請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47691
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 梁庚辰(Keng-Chen Liang) | |
dc.contributor.author | Shih-Dar Chang | en |
dc.contributor.author | 張世達 | zh_TW |
dc.date.accessioned | 2021-06-15T06:12:55Z | - |
dc.date.available | 2012-08-16 | |
dc.date.copyright | 2010-08-16 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-11 | |
dc.identifier.citation | Amaral, D. G., & Lavenex, P. (2007). Hippocampal neuroanatomy. In P. Andersen, R. G. M. Morris, D. G. Amaral, T. V. P. Bliss & O. K. J (Eds.), The Hippocampus Book (pp. 37-114). Oxford: Oxford University.
Anagnostaras, S. G., Gale, G. D., & Fanselow, M. S. (2001). Hippocampus and contextual fear conditioning: Recent controversies and advances. Hippocampus, 11, 8-17. Anagnostaras, S. G., Gale, G. D., & Fanselow, M. S. (2002). The hippocampus and pavlovian fear conditioning: reply to Bast et al. Hippocampus, 12, 561-565. Anagnostaras, S. G., Maren, S., & Fanselow, M. S. (1999). Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: within-subjects examination. Journal of Neuroscience, 19, 1106-1114. Anderson, M. I., & Jeffery, K. J. (2003). Heterogeneous modulation of place cell firing by changes in context. Journal of Neuroscience, 23, 8827-8835. Antoniadis, E. A., & McDonald, R. J. (1999). Discriminative fear conditioning to context expressed by multiple measures of fear in the rat. Behavioural Brain Research, 101, 1-13. Antoniadis, E. A., & McDonald, R. J. (2000). Amygdala, hippocampus and discriminative fear conditioning to context. Behavioural Brain Research, 108, 1-19. Antoniadis, E. A., & McDonald, R. J. (2001). Amygdala, hippocampus, and unconditioned fear. Experimental Brain Research, 138, 200-209. Artinian, J., De Jaeger, X., Fellini, L., Blanquat, P. D., & Roullet, P. (2007). Reactivation with a simple exposure to the experimental environment is sufficient to induce reconsolidation requiring protein synthesis in the hippocampal CA3 region in mice. Hippocampus, 17, 181-191. Bailey, D. J., Tetzlaff, J. E., Cook, J. M., He, X. H., & Helmstetter, F. J. (2002). Effects of hippocampal injections of a novel ligand selective for the a5b2g2 subunits of the GABA/benzodiazepine receptor on Pavlovian conditioning. Neurobiology of Learning and Memory, 78, 1-10. Baldi, E., Lorenzini, C. A., & Bucherelli, C. (2004). Footshock intensity and generalization in contextual and auditory-cued fear conditioning in the rat. Neurobiology of Learning and Memory, 81, 162-166. Bangasser, D. A., Waxler, D. E., Santollo, J., & Shors, T. J. (2006). Trace conditioning and the hippocampus: The importance of contiguity. Journal of Neuroscience, 26, 8702-8706. Bannerman, D. M., Grubb, M., Deacon, R. M. J., Yee, B. K., Feldon, J., & Rawlins, J. N. P. (2003). Ventral hippocampal lesions affect anxiety but not spatial learning. Behavioural Brain Research, 139, 197-213. Bannerman, D. M., Matthews, P., Deacon, R. M. J., & Rawlins, J. N. P. (2004). Medial septal lesions mimic effects of both selective dorsal and ventral hippocampal lesions. Behavioral Neuroscience, 118, 1033-1041. Bannerman, D. M., Rawlins, J. N. P., & Good, M. A. (2006). The drugs don't work or do they? Pharmacological and transgenic studies of the contribution of NMDA and GluR-A-containing AMPA receptors to hippocampal dependent memory. Psychopharmacology, 188, 552-566. Bannerman, D. M., Yee, B. K., Good, M. A., Heupel, M. J., Iversen, S. D., & Rawlins, J. N. P. (1999). Double dissociation of function within the hippocampus: A comparison of dorsal, ventral, and complete hippocampal cytotoxic lesions. Behavioral Neuroscience, 113, 1170-1188. Barrientos, R. M., Higgins, E. A., Sprunger, D. B., Watkins, L. R., Rudy, J. W., & Maier, S. F. (2002). Memory for context is impaired by a post context exposure injection of interleukin-1 beta into dorsal hippocampus. Behavioural Brain Research, 134, 291-298. Barrientos, R. M., O'Reilly, R. C., & Rudy, J. W. (2002). Memory for context is impaired by injecting anisomycin into dorsal hippocampus following context exploration. Behavioural Brain Research, 134, 299-306. Bast, T., da Silva, B. M., & Morris, R. G. M. (2005). Distinct contributions of hippocampal NMDA and AMPA receptors to encoding and retrieval of one-trial place memory. Journal of Neuroscience, 25, 5845-5856. Bast, T., Zhang, W. N., & Feldon, J. (2001a). Hippocampus and classical fear conditioning. Hippocampus, 11, 828-831. Bast, T., Zhang, W. N., & Feldon, J. (2001b). The ventral hippocampus and fear conditioning in rats: Different anterograde amnesias of fear after tetrodotoxin inactivation and infusion of the GABA(A) agonist muscimol. Experimental Brain Research, 139, 39-52. Bayer, S. A. (1985). Hippocampal region. In G. Paxinos (Ed.), The Rat Nervous System (pp. 335-352). New York: Academic Press. Beach, M. E., Hawkins, R. D., Osman, M., Kandel, E. R., & Mayford, M. (1995). Impairment of spatial but not contextual memory in CAMKII mutant mice with a selective loss of hippocampal LTP in the range of the theta frequency. Cell, 81, 905-915. Bechara, A., Tranel, D., Damasio, H., Adolphs, R., Rockland, C., & Damasio, A. R. (1995). Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science, 269, 1115-1118. Berger, T. W., Alger, B., & Thompson, R. F. (1976). Neuronal substrate of classical conditioning in hippocampus. Science, 192, 483-485. Berger, T. W., & Orr, W. B. (1983). Hippocampectomy selectively disrupts discrimination reversal conditioning of the rabbit nictitating membrane response. Behavioural Brain Research, 8, 49-68. Berry, S. D., & Thompson, R. F. (1978). Prediction of learning rate from hippocampal electroencephalogram. Science, 200, 1298-1300. Biedenkapp, J. C., & Rudy, J. W. (2004). Context memories and reactivation: Constraints on the reconsolidation hypothesis. Behavioral Neuroscience, 118, 956-964. Bland, B. H. (1986). The physiology and pharmacology of hippocampal formation theta rhythms. Progress in Neurobiology, 26, 1-54. Bliss, T. V. P., & Lynch, M. A. (1988). Long term potentiation of synaptic transmission in the hippocampus: Properties and mechanisms. In S. A. Deadwyler & P. W. Landfiel (Eds.), Long Term Potentiation: From Biophysics to Behavior (pp. 3-72). New York: A. R. Liss. Blokland, A., Honig, W., & Raaijmakers, W. G. M. (1992). Effects of intrahippocampal scopolamine injections in a repeated spatial acquisition task in the rat. Psychopharmacology, 109, 373-376. Boccia, M. M., Acosta, G. B., Blake, M. G., & Baratti, C. M. (2004). Memory consolidation and reconsolidation of an inhibitory avoidance response in mice: Effects of ICV injections of hemicholinium-3. Neuroscience, 124, 735-741. Bolles, R. C., & Fanselow, M. S. (1980). A perceptual-defensive-recuperative model of fear and pain. Behavioral and Brain Sciences, 3, 291-301. Bostock, E., Muller, R. U., & Kubie, J. L. (1991). Experience-dependent modifications of hippocampal place cell firing. Hippocampus, 1, 193-205. Bouton, M. E. (1994). Context, ambiguity, and classical conditioning. Current Directions in Psychological Science, 3, 49-53. Bouton, M. E., & Bolles, R. C. (1979). Contextual control of the extinction of conditioned fear. Learning and Motivation, 10, 445-466. Bouton, M. E., Kenney, F. A., & Rosengard, C. (1990). State dependent fear extinction with two benzodiazepine tranquilizers. Behavioral Neuroscience, 104, 44-55. Bouton, M. E., & Moody, E. W. (2004). Memory processes in classical conditioning. Neuroscience and Biobehavioral Reviews, 28, 663-674. Brandon, S. E., Vogel, E. H., & Wagner, A. R. (2000). A componential view of configural cues in generalization and discrimination in Pavlovian conditioning. Behavioural Brain Research, 110, 67-72. Broadbent, N. J., Squire, L. R., & Clark, R. E. (2006). Reversible hippocampal lesions disrupt water maze performance during both recent and remote memory tests. Learning & Memory, 13, 187-191. Bunsey, M., & Eichenbaum, H. (1996). Conservation of hippocampal memory function in rats and humans. Nature, 379, 255-257. Burwell, R. D., Saddoris, M. P., Bucci, D. J., & Wiig, K. A. (2004). Corticohippocampal contributions to spatial and contextual learning. Journal of Neuroscience, 24, 3826-3836. Buzsaki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33, 325-340. Buzsaki, G., & Chrobak, J. J. (1995). Temporal structure in spatially organized neuronal ensembles: A role for interneuronal networks. Current Opinion in Neurobiology, 5, 504-510. Cahill, L., Vazdarjanova, A., & Setlow, B. (2000). The basolateral amygdala complex is involved with, but is not necessary for, rapid acquisition of Pavlovian 'fear conditioning'. European Journal of Neuroscience, 12, 3044-3050. Calandreau, L., Trifilieff, P., Mons, N., Costes, L., Marien, M., Marighetto, A., et al. (2006). Extracellular hippocampal acetylcholine level controls amygdala function and promotes adaptive conditioned emotional response. Journal of Neuroscience, 26, 13556-13566. Canteras, N. S., & Swanson, L. W. (1992). Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: A PHAL anterograde tract-tracing study in the rat. Journal of Comparative Neurology, 324, 180-194. Caramanos, Z., & Shapiro, M. L. (1994). Spatial memory and N-methyl-D-aspartate receptor antagonists APV and MK-801: Memory impairments depend on familiarity with the environment, drug dose, and training duration. Behavioral Neuroscience, 108, 30-43. Carli, M., Tranchina, S., & Samanin, R. (1992). 8-hydroxy-2-(di-n-propylamino) tetralin, a 5-HT1A receptor agonist, impairs performance in a passive avoidance task. European Journal of Pharmacology, 221, 227-234. Chai, S. C., & White, N. M. (2004). Effects of fimbria-fornix, hippocampus, and amygdala lesions on discrimination between proximal locations. Behavioral Neuroscience, 118, 770-784. Chang, S. D., Chen, D. Y., & Liang, K. C. (2008). Infusion of lidocaine into the dorsal hippocampus before or after the shock training phase impaired conditioned freezing in a two-phase training task of contextual fear conditioning. Neurobiology of Learning and Memory, 89, 95-105. Chen, D. Y., Ho, S. H., & Liang, K. C. (2000). Startle responses to electric shocks: Measurement of shock sensitivity and effects of morphine, buspirone and brain lesions. Chinese Journal of Physiology, 43, 35-47. Cho, Y. H., Giese, K. P., Tanila, H., Silva, A. J., & Eichenbaum, H. (1998). Abnormal hippocampal spatial representations in aCaMKIIT286A and CREB aD- mice. Science, 279, 867-869. Chrobak, J. J., Lorincz, A., & Buzsaki, G. (2000). Physiological patterns in the hippocampo-entorhinal cortex system. Hippocampus, 10, 457-465. Collingridge, G. L., Kehl, S. J., & McLennan, H. (1983a). The action of an N-methylaspartate antagonist on synaptic processes in the rat hippocampus. Journal of Physiology-London, 338, P27-P27. Collingridge, G. L., Kehl, S. J., & McLennan, H. (1983b). Excitatory aminoacids in synaptic transmission in the schaffer collateral commissural pathway of the rat hippocampus. Journal of Physiology, 334, 33-46. Corcoran, K. A., & Maren, S. (2001). Hippocampal inactivation disrupts contextual retrieval of fear memory after extinction. Journal of Neuroscience, 21, 1720-1726. Costa, E., Panula, P., Thompson, H. K., & Cheney, D. L. (1983). The transsynaptic regulation of the septal-hippocampal cholinergic neurons. Life Sciences, 32, 165-179. Davidson, T. L., McKernan, M. G., & Jarrard, L. E. (1993). Hippocampal lesions do not impair negative patterning: A challenge to configural association theory. Behavioral Neuroscience, 107, 227-234. Davis, M. (2000). The role of the amygdala in conditioned and unconditioned fear and anxiety. In J. P. Aggleton (Ed.), The Amygdla: A Functional Analysis (pp. 213-287). New York: Oxford University Press. Davis, M., Gendelman, D. S., Tischler, M. D., & Gendelman, P. M. (1982). A primary acoustic startle circuit: Lesion and stimulation studies. Journal of Neuroscience, 2, 791-805. Debiec, J., LeDoux, J. E., & Nader, K. (2002). Cellular and systems reconsolidation in the hippocampus. Neuron, 36, 527-538. Douglas, R. J., & Pribram, K. H. (1966). Learning and limbic lesions. Neuropsychologia, 4, 197-220. Dusek, J. A., & Eichenbaum, H. (1997). The hippocampus and memory for orderly stimulus relations. Proceedings of the National Academy of Sciences of the United States of America, 94, 7109-7114. Dutar, P., & Nicoll, R. A. (1988). A physiological role for GABAB receptors in the central nervous system. Nature, 332, 156-158. Egashira, N., Yano, A., Ishigami, N., Mishima, K., Iwasaki, K., Fujioka, M., et al. (2006). Investigation of mechanisms mediating 8-OH-DPAT-induced impairment of spatial memory: Involvement of 5-HT1A receptors in the dorsal hippocampus in rats. Brain Research, 1069, 54-62. Eichenbaum, H. (1999). The hippocampus and mechanisms of declarative memory. Behavioural Brain Research, 103, 123-133. Eichenbaum, H. (2000). A cortical-hippocampal system for declarative memory. Nature Reviews Neuroscience, 1, 41-50. Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., & Tanila, H. (1999). The hippocampus, memory, and place cells: Is it spatial memory or a memory space? Neuron, 23, 209-226. Eichenbaum, H., Stewart, C., & Morris, R. G. M. (1990). Hippocampal representation in place learning. Journal of Neuroscience, 10, 3531-3542. Estes, W. K. (1950). Toward a statistical theory of learning. Psychological Review, 57, 94-107. Fadda, F., Cocco, S., & Stancampiano, R. (2000). Hippocampal acetylcholine release correlates with spatial learning performance in freely moving rats. Neuroreport, 11, 2265-2269. Fanselow, M. S. (1980). Conditional and unconditional components of post-shock freezing in rats. Pavlovian Journal of Biological Sciences, 15, 177-182. Fanselow, M. S. (1982). The postshock activity burst. Animal Learning & Behavior, 10, 448-454. Fanselow, M. S. (1984). What is conditioned fear? Trends in Neurosciences, 7, 460-462. Fanselow, M. S. (1986). Associative vs topographical accounts of the immediate shock freezing deficit in rats: Implications for the response selection rules governing species-specific defensive reactions. Learning and Motivation, 17, 16-39. Fanselow, M. S. (1990). Factors governing one-trial contextual conditioning. Animal Learning & Behavior, 18, 264-270. Fanselow, M. S. (1999). Learning theory and neuropsychology: Configuring their disparate elements in the hippocampus. Journal of Experimental Psychology: Animal Behavior Processes, 25, 275-283. Fanselow, M. S. (2000). Contextual fear, gestalt memories, and the hippocampus. Behavioural Brain Research, 110, 73-81. Fanselow, M. S. (2010). From contextual fear to a dynamic view of memory systems. Trends in Cognitive Sciences, 14, 7-15. Fanselow, M. S., & Baackes, M. P. (1982). Conditioned fear-induced opiate analgesia on the formalin test: Evidence for tow aversive motivational systems. Learning and Motivation, 13, 200-221. Fanselow, M. S., Decola, J. P., & Young, S. L. (1993). Mechanisms responsible for reduced contextual conditioning with massed unsignaled unconditional stimuli. Journal of Experimental Psychology: Animal Behavior Processes, 19, 121-137. Fanselow, M. S., & Kim, J. J. (1994). Acquisition of contextual pavlovian fear conditioning is blocked by application of an NMDA receptor antagonist D,L-2-amino-5-phosphonovaleric acid to the basolateral amygdala. Behavioral Neuroscience, 108, 210-212. Fanselow, M. S., Landeirafernandez, J., Decola, J. P., & Kim, J. J. (1994). The immediate shock deficit and postshock analgesia: Implications for the relationship between the analgesic CR and UR. Animal Learning & Behavior, 22, 72-76. Fanselow, M. S., & LeDoux, J. E. (1999). Why we think plasticity underlying pavlovian fear conditioning occurs in the basolateral amygdala. Neuron, 23, 229-232. Fanselow, M. S., & Poulos, A. M. (2005). The neuroscience of mammalian associative learning. Annual Review of Psychology, 56, 207-234. Fanselow, M. S., & Rudy, J. W. (1998). Convergence of experimental and developmental approaches to animal learning and memory processes. In T. J. Carew, R. Menzel & C. J. Shatz (Eds.), Mechanistic Relationships Between Development and Learning (pp. 15-28). New York: Wiley. Farr, S. A., Flood, J. F., & Morley, J. E. (2000). The effect of cholinergic, GABAergic, serotonergic, and glutamatergic receptor modulation on posttrial memory processing in the hippocampus. Neurobiology of Learning and Memory, 73, 150-167. Fendt, M., & Fanselow, M. S. (1999). The neuroanatomical and neurochemical basis of conditioned fear. Neuroscience and Biobehavioral Reviews, 23, 743-760. Ferbinteanu, J., & McDonald, R. J. (2000). Dorsal and ventral hippocampus: Same or different? Psychobiology, 28, 314-324. Frank, L. M., Stanley, G. B., & Brown, E. N. (2004). Hippocampal plasticity across multiple days of exposure to novel environments. Journal of Neuroscience, 24, 7681-7689. Freund, T. F., & Antal, M. (1988). GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature, 336, 170-173. Freund, T. F., & Buzsaki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6, 347-470. Gale, G. D., Anagnostaras, S. G., & Fanselow, M. S. (2001). Cholinergic modulation of pavlovian fear conditioning: Effects of intrahippocampal scopolamine infusion. Hippocampus, 11, 371-376. Gaskin, S., Chai, S. C., & White, N. M. (2005). Inactivation of the dorsal hippocampus does not affect learning during exploration of a novel environment. Hippocampus, 15, 1085-1093. Gaskin, S., & White, N. M. (2010). Temporary inactivation of the dorsal entorhinal cortex impairs acquisition and retrieval of spatial information. Neurobiology of Learning and Memory, 93, 203-207. Gibson, E. J., & Walk, R. D. (1956). The effect of prolonged exposure to visually presented patterns on learning to discriminate them. Journal of Comparative and Physiological Psychology, 49, 239-242. Gilbert, P. E., & Kesner, R. P. (2006). The role of the dorsal CA3 hippocampal subregion in spatial working memory and pattern separation. Behavioural Brain Research, 169, 142-149. Givens, B. S., & Olton, D. S. (1990). Cholinergic and GABAergic modulation of medial septal area : Effect on working memory. Behavioral Neuroscience, 104, 849-855. Glisky, E. L., Schacter, D. L., & Tulving, E. (1986). Computer learning by memory-impaired patients: Acquisition and retention of complex knowledge. Neuropsychologia, 24, 313-328. Godden, D. R., & Baddeley, A. D. (1975). Context-dependent memory in two natural environments: On land and underwater. British Journal of Psychology, 66, 325-331. Gong, L. Q., Dong, Z. Y., Poo, M. M., & Zhang, X. (2009). Post-induction requirement of NMDA receptors for late phase long-term potentiation in vivo Paper presented at the Socieity for Neuroscience, Chicago. Gonzalez, F., Quinn, J. J., & Fanselow, M. S. (2003). Differential effects of adding and removing components of a context on the generalization of conditional freezing. Journal of Experimental Psychology-Animal Behavior Processes, 29, 78-83. Good, M., de Hoz, L., & Morris, R. G. M. (1998). Contingent versus incidental context processing during conditioning: Dissociation after excitotoxic hippocampal plus dentate gyrus lesions. Hippocampus, 8, 147-159. Good, M., & Honey, R. C. (1991). Conditioning and contextual retrieval in hippocampal rats. Behavioral Neuroscience, 105, 499-509. Goosens, K. A., & Maren, S. (2000). NMDA receptors are necessary for the acquisition but not expression of amygdaloid conditional unit activity and fear learning. Society for Neuroscience Abstracts, 26, Abstract No.-72.79. Gould, T. J., McCarthy, M. M., & Keith, R. A. (2002). MK-801 disrupts acquisition of contextual fear conditioning but enhances memory consolidation of cued fear conditioning. Behavioural Pharmacology, 13, 287-294. Hall, G., & Honey, R. C. (1990). Context-specific conditioning in the conditioned-emotional response procedure. Journal of Experimental Psychology: Animal Behavior Processes, 16, 271-278. Hall, J., Thomas, K. L., & Everitt, B. J. (2000). Rapid and selective induction of BDNF expression in the hippocampus during contextual learning. Nature Neuroscience, 3, 533-535. Hammond, R. S., Tull, L. E., & Stackman, R. W. (2004). On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiology of Learning and Memory, 82, 26-34. Hannula, D. E., & Ranganath, C. (2009). The eyes have it: Hippocampal activity predicts expression of memory in eye movements. Neuron, 63, 592-599. Hara, K., & Warren, J. M. (1961). Stimulus additivity and dominance in discrimination performance by cats. Journal of Comparative and Physiological Psychology, 54, 86-90. Hasselmo, M. E. (1999). Neuromodulation: Acetylcholine and memory consolidation. Trends in Cognitive Sciences, 3, 351-359. Hasselmo, M. E. (2006). The role of acetylcholine in learning and memory. Current Opinion in Neurobiology, 16, 710-715. He, Y., Hsuchou, H., Wu, X. J., Kastin, A. J., Khan, R. S., Pistell, P. J., et al. (2010). Interleukin-15 receptor is essential to facilitate GABA transmission and hippocampal dependent memory. Journal of Neuroscience, 30, 4725-4734. Helmstetter, F. J., & Bellgowan, P. S. (1994). Effects of muscimol applied to basolateral amygdala on acquisition and expression of contextual fear conditioning in rats. Behavioral Neuroscience, 108, 1005-1009. Henke, K., Buck, A., Weber, B., & Wieser, H. G. (1997). Human hippocampus establishes associations in memory. Hippocampus, 7, 249-256. Hergenhahn, B. R., & Olson, M. H. (2001). Theory of learning. New Jersey: Upper Saddle River. Hirsh, R. (1974). Hippocampus and contextual retrieval of information from memory: A theory. Behavioral Biology, 12, 421-444. Hirst, W., Johnson, M. K., Kim, J. K., Risse, G., Phelps, E. A., & Volpe, B. T. (1986). Recognition and recall in amnesiacs. Journal of Experimental Psychology: Learning Memory and Cognition, 12, 445-451. Hoehler, F. K., & Thompson, R. F. (1979). Effect of temporal single alternation on learned increases in hippocampal unit activity in classical conditioning of the rabbit nictitating membrane response. Physiological Psychology, 7, 345-351. Holland, P. C., & Bouton, M. E. (1999). Hippocampus and context in classical conditioning. Current Opinion in Neurobiology, 9, 195-202. Holt, W., & Maren, S. (1999). Muscimol inactivation of the dorsal hippocampus impairs contextual retrieval of fear memory. Journal of Neuroscience, 19, 9054-9062. Honey, R. C., Watt, A., & Good, M. (1998). Hippocampal lesions disrupt an associative mismatch process. Journal of Neuroscience, 18, 2226-2230. Honey, R. C., Willis, A., & Hall, G. (1990). Context specificity in pigeon autoshaping. Learning and Motivation, 21, 125-136. Hsiao, S., & Isaacson, R. L. (1971). Learning of food and water positions by hippocampus damaged rats. Physiology & Behavior, 6, 81-83. Huff, N. C., Frank, M., Wright-Hardesty, K., Sprunger, D., Matus-Amat, P., Higgins, E., et al. (2006). Amygdala regulation of immediate-early gene expression in the hippocampus induced by contextual fear conditioning. Journal of Neuroscience, 26, 1616-1623. Huff, N. C., & Rudy, J. W. (2004). The amygdala modulates hippocampus-dependent context memory formation and stores cue-shock associations. Behavioral Neuroscience, 118, 53-62. Huff, N. C., Wright-Hardesty, K. J., Higgins, E. A., Matus-Amat, P., & Rudy, J. W. (2005). Context pre-exposure obscures amygdala modulation of contextual-fear conditioning. Learning & Memory, 12, 456-460. Hunsaker, M. R., & Kesner, R. P. (2008). Dissociations across the dorsal-ventral axis of CA3 and CA1 for encoding and retrieval of contextual and auditory-cued fear. Neurobiology of Learning and Memory, 89, 61-69. Izquierdo, I., Dacunha, C., Rosat, R., Jerusalinsky, D., Ferreira, M. B. C., & Medina, J. H. (1992). Neurotransmitter receptors involved in post-training memory processing by the amygdala, medial septum, and hippocampus of the rat. Behavioral and Neural Biology, 58, 16-26. Izquierdo, I., & Medina, J. H. (1997). Memory formation: The sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiology of Learning and Memory, 68, 285-316. Jeffery, K. J., & Anderson, M. I. (2003). Dissociation of the geometric and contextual influences on place cells. Hippocampus, 13, 868-872. Jenkins, T. A., Amin, E., Pearce, J. M., Brown, M. W., & Aggleton, J. P. (2004). Novel spatial arrangements of familiar visual stimuli promote activity in the rat hippocampal formation but not the parahippocampal cortices: A c-fos expression study. Neuroscience, 124, 43-52. Jerusalinsky, D., Ferreira, M. B. C., Walz, R., Dasilva, R. C., Bianchin, M., Ruschel, A. C., et al. (1992). Amnesia by post-training infusion of glutamate receptor antagonists into the amygdala, hippocampus, and entorhinal cortex. Behavioral and Neural Biology, 58, 76-80. Johnston, D., & Amaral, D. G. (1998). Hippocampus. In G. M. Shepherd (Ed.), The Synaptic Organization of The Brain (pp. 417-458). New York: Oxford Uinversity Press. Kennedy, P. J., & Shapiro, M. L. (2004). Retrieving memories via internal context requires the hippocampus. Journal of Neuroscience, 24, 6979-6985. Kensinger, E. A., & Corkin, S. (2004). Two routes to emotional memory: Distinct neural processes for valence and arousal. Proceedings of the National Academy of Sciences of the United States of America, 101, 3310-3315. Kentros, C., Hargreaves, E., Hawkins, R. D., Kandel, E. R., Shapiro, M., & Muller, R. V. (1998). Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. Science, 280, 2121-2126. Kiernan, M., & Cranney, J. (1992). Immediate startle stimulus presentation fails to condition freezing responses to contextual cues. Behavioral Neuroscience, 106, 121-124. Kiernan, M. J., & Westbrook, R. F. (1993). Effects of exposure to a to-be-shocked environment upon the rat's freezing response: Evidence for facilitation, latent inhibition, and perceptual learning. Quarterly Journal of Experimental Psychology, 46B, 271-288. Kiernan, M. J., Westbrook, R. F., & Cranney, J. (1995). Immediate shock, passive-avoidance, and potentiated startle: Implications for the unconditioned response to shock. Animal Learning & Behavior, 23, 22-30. Kim, J. J., Decola, J. P., Landeira-Fernandez, J., & Fanselow, M. S. (1991). N-Methyl-D-Aspartate receptor antagonist APV blocks acquisition but not expression of fear conditioning. Behavioral Neuroscience, 105, 126-133. Kim, J. J., & Fanselow, M. S. (1992). Modality-specific retrograde amnesia of fear. Science, 256, 675-677. Kim, J. J., & Jung, M. W. (2006). Neural circuits and mechanisms involved in Pavlovian fear conditioning: A critical review. Neuroscience and Biobehavioral Reviews, 30, 188-202. Kim, J. J., Rison, R. A., & Fanselow, M. S. (1993). Effects of amygdala, hippocampus, and periaqueductal gray lesions on short- and long-term contextual fear. Behavioral Neuroscience, 107, 1093-1098. Kramis, R., Vanderwolf, C. H., & Bland, B. H. (1975). Two types of hippocampal rhythmical slow activity in both rabbit and rat: Relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital. Experimental Neurology, 49, 58-85. Land, C., & Riccio, D. C. (1998). Nonmonotonic changes in the context shift effect over time. Learning and Motivation, 29, 280-287. Laporte, A. M., Lima, L., Gozlan, H., & Hamon, M. (1994). Selective in vivo labelling of brain 5-HT1A receptors by [3H]WAY 100635 in the mouse. European Journal of Pharmacology, 271, 505-514. Lattal, K. M., & Abel, T. (2001). An immediate-shock freezing deficit with discrete cues: A possible role for unconditioned stimulus processing mechanisms. Journal of Experimental Psychology: Animal Behavior Processes, 27, 394-406. LeDoux, J. E. (1993). Emotional memory systems in the brain. Behavioural Brain Research, 58, 69-79. LeDoux, J. E. (2007). The amygdala. Current Biology, 17, R868-R874. LeDoux, J. E., Cicchetti, P., Xagoraris, A., & Romanski, L. M. (1990). The lateral amygdaloid nucleus: Sensory interface of the amygdala in fear conditioning. Journal of Neuroscience, 10, 1062-1069. Lee, E. H. Y., Lee, C. P., Wang, H. I., & Lin, W. R. (1993). Hippocampal CRF, NE, and NMDA system interactions in memory processing in the rat. Synapse, 14, 144-153. Lee, I., & Kesner, R. P. (2004). Differential contributions of dorsal hippocampal subregions to memory acquisition and retrieval in contextual fear-conditioning. Hippocampus, 14, 301-310. Leranth, C., & Frotscher, M. (1987). Cholinergic innervation of hippocampal GAD immunoreactive and somatostatin immunoreactive commissural neurons. Journal of Comparative Neurology, 261, 33-47. Liang, K. C., Hon, W., & Davis, M. (1994). Pretraining and posttraining infusion of N-Methl-D-Aspartate recepter antagonists into the amygdala impair memory in an inhibitory avoidance task. Behavioral Neuroscience, 108, 241-253. Liang, K. C., Hon, W., Tyan, Y. M., & Liao, W. L. (1994). Involvement of hippocampal NMDA and AMPA receptors in acquisition, formation and retrieval of spatial memory in the morris water maze. The Chinese Journal of Physiology, 37, 201. Logue, S. E., Paylor, R., & Wehner, J. M. (1997). Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned-fear task. Behavioral Neuroscience, 111, 104-113. Lorincz, A., & Buzsaki, G. (2000). Two-phase computational model training long-term memories in the entorhinal-hippocampal region. In H. E. Scharfman, M. P. Witter & R. Schwarcz (Eds.), Parahippocampal Region - Implications for Neurological and Psychiatric Diseases (Vol. 911, pp. 83-111). Lovibond, P. F., Preston, G. C., & Mackintosh, N. J. (1984). Context specificity of conditioning, extinction, and latent inhibition. Journal of Experimental Psychology-Animal Behavior Processes, 10, 360-375. Mahut, H. (1971). Spatial and object reversal learning in monkeys with partial temporal lobe ablations. Neuropsychologia, 9, 409-424. Malin, E. L., & McGaugh, J. L. (2006). Differential involvement of the hippocampus, anterior cingulate cortex, and basolateral amygdala in memory for context and footshock. Proceedings of the National Academy of Sciences, USA, 103, 1959-1963. Malpeli, J. G. (1999). Reversible inactivation of subcortical sites by drug injection. Journal of Neuroscience Methods, 86, 119-128. Mao, J. B., & Robinson, J. K. (1998). Microinjection of GABAA agonist muscimol into the dorsal but not the ventral hippocampus impairs non-mnemonic measures of delayed non-matching-to-position performance in rats. Brain Research, 784, 139-147. Maren, S. (1999a). Neurotoxic basolateral amygdala lesions impair learning and memory but not the performance of conditional fear in rats. Journal of Neuroscience, 19, 8696-8703. Maren, S. (1999b). Neurotoxic or electrolytic lesions of the ventral subiculum produce deficits in the acquisition and expression of pavlovian fear conditioning in rats. Behavioral Neuroscience, 113, 283-290. Maren, S., Aharonov, G., & Fanselow, M. S. (1997). Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behavioural Brain Research, 88, 261-274. Maren, S., Aharonov, G., Stote, D. L., & Fanselow, M. S. (1996). N-methyl-D-aspartate receptors in the basolateral amygdala are required for both acquisition and expression of conditional fear in rats. Behavioral Neuroscience, 110, 1365-1374. Maren, S., Deoca, B., & Fanselow, M. S. (1994). Sex difference in hippocampal long-term potentiation (LTP) and Pavlovian fear conditioning in rats: Positive correlation between LTP and contextual learning. Brain Research, 661, 25-34. Maren, S., & Fanselow, M. S. (1995). Synaptic plasticity in the basolateral amygdala induced by hippocampal formation stimulatio | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47691 | - |
dc.description.abstract | 組態學習是將多重刺激結合成一體的表徵歷程,此學習被認為是由海馬所主導。動物研究中常使用情境恐懼制約作業探討組態學習,過去研究咸信此作業涉及二個學習歷程,動物必須先將多向度的環境刺激整合成為單一的情境表徵,再將此表徵與電擊聯結。雖然過去許多研究認為在情境恐懼制約中,海馬參與情境表徵,而杏仁核則參與表徵和電擊的聯結。根據海馬整合多相度刺激的功能,本論文探討海馬在情境恐懼制約的角色是否也涉及融合電擊與情境訊息成一整體的恐懼情境表徵。本論文採用二階段訓練的策略來檢驗這樣的想法,大白鼠先於第一天情境探索形成情境表徵,第二天再於該情境中接受電擊。在這兩個訓練階段分別於海馬內注射局部麻醉劑二丁卡因壓抑其功能,從第三天記憶測試的表現便可得知海馬在兩學習歷程中分別具有的功能。結果發現於兩階段訓練歷程前後抑制背側海馬均會損害情境制約的僵懼反應,但同樣的實驗操弄施於腹側海馬則無效。另外,於情境-電擊習得階段於背側海馬施予氮甲基天門冬氨酸受體拮抗劑APV,也會造成記憶損害,這表示背側海馬除了參與情境表徵的建立之外,也負責情境-電擊學習。為了檢驗海馬於情境-電擊學習階段所負責的記憶是否有別於杏仁核所負責的簡單聯結記憶,本論文進一步證實情境-電擊階段的學習具有組態學習的彈性提取的特徵,可以在短暫呈現電擊或相關提取線索後,於非制約情境的測試箱中而表現出僵懼反應。更值得注意的是,於情境-電擊學習階段暫時抑制背側海馬會使得此記憶表現受損。相對的,抑制杏仁核則沒有效果。這表示背側海馬與杏仁核在情境-電擊階段所負責的記憶功能可能不同。本研究進一步發現,於學習後於背側海馬施予伽馬-胺基丁酸A類受體促進劑muscimol會影響情境表徵的建立,但不影響恐懼情境表徵的形成。施予蘑菇膽鹼受體拮抗劑scopolamine則只影響恐懼情境表徵的形成,不影響情境表徵的建立。以上結果支持,在情境恐懼制約中,動物除了可能將情境與電擊形成簡單聯結之外,也可能透過海馬將情境與電擊整合成為一體的情境表徵。而恐懼情境學習所涉及的神經機制與情境學習不同可能反映了兩種不同歷程的組態學習。情境表徵的建立倚賴靜態環境中,刺激的穩定關係,而恐懼經驗的組態表徵則是針對動態刺激的出現,修正原有的情境表徵。本研究可以提供未來在焦慮疾患的治療理論基礎與人類記憶系統研究的動物模型。 | zh_TW |
dc.description.abstract | Configural learning refers to a process integrating elemental features into a unitary representation, which is often conceived to rely on the hippocampus. In past years, contextual fear conditioning in rodents has often been used to study neural mechanisms underlying configural learning. Many researchers conceive that contextual fear conditioning involves two learning processes: binding multiple cues in the context to form a unitary representation relying on the hippocampus, and then associating this representation to a shock relying on the amygdala. In light of evidence that the hippocampus is involved in binding multiple stimuli temporally or spatially related, it is proposed in this dissertation that the hippocampus is engaged not only in coding contextual information but also in integrating context and shock into a configural fear memory. To test this hypothesis, this dissertation adopted a two-phase training paradigm and examined the effects of manipulating the hippocampus at each phase independently. Suppressing the dorsal hippocampus (DH), but not its ventral part, by infusing 4% lidocaine during each training phase impaired conditioned freezing. Intra-DH infusion of DL-2-amino-5-phosphonovaleric acid, a N-methyl-D-aspartic acid antagonist prior to context-shock learning yielded the same results, suggesting that the DH is involved in both context coding as well as context-shock learning. Results further showed that context-shock training forges in the DH a new representation of frightful context representation by integrating environmental and shock cues altogether, which was readily retrieved through direct or mediated pattern completion, a kernel property of configural representation. Finally, intra-DH infusion of the GABAA receptor agonist muscimol immediately after context coding impaired contextual fear conditioning but had no effect if given after context-shock leaning. In contrast, intra-DH infusion of the muscarinic receptor antagonist scopolamine impaired contextual fear conditioning only if given immediately after context-shock learning but not given after context coding. These findings, taking together, suggest that in contextual fear conditioning the DH through different types of neurochemical operation may not only incorporate static environmental cues to form a configural memory for a neutral context but also incorporate shock-generated cues into a neutral context and transform it into a configural fear memory. These findings provide theoretical implications for studying underlying mechanisms of human learning and memory. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:12:55Z (GMT). No. of bitstreams: 1 ntu-99-D91227003-1.pdf: 1512623 bytes, checksum: 02226af8e67226b73e2f1b795b015bad (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 中文摘要 i
Abstract iii Chapter 1. Introduction 1 1-1. What Constitutes a Context? 6 1-2. How a Context Acts: Elemental Theory versus Configural Theory 12 1-3. Neural Mechanisms Underlining Configural Learning: The Hippocampus 19 1-4. Contextual Fear Conditioning 31 1-5. Neural Mechanisms Underling Contextual Fear Conditioning 36 1-6. Aims of This Dissertation 44 Chapter 2. General Materials and Methods 47 2-1. Subjects 47 2-2. Surgery 47 2-3. Apparatus 48 2-4. Two-Phase Training Paradigms of Contextual Fear Conditioning 49 2-5. Pain Sensitivity Test 51 2-6. Drugs and Drug Administration 52 2-7. Data Analysis 53 2-8. Histology 54 Chapter 3. Roles of the Dorsal and Ventral Hippocampus in the Two Learning Phases of Contextual Fear Conditioning 57 3-1. Dissociation of Contextual Coding From Context-Shock Learning by a Latent Learning Paradigm 58 3-2. Inactivating the DH at the Context or Context-Shock Session Impaired Conditioned Freezing 63 3-3. Intra-DH Infusion of Lidocaine Immediately after the Context-Shock Session Impaired Contextual Fear Conditioning 66 3-4. Pre-Context or pre-Context-Shock Infusion of Lidocaine Induced no State-Dependency 69 3-5. Inactivating the DH during Shock Administration in a Reminder Cue Procedure 70 3-6. Intra-DH Infusion of APV in a Reminder Cue Procedure Impaired Conditioned Freezing 79 3-7. Intra-DH Infusion of Lidocaine or APV did not Affect the Shock Processing 81 3-8. Inactivating the VH at the Context or Context-Shock Session Had No Effect on Contextual Fear Conditioning 82 3-9. Discussion 87 Chapter 4. The Role of the DH in Context-Shock Learning: Forming Configural Representation of a Frightful Context 97 4-1. Direct Pattern Completion 98 4-2. Mediated Pattern Completion 100 4-3. Inactivation of the DH but not the Amygdala Impaired Direct Pattern Completion in Context-Shock Learning 103 4-4. Inactivation of the Hippocampus Impaired Mediated Pattern Completion 111 4-5. Discussion 115 Chapter 5. Roles of Different DH Neurotransmitter Systems in Two Learning Processes of Contextual Fear Conditioning 121 5-1. Formation of Different Types of Memory May Engage Distinct Neural Mechanisms within the DH 122 5-2. Neural Transmission Systems Tested in This Chapter 124 5-3. Muscimol Infused Immediately After Context Learning Impaired Contextual Fear Conditioning 127 5-4. Scopolamine Infused into the DH after Context-Shock Training Impaired Conditioned Freezing 130 5-5. Post-Training Intra-DH Infusion of APV Influenced Neither Context Learning nor Context-Shock Association 133 5-6. Post-Training intra-DH Infusion of 8-OH-DPAT Failed to Impair Context Learning and Context-Shock Association 135 5-7. Discussion 138 Chapter 6 General Discussion 147 6-1. Some Methodological Considerations 148 6-2. Stability and Contextual Representation 149 6-3. How Could a Phasic Event Be Incorporated into a Configuration? 153 6-4. Roles of Different Neurotransmission Systems within the DH in Configural Learning 156 6-5. Implications of This Dissertation 159 Reference 165 Curriculum Vitae 189 | |
dc.language.iso | en | |
dc.title | 海馬在情境恐懼制約中的角色:單純聯結之外 | zh_TW |
dc.title | The Role of Hippocampus in Contextual Fear Conditioning: Beyond Simple Association | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 蕭世朗(Sigmund Hsiao),鄭昭明(Chao-Ming Cheng),廖瑞銘(Ruey-Ming Liao),李季湜(Jay-Shake Li),劉怡均(Yi-Chun Liu) | |
dc.subject.keyword | 組態學習,情緒記憶,組態復原,伽馬-胺基丁酸類受體,蘑菇膽鹼類受體,僵懼反應,杏仁核, | zh_TW |
dc.subject.keyword | configural learning,emotional memory,pattern completion,GABAA receptor,muscarinic receptor,conditioned freezing,amygdala, | en |
dc.relation.page | 190 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-13 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 心理學研究所 | zh_TW |
顯示於系所單位: | 心理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 1.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。