兩個品種台中在來1號(不耐冷)及台農67號(耐冷)為實驗材料進行低溫、回溫處理,觀察水稻地上部及地下部糖類變化。地上部及地下部糖類變化中,葡萄糖及果糖含量最可能在TCN1及TNG67扮演耐冷性之差異,而阿拉伯糖在不同水稻品種及組織上具有相反的變化趨勢,TNG67半乳糖含量則都會因低溫處理含量上升。
另外為了進一步瞭解低溫對於多醣組成之變化,本試驗比較大量表現AtICE1轉殖株及TNG67水稻間多醣之差異,本實驗室先前研究顯示大量表現AtICE1轉殖株可提升轉殖水稻耐冷性。本論文也針對AtICE1轉殖水稻進行多方生理分析,闡述AtICE1轉殖株在生理上之耐冷機制。AtICE1轉殖株其過氧化氫及丙二醛含量都比非轉殖株低。抗氧化酵素SOD、APX、CAT及GR活性分析都顯示低溫下轉殖株比非轉殖株高。抗氧化物抗壞血酸鹽含量也顯示低溫下轉殖株比非轉殖株高。以上結果皆顯示轉殖株抗氧化能力比非轉殖株高。此外全可溶性糖類、胺基氮及蛋白質含量之測定,顯示轉殖株在胺基氮及蛋白質含量與非轉殖株上有差異。最後,測定地上部糖類變化,在常溫及低溫下轉殖株其葡萄糖及果糖含量都比非轉株高。
本論文對於多醣與水稻耐冷性間關係上有了初步認識,並且將Microarray基因表現與糖類含量變化進行綜合解釋,瞭解糖類含量之變化可能受轉錄層次之基因表現所調控。而在大量表現AtICE1之基因表現轉殖株上推測AtICE1提升轉殖株抗氧化能力,特別葡萄糖及果糖含量轉殖株都比非轉殖株高。
zh_TW
dc.description.abstractCarbohydrates play important roles in plant stress physiology, such as nutrient supplementation, osmotic adjustment, maintain of membranes stability and singaling molecule. Carbohydrates can be present in cytosol, vacuole and cell wall. Depend on the composition and structures, carbohydrates can be grouped into monosaccharide, disaccharide, oligosaccharide and polysaccharide. Many studies had shown the correlation of carbohydrates change under various abiotic stress in plant. In this study, we are interesting in understanding the complexity of intracellular water-soluble polysaccharide (PS) changes in rice under cold stress. High-performance anion-exchange chromatography was used to analyze the effect of cold stress on polysaccharide pattern changes in TNG67, including total PS production, the molecular weight distribution and sugar composition. The accumulation of PS fraction (0.72~0.74 kDa) was increased from 6% to 13% in TNG67 rice shoot under cold treatment. The compositional analysis of PS showed that glucose and fructose level increased from 20 and 36 μmol/g PS to 32 and 54 μmol/g PS during cold treatment, however; arabinose, fucose, sorbitol and myo-inositol level decreased from 102, 9, 2 and 0.6 μmol/g PS to 50, 5, 0.94 and 0.43 μmol/g PS. In addition, we analyzed gene expression of TNG67 under cold treatment with microarray, especially for those carbohydrate metabolism related gene. Finally, we tried to integrate sugar expression profiling data and microarray gene analysis to reveal the correlation of gene and sugar change under cold treatment in rice. The correlation between carbohydrate metabolite and biosynthesis related genes change was high as 80~90%. We also confirmed the gene expression by real-time PCR. To further revel in the role of polysaccharide in rice cold tolerance, we used different rice cultivars TCN1 (cold sensitive) and TNG67 (cold tolerant) as experimental materials and monitored the carbohydrate profiling change in shoot and root of TCN1 and TNG67 under cold and rewarm condition. The content of various sugars in shoot of TNG67 was higher than TCN1 under rewarm condition, and the those sugar contents was also higher TNG67 root under cold. This result suggested that the glucose and fructose may play important role in rice cold stress tolerance.The dynamic change of arabinose is opposite in different cultivars and tissue.The content of galactose was increased in TNG67 under cold treatment.
Meanwhile, to investigate the role of PS change under cold stress, we compared the PS expression profiling between AtICE overexpressed transgenic rice and TNG67. The overexpression of AtICE1 with 35S promoter in rice had been shown to enhance cold stress tolerance (Hsin-Hsiu Fang, 2008).Here, we further confirmed the cold stress tolerance of AtICE1 overexpressed transgenic rice by various physiological assays. The content of MDA and H2O2 in transgenic rice was lower than WT. The superoxide dismutase (SOD), ascobate peroxidase (APX) and catalase (CAT) activity of transgenic rice was higher than those of WT. The level of ascobate/dehydroascobate (ASC/DHA) was higher in transgenic rice. Taken together, the above results indicated antioxidant activity was higher in transgenic rice. The amino nitrogen and protein content of transgenic rice was higher than WT under normal and cold condition. By analysis of PS expression profiling HPAEC showed that the glucose and fructose content of transgenic rice was higher than WT either at normal or cold condition.
In this study, we established the correlation between intracellular PS and rice under cold treatment. We also integrated sugar contents and microarray gene expression to demonstrate that levels of carbohydrate may regulate at transcription level. We also characterized the physiologic response, especially antioxidant activity in AtICE1 overexpressed transgenic rice and showed that carbohydrates, particularly glucose and fructose increased in AtICE1-OX compared to wild type.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:13:27Z (GMT). No. of bitstreams: 1
ntu-99-R97621103-1.pdf: 4383141 bytes, checksum: 78da3a46aa3a11824e9c884c75a213b3 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
英文摘要 v
圖表目錄 xi
縮寫字對照 xiii
壹、前言 1
貳、前人研究 3
一、作物對低溫耐受性的生理機制 3
二、低溫相關基因表現 4
三、ICE1/CBF regulon於作物低溫耐受性之角色 7
四、糖類與植物非生物逆境耐受性間之關係 10
五、糖類在植物代謝體學上之相關研究 13
六、以轉殖策略改變植物糖類組成之代謝工程 14
七、研究目的及實驗架構 15
參、材料方法 17
一、 TNG67、TCN1 水稻種子及轉殖水稻種子 17
二、水稻生長條件及低溫處理 17
1. 水稻種子催芽條件 17
2. 低溫處理條件 17
2.1 三葉齡幼苗生理分析之逆境處理條件 17
2.2 三葉齡基因表現分析之逆境處理條件 18
三、水稻轉殖株之分子鑑定 18
1. 水稻葉片 DNA 萃取 18
2. DNA洋菜瓊脂膠體電泳分析 18
3. PCR-based Genotyping分析 19
四、水稻轉殖株基因表現分析 19
1. 水稻RNA萃取 19
2. RNA瓊脂凝膠電泳分析 19
3. RNase Free DNase I 處理 20
4. cDNA合成之反轉錄反應 20
5. 即時同步 PCR(Real-time PCR)之基因表現分析 20
6. 水稻幼苗低溫之Microarray基因表現分析 21
五、水稻轉殖株生理分析 21
1. 脂質過氧化作用之測定 21
2. 脯胺酸(Proline)含量之測定 22
3. 過氧化氫(H2O2)定量及定性之測定 22
4. 葉綠素螢光放射 (Fv/Fm)分析 22
5. 可溶性全糖類(Total soluble sugar)含量之測定 23
6. 胺基氮(amino nitrogen)含量之測定 23
7. 蛋白質(protein)含量之測定 24
8. 抗壞血酸鹽(ASC)及去氧抗壞血酸鹽(DHA)含量測定 24
六、酵素活性測定 25
1. Superoxide dismutase(SOD)活性分析 25
2. Ascobate peroxidase(APX)活性測定 26
3. Gluatathione reductase(GR)活性測定 26
4. Catalase(CAT)活性測定 26
七、多醣萃取及單糖組成分析 27
1. 多醣(Polysaccharide)萃取 27
2. 多醣分子量分析 27
3. 多醣酸水解及單糖(Monosaccharide)組成分析 27
肆、結果 29
一、TNG67 (台農67號)地上部於冷害下之多醣體圖譜分析 29
1. TNG67地上部於低溫下多醣產率變化 29
2. TNG67地上部於低溫下多醣分子量變化 29
3. TNG67低溫下多醣酸水解各單糖含量變化分析 29
二、結合Microarray資料與單糖表現變化解釋冷害下碳水化合物之代謝途徑 30
1. TNG67冷害下碳水化合物代謝(Carbohydrate metabolism)相關基因表現 30
2. 以Q-PCR確認碳水化合物代謝相關基因表現 31
三、TCN1 (台中在來1號)及TNG67 (台農67號)多醣表現及冷害耐受性分 32
1. TCN1及TNG67冷害外表型分析 32
2. TCN1及TNG67冷害下光合作用效率(Fv/Fm)變化 32
3. TCN1及TNG67冷害下過氧化氫(H2O2)含量變化 32
4. TCN1及TNG67耐冷特性中地上部多醣組成分析 33
5. TCN1及TNG67耐冷特性中地下部多醣組成分析 33
四、水稻轉殖株分子鑑定 34
1. 以genotyping鑑定轉殖株之基因型 34
2. 確認外來轉入基因之表現 34
五、水稻轉殖株生理分析 35
1. 低溫下轉殖株脯胺酸 (Proline)含量變化 35
2. 低溫下轉殖株脂質過氧化產物 (MDA)含量變化 35
3. 低溫下轉殖株過氧化氫 (H2O2)含量變化 35
4. 低溫下轉殖株全可溶性糖類 (Total soluble sugar)含量變化 35
5. 低溫下轉殖株胺基氮 (Aminonitrogen)含量變化 36
6. 低溫下轉殖株蛋白質 (Protein)含量變化 36
7. 低溫下轉殖株抗氧化酵素 (Antioxidant enzyme)活性變化 36
8. 低溫下轉殖株抗壞血酸 (Ascobate)含量變化 37
9. 低溫下轉殖株多醣組成分析 37
伍、討論 39
一、本研究糖類變化結果與其他研究之比較 39
二、可溶性細胞內多醣在低溫逆境下可能扮演之角色 41
三、探討結合糖類變化與基因表現間之分析 42
四、大量表現AtICE1水稻轉殖株耐冷性增加可能之生理機制 43
五、以Regulatory-factor based策略改良作物逆境耐受性 45
陸、文獻參考 47

表目錄
表1.:TNG67低溫下多醣組成分析。 61
表2. TNG67水稻幼苗冷害0、3及24小時其碳水化合物代謝相關基因經Real-time PCR偵測後不同表現情況。 62
表3.:TCN1及TNG67耐冷特性中地上部多醣組成分析。 63
表4.:TCN1及TNG67耐冷特性中地下部多醣組成分析。 64
表5.:WT與D01轉殖系低溫下多醣組成分析。 65
附表1. TNG67冷害下碳水化合物代謝(Carbohydrate metabolism)相關基因表現。 66
附表2. 碳水化合物代謝途徑中各酵素名稱。 67
圖目錄
圖1. 論文實驗結構....................................................................................................16
圖2. TNG67水稻冷害下地上部多醣產率變化。 68
圖3. 分子篩色層分析TNG67水稻冷害下多醣體分子量層析圖譜。 69
圖4. 陰離子交換樹脂層析TNG67水稻多醣體組成層析圖譜。 70
圖5. TNG67低溫下地上部多醣組成分析。 71
圖6. TCN1及TNG67冷害外表型分析。 72
圖7. TCN1及TNG67冷害下光合作用效率(Fv/Fm)及過氧化氫含量 73
圖8. TCN1及TNG67耐冷特性中地上部多醣組成分析。 74
圖9. TCN1及TNG67耐冷特性中地下部多醣組成分析。 75
圖10. 分子鑑定大量表現AtICE1轉殖水稻 76
圖11. D01轉殖系脯胺酸(proline)、脂質過氧化產物(MDA)及過氧化氫(H2O2)生理分析。 77
圖12. D01轉殖系可溶性全糖類(total soluble sugar)、胺態氮(amino nitrogen)及蛋白質(protein)含量生理分析。 78
圖13. D01轉殖系抗氧化酵素活性生理分析。 79
圖14. D01轉殖系抗氧化物抗壞血酸(ascorbate)生理分析。 80
圖 15. WT與D01轉殖系地上部低溫下多醣組成分析。 81
附圖 1. 水稻碳水化合物(Carbohydrate)代謝途徑。 82
附圖 2. TNG67冷害下單醣變化及碳水化合物相關基因表現整合圖。 83
附錄目錄
附錄 1. 木村式水耕液配方 (Kimura solution)配方。 84
附錄 2. 偵測基因表現所使用之引子及PCR擴增相關資訊條件。 85
dc.language.isozh-TW
dc.subject低溫zh_TW
dc.subject多醣zh_TW
dc.subject水稻zh_TW
dc.subjectpolysaccharideen
dc.subjectcold stressen
dc.subjectriceen
dc.title利用不同水稻品種探討糖類對水稻低溫逆境及耐受性之關係zh_TW
dc.titleUsing Different Rice Cultivars to Study the Relationship Between Sugars and Rice Cold Stress Toleranceen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.coadvisor盧美光(Mei-Kuang Lu)
dc.contributor.oralexamcommittee吳素幸(Sun-Hsing Wu),侯新龍(Shin-Lon Ho),張嘉銓(Chia-Chuan Chang)
dc.subject.keyword多醣,水稻,低溫,zh_TW
dc.subject.keywordpolysaccharide,rice,cold stress,en
dc.relation.page85
dc.rights.note有償授權
dc.date.accepted2010-08-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
4.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved