Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47690
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王惠鈞(H.-J. Wang)
dc.contributor.authorYing-Yin Chenen
dc.contributor.author陳盈頴zh_TW
dc.date.accessioned2021-06-15T06:12:52Z-
dc.date.available2015-08-19
dc.date.copyright2010-08-19
dc.date.issued2010
dc.date.submitted2010-08-11
dc.identifier.citationAdams, M.J., Ellis, G.H., Gover, S., Naylor, C.E., Phillips, C., 1994. Crystallographic study of coenzyme, coenzyme analogue and substrate binding in 6-phosphogluconate dehydrogenase: implications for NADP specificity and the enzyme mechanism. Structure 2, 651-668.
Alvarez, D., Merino, S., Tomas, J.M., Benedi, V.J., Alberti, S., 2000. Capsular polysaccharide is a major complement resistance factor in lipopolysaccharide O side chain-deficient Klebsiella pneumoniae clinical isolates. Infect Immun 68, 953-955.
Baker, N.A., Sept, D., Joseph, S., Holst, M.J., McCammon, J.A., 2001. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98, 10037-10041.
Bar-Peled, M., Griffith, C.L., Ory, J.J., Doering, T.L., 2004. Biosynthesis of UDP-GlcA, a key metabolite for capsular polysaccharide synthesis in the pathogenic fungus Cryptococcus neoformans. Biochem J 381, 131-136.
Bentley, S.D., Aanensen, D.M., Mavroidi, A., Saunders, D., Rabbinowitsch, E., Collins, M., Donohoe, K., Harris, D., Murphy, L., Quail, M.A., Samuel, G., Skovsted, I.C., Kaltoft, M.S., Barrell, B., Reeves, P.R., Parkhill, J., Spratt, B.G., 2006. Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet 2, e31.
Berdis, A.J., Cook, P.F., 1993a. Overall kinetic mechanism of 6-phosphogluconate dehydrogenase from Candida utilis. Biochemistry 32, 2036-2040.
Berdis, A.J., Cook, P.F., 1993b. Chemical mechanism of 6-phosphogluconate dehydrogenase from Candida utilis from pH studies. Biochemistry 32, 2041-2046.
Blankenfeldt, W., Kerr, I.D., Giraud, M.F., McMiken, H.J., Leonard, G., Whitfield, C., Messner, P., Graninger, M., Naismith, J.H., 2002. Variation on a theme of SDR. dTDP-6-deoxy-L- lyxo-4-hexulose reductase (RmlD) shows a new Mg2+-dependent dimerization mode. Structure 10, 773-786.
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254.
Breazeale, S.D., Ribeiro, A.A., McClerren, A.L., Raetz, C.R., 2005. A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid A with 4-Amino-4-deoxy-L-arabinose. Identification and function oF UDP-4-deoxy-4-formamido-L-arabinose. J Biol Chem 280, 14154-14167.
Brogden, K.A., 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3, 238-250.
Brook, I., Frazier, E.H., 1998. Microbiology of liver and spleen abscesses. J Med Microbiol 47, 1075-1080.
Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T., Warren, G.L., 1998. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54, 905-921.
Burtnick, M.N., Woods, D.E., 1999. Isolation of polymyxin B-susceptible mutants of Burkholderia pseudomallei and molecular characterization of genetic loci involved in polymyxin B resistance. Antimicrob Agents Chemother 43, 2648-2656.
Campbell, R.E., Tanner, M.E., 1997. Uridine diphospho-alpha-D-gluco-hexodialdose: Synthesis and kinetic competence in the reaction catalyzed by UDP-glucose dehydrogenase. Angewandte Chemie-International Edition in English 36, 1520-1522.
Campbell, R.E., Tanner, M.E., 1999. UDP-Glucose Analogues as Inhibitors and Mechanistic Probes of UDP-Glucose Dehydrogenase J. Org. Chem., 9487-9492.
Campbell, R.E., Sala, R.F., van de Rijn, I., Tanner, M.E., 1997. Properties and kinetic analysis of UDP-glucose dehydrogenase from group A streptococci. Irreversible inhibition by UDP-chloroacetol. J Biol Chem 272, 3416-3422.
Campbell, R.E., Mosimann, S.C., van De Rijn, I., Tanner, M.E., Strynadka, N.C., 2000. The first structure of UDP-glucose dehydrogenase reveals the catalytic residues necessary for the two-fold oxidation. Biochemistry 39, 7012-7023.
Cervellati, C., Li, L., Andi, B., Guariento, A., Dallocchio, F., Cook, P.F., 2008. Proper orientation of the nicotinamide ring of NADP is important for the precatalytic conformational change in the 6-phosphogluconate dehydrogenase reaction. Biochemistry 47, 1862-1870.
Chang, K.W., Weng, S.F., Tseng, Y.H., 2001. UDP-glucose dehydrogenase gene of Xanthomonas campestris is required for virulence. Biochem Biophys Res Commun 287, 550-555.
Chen, Y.Y., Ko, T.P., Chen, W.H., Lo, L.P., Lin, C.H., Wang, A.H., 2010. Conformational changes associated with cofactor/substrate binding of 6-phosphogluconate dehydrogenase from Escherichia coli and Klebsiella pneumoniae: Implications for enzyme mechanism. J Struct Biol 169, 25-35.
Chou, H.C., Lee, C.Z., Ma, L.C., Fang, C.T., Chang, S.C., Wang, J.T., 2004. Isolation of a chromosomal region of Klebsiella pneumoniae associated with allantoin metabolism and liver infection. Infect Immun 72, 3783-3792.
Dalessandro, G., Northcote, D.H., 1977. Changes in enzymic activities of nucleoside diphosphate sugar interconversions during differentiation of cambium to xylem in sycamore and poplar. Biochem J 162, 267-279.
Daniely, D., Portnoi, M., Shagan, M., Porgador, A., Givon-Lavi, N., Ling, E., Dagan, R., Mizrachi Nebenzahl, Y., 2006. Pneumococcal 6-phosphogluconate- dehydrogenase, a putative adhesin, induces protective immune response in mice. Clin Exp Immunol 144, 254-263.
Delano, W.L. 2002. DeLano Scientific, San Carlos, CA, USA, http://www.pymol.org.
Easley, K.E., Sommer, B.J., Boanca, G., Barycki, J.J., Simpson, M.A., 2007. Characterization of human UDP-glucose dehydrogenase reveals critical catalytic roles for lysine 220 and aspartate 280. Biochemistry 46, 369-378.
Ellis, M.E., 1998. Gram-negative bacillary pneumonia in: Ellis, M. E., (Ed.), Infectious Diseases of the Respiratory Tract, Cambridge University Press, Cambridge, pp. 136-139.
Fang, C.T., Chuang, Y.P., Shun, C.T., Chang, S.C., Wang, J.T., 2004. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med 199, 697-705.
Franzen, B., Carrubba, C., Feingold, D.S., Ashcom, J., Franzen, J.S., 1981. Amino acid sequence of the tryptic peptide containing the catalytic-site thiol group of bovine liver uridine diphosphate glucose dehydrogenase. Biochem J 199, 599-602.
Fung, C.P., Chang, F.Y., Lee, S.C., Hu, B.S., Kuo, B.I., Liu, C.Y., Ho, M., Siu, L.K., 2002. A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis? Gut 50, 420-424.
Gatzeva-Topalova, P.Z., May, A.P., Sousa, M.C., 2005. Structure and mechanism of ArnA: conformational change implies ordered dehydrogenase mechanism in key enzyme for polymyxin resistance. Structure 13, 929-942.
Ge, X., Campbell, R.E., van de Rijn, I., Tanner, M.E., 1998. Covalent adduct formation with a mutated enzyme: Evidence for a thioester intermediate in the reaction catalyzed by UDP-glucose dehydrogenase. Journal of the American Chemical Society 120, 6613-6614.
Ge, X., Penney, L.C., van de Rijn, I., Tanner, M.E., 2004. Active site residues and mechanism of UDP-glucose dehydrogenase. Eur J Biochem 271, 14-22.
Gunn, J.S., 2001. Bacterial modification of LPS and resistance to antimicrobial peptides. J Endotoxin Res 7, 57-62.
Gunn, J.S., Ryan, S.S., Van Velkinburgh, J.C., Ernst, R.K., Miller, S.I., 2000. Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar typhimurium. Infect Immun 68, 6139-6146.
Gunn, J.S., Lim, K.B., Krueger, J., Kim, K., Guo, L., Hackett, M., Miller, S.I., 1998. PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol 27, 1171-1182.
Guo, L., Lim, K.B., Gunn, J.S., Bainbridge, B., Darveau, R.P., Hackett, M., Miller, S.I., 1997. Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science 276, 250-253.
Hanau, S., Dallocchio, F., Rippa, M., 1992. NADPH activates a decarboxylation reaction catalysed by lamb liver 6-phosphogluconate dehydrogenase. Biochim Biophys Acta 1122, 273-277.
He, W., Wang, Y., Liu, W., Zhou, C.Z., 2007. Crystal structure of Saccharomyces cerevisiae 6-phosphogluconate dehydrogenase Gnd1. BMC Struct Biol 7, 38.
Helander, I.M., Kato, Y., Kilpelainen, I., Kostiainen, R., Lindner, B., Nummila, K., Sugiyama, T., Yokochi, T., 1996. Characterization of lipopolysaccharides of polymyxin-resistant and polymyxin-sensitive Klebsiella pneumoniae O3. Eur J Biochem 237, 272-278.
Hoffmann, J.A., Kafatos, F.C., Janeway, C.A., Ezekowitz, R.A., 1999. Phylogenetic perspectives in innate immunity. Science 284, 1313-1318.
Huh, J.W., Yoon, H.Y., Lee, H.J., Choi, W.B., Yang, S.J., Cho, S.W., 2004. Importance of Gly-13 for the coenzyme binding of human UDP-glucose dehydrogenase. J Biol Chem 279, 37491-37498.
Huh, J.W., S.J. Yang, E.Y. Hwang, M.M. Choi, H.J. Lee, E.A. Kim, S.Y. Choi, J. Choi, H.N. Hong, S.W. Cho, 2007. Alteration of the quaternary structure of human UDP-glucose dehydrogenase by a double mutation. J Biochem Mol Biol 40, 690-6.
Hung, R.J., Chien, H.S., Lin, R.Z., Lin, C.T., Vatsyayan, J., Peng, H.L., Chang, H.Y., 2007. Comparative analysis of two UDP-glucose dehydrogenases in Pseudomonas aeruginosa PAO1. J Biol Chem 282, 17738-17748.
Jones, T.A., Zou, J.Y., Cowan, S.W., Kjeldgaard, M., 1991. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47 ( Pt 2), 110-119.
Karsten, W.E., Chooback, L., Cook, P.F., 1998. Glutamate 190 is a general acid catalyst in the 6-phosphogluconate-dehydrogenase-catalyzed reaction. Biochemistry 37, 15691-15697.
Lacour, S., Bechet, E., Cozzone, A.J., Mijakovic, I., Grangeasse, C., 2008. Tyrosine phosphorylation of the UDP-glucose dehydrogenase of Escherichia coli is at the crossroads of colanic acid synthesis and polymyxin resistance. PLoS One 3, e3053.
Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., 1993. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26, 283-291.
Lee, H.S., Son, Y.J., Chong, S.H., Bae, J.Y., Leem, C.H., Jang, Y.J., Choe, H., 2009. Computational analysis of the quaternary structural changes induced by point mutations in human UDP-glucose dehydrogenase. Arch Biochem Biophys 486, 35-43.
Levy-Adam, F., Abboud-Jarrous, G., Guerrini, M., Beccati, D., Vlodavsky, I., Ilan, N., 2005. Identification and characterization of heparin/heparan sulfate binding domains of the endoglycosidase heparanase. J Biol Chem 280, 20457-20466.
Li, L., Cook, P.F., 2006. The 2'-phosphate of NADP is responsible for proper orientation of the nicotinamide ring in the oxidative decarboxylation reaction catalyzed by sheep liver 6-phosphogluconate dehydrogenase. J Biol Chem 281, 36803-36810.
Li, L., Zhang, L., Cook, P.F., 2006. Role of the S128, H186, and N187 triad in substrate binding and decarboxylation in the sheep liver 6-phosphogluconate dehydrogenase reaction. Biochemistry 45, 12680-12686.
Loutet, S.A., Bartholdson, S.J., Govan, J.R., Campopiano, D.J., Valvano, M.A., 2009. Contributions of two UDP-glucose dehydrogenases to viability and polymyxin B resistance of Burkholderia cenocepacia. Microbiology 155, 2029-2039.
McRee, D.E., 1999. XtalView/Xfit--A versatile program for manipulating atomic coordinates and electron density. J Struct Biol 125, 156-165.
Montin, K., Cervellati, C., Dallocchio, F., Hanau, S., 2007. Thermodynamic characterization of substrate and inhibitor binding to Trypanosoma brucei 6-phosphogluconate dehydrogenase. Febs J 274, 6426-6435.
Navaza, J., 1994. AMoRe: an automated package for molecular replacement. Acta Crystallogra A 50, 157-163.
Nelson, K., Selander, R.K., 1994. Intergeneric transfer and recombination of the 6-phosphogluconate dehydrogenase gene (gnd) in enteric bacteria. Proc Natl Acad Sci U S A 91, 10227-10231.
Oka, T., Jigami, Y., 2006. Reconstruction of de novo pathway for synthesis of UDP-glucuronic acid and UDP-xylose from intrinsic UDP-glucose in Saccharomyces cerevisiae. FEBS J 273, 2645-2657.
Ordman, A.B., Kirkwood, S., 1977a. Mechanism of action of uridine diphoglucose dehydrogenase. Evidence for an essential lysine residue at the active site. J Biol Chem 252, 1320-1326.
Ordman, A.B., Kirkwood, S., 1977b. UDPglucose dehydrogenase. Kinetics and their mechanistic implications. Biochim Biophys Acta 481, 25-32.
Otwinowski Z, Minor, W., 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology 276, 307-326.
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., 2004. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25, 1605-1612.
Phillips, C., Dohnalek, J., Gover, S., Barrett, M.P., Adams, M.J., 1998. A 2.8 Å resolution structure of 6-phosphogluconate dehydrogenase from the protozoan parasite Trypanosoma brucei: comparison with the sheep enzyme accounts for differences in activity with coenzyme and substrate analogues. J Mol Biol 282, 667-681.
Podschun, R., Ullmann, U., 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11, 589-603.
Podschun, R., Sievers, D., Fischer, A., Ullmann, U., 1993. Serotypes, hemagglutinins, siderophore synthesis, and serum resistance of Klebsiella isolates causing human urinary tract infections. J Infect Dis 168, 1415-1421.
Price, N.E., Cook, P.F., 1996. Kinetic and chemical mechanisms of the sheep liver 6-phosphogluconate dehydrogenase. Arch Biochem Biophys 336, 215-223.
Princivalle, M., de Agostini, A., 2002. Developmental roles of heparan sulfate proteoglycans: a comparative review in Drosophila, mouse and human. Int J Dev Biol 46, 267-278.
Raetz, C.R., Whitfield, C., 2002. Lipopolysaccharide endotoxins. Annu Rev Biochem 71, 635-700.
Rasko, D.A., Rosovitz, M.J., Myers, G.S., Mongodin, E.F., Fricke, W.F., Gajer, P., Crabtree, J., Sebaihia, M., Thomson, N.R., Chaudhuri, R., Henderson, I.R., Sperandio, V., Ravel, J., 2008. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 190, 6881-6893.
Ridley, W.P., Kirkwood, S., 1973. The stereospecificity of hydrogen abstraction by uridine diphosphoglucose dehydrogenase. Biochem Biophys Res Commun 54, 955-960.
Rippa, M., Giovannini, P.P., Barrett, M.P., Dallocchio, F., Hanau, S., 1998. 6-Phosphogluconate dehydrogenase: the mechanism of action investigated by a comparison of the enzyme from different species. Biochim Biophys Acta 1429, 83-92.
Rosano, C., Bisso, A., Izzo, G., Tonetti, M., Sturla, L., De Flora, A., Bolognesi, M., 2000. Probing the catalytic mechanism of GDP-4-keto-6-deoxy-d-mannose Epimerase/Reductase by kinetic and crystallographic characterization of site-specific mutants. J Mol Biol 303, 77-91.
Ruda, G.F., Alibu, V.P., Mitsos, C., Bidet, O., Kaiser, M., Brun, R., Barrett, M.P., Gilbert, I.H., 2007. Synthesis and biological evaluation of phosphate prodrugs of 4-phospho-D-erythronohydroxamic acid, an inhibitor of 6-phosphogluconate dehydrogenase. ChemMedChem 2, 1169-1180.
Schiller, J.G., Bowser, A.M., Feingold, D.S., 1973. Partial purification and properties of UDPG dehydrogenase from Escherichia coli. Biochim Biophys Acta 293, 1-10.
Sommer, B.J., Barycki, J.J., Simpson, M.A., 2004. Characterization of human UDP-glucose dehydrogenase. CYS-276 is required for the second of two successive oxidations. J Biol Chem 279, 23590-23596.
Sundaramoorthy, R., Iulek, J., Barrett, M.P., Bidet, O., Ruda, G.F., Gilbert, I.H., Hunter, W.N., 2007. Crystal structures of a bacterial 6-phosphogluconate dehydrogenase reveal aspects of specificity, mechanism and mode of inhibition by analogues of high-energy reaction intermediates. Febs J 274, 275-286.
Tan, C., Fu, S., Liu, M., Jin, M., Liu, J., Bei, W., Chen, H., 2008. Cloning, expression and characterization of a cell wall surface protein, 6-phosphogluconate-dehydrogenase, of Streptococcus suis serotype 2. Vet Microbiol 130, 363-370.
Tarr, P.I., Schoening, L.M., Yea, Y.L., Ward, T.R., Jelacic, S., Whittam, T.S., 2000. Acquisition of the rfb-gnd cluster in evolution of Escherichia coli O55 and O157. J Bacteriol 182, 6183-6191.
Tetaud, E., Hanau, S., Wells, J.M., Le Page, R.W., Adams, M.J., Arkison, S., Barrett, M.P., 1999. 6-Phosphogluconate dehydrogenase from Lactococcus lactis: a role for arginine residues in binding substrate and coenzyme. Biochem J 338 ( Pt 1), 55-60.
Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680.
Topham, C.M., Matthews, B., Dalziel, K., 1986. Kinetic studies of 6-phosphogluconate dehydrogenase from sheep liver. Eur J Biochem 156, 555-567.
Wallace, A.C., Laskowski, R.A., Thornton, J.M., 1995. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8, 127-134.
Wang, J., Li, S., 2006. Catalytic mechanism of 6-phosphogluconate dehydrogenase: a theoretical investigation. J Phys Chem B 110, 7029-7035.
Williams, P., Tomas, J.M., 1990. The pathogenicity of Klebsiella pneumoniae. Reviews in Medical Microbiology 1, 196-204.
Wu, K.M., Li, L.H., Yan, J.J., Tsao, N., Liao, T.L., Tsai, H.C., Fung, C.P., Chen, H.J., Liu, Y.M., Wang, J.T., Fang, C.T., Chang, S.C., Shu, H.Y., Liu, T.T., Chen, Y.T., Shiau, Y.R., Lauderdale, T.L., Su, I.J., Kirby, R., Tsai, S.F., 2009. Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis. J Bacteriol 191, 4492-4501.
Yeh, C.Y., C.N. Lin, C.F. Chang, C.H. Lin, H.T. Lien, J.Y. Chen, J.S. Chia, 2008. C-terminal repeats of Clostridium difficile toxin A induce production of chemokine and adhesion molecules in endothelial cells and promote migration of leukocytes. Infect Immun 76, 1170-8.
Zhang, L., Chooback, L., Cook, P.F., 1999. Lysine 183 is the general base in the 6-phosphogluconate dehydrogenase-catalyzed reaction. Biochemistry 38, 11231-11238.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47690-
dc.description.abstract克雷伯氏肺炎桿菌(Klebsiella pneumoniae) 為一革蘭氏陰性細菌。這種伺機性的病原體,在台灣所引發的典型症狀有原發性肝膿瘍 (primary liver abscess)、轉移性腦膜炎 (metastatic meningitis)、敗血症 (sepsis) 和眼內炎 (endophthalmitis)等。本論文研究的主要針對與克雷伯氏肺炎桿菌致病性相當重要的兩個目標蛋白進行研究,以瞭解其反應機制。第一個目標蛋白為6-磷酸葡萄糖酸脫氫酶 (6-phosphogluconate dehydrogenase, 6PGDH),在Streptococcus pneumoniae 及 Streptococcus suis具有黏附因子(adhesion) 的功能,也在五碳糖磷酸途徑中 (pentose phosphate pathway) 參與了第三步驟的催化反應,其催化6-磷酸葡萄糖酸(6-phosphogluconate, 6PG) 之脫羧基反應,釋出二氧化碳以形成5-磷酸核酮糖 (ribulose 5-phosphate),此反應需要一分子的輔酶NADP+參與反應,反應過程中會伴隨著NADPH的產生,做為還原反應的產物。第二個目標蛋白為尿嘧啶雙磷酸葡萄糖去氫酶 (UDP-Glucose dehydrogenase, Ugd),其催化尿嘧啶雙磷酸葡萄糖 (UDP-glucose, UPG) 氧化反應生成尿嘧啶雙磷酸葡萄糖醛酸(UDP-glucuronic acid, UGA),並伴隨著產生兩分子還原態輔酶NADH。尿嘧啶雙磷酸葡萄糖醛酸為4-amino-4-deoxy-L-arabinopyranose (L-Ara4N)生合成所必需的前驅物。藉由L-Ara4N在脂質多醣體 (LPS) 的lipid A上的修飾,使得細胞表面負電性降低,造成帶正電的多黏菌素 (polymyxin) 與克雷伯氏肺炎桿菌的細胞膜結合減少,進而讓克雷伯氏肺炎桿菌得以產生抗性,並保護革蘭氏陰性菌得以逃避抗菌胜肽 (cationic antimicrobial peptides) 的殺菌作用。研究結果發現第一個具有與大腸桿菌高同源性之致病菌克雷伯氏桿菌為來源之apo-form的結晶結構。以及結合受質、受質與輔酶 (NADPH) 及葡萄糖的三種大腸桿菌6-磷酸葡萄糖酸脫氫酶之高解析度複合結構。相較於未結合輔酶的單體,我們發現當結合輔酶NADPH至雙隅體其中之一的單體會誘發10度的旋轉及7埃的位移。因此,使得結合輔酶NADPH的單體比起未結合輔酶的單體,呈現出相對緊閉的構形。相較於他物種,我們進一步提出了結合輔酶時所產生相對的移動,進而影響輔酶結合區的構形的解釋。對6-磷酸葡萄糖酸脫氫酶,我們提出了一個反應物依序與相對應的胺基酸結合後,進而影響單體構形的機制;此外其對糖共軛體結合的差異性更提供了設計酵素抑制物相當重要的依據。對尿嘧啶雙磷酸葡萄糖去氫酶,本研究解出克雷伯氏肺炎桿菌尿嘧啶雙磷酸葡萄糖去氫酶單體的apo-form及末端帶有histidine-tag之高解析度結構。以及結合受質、受質與輔酶 (NADH) 及產物的三種克雷伯氏肺炎桿菌尿嘧啶雙磷酸葡萄糖去氫酶複合結構。在結合兩個產物分子的尿嘧啶雙磷酸葡萄糖去氫酶複合結構中,首次發現了一個不同於產物生成反應區的第二結合位。此結合位早已存在於結構表面,主要由帶正電的胺基酸組。相較於其他物種的尿嘧啶雙磷酸葡萄糖去氫酶結構,可得知K256 和 D257與第二個產物分子結合時會影響其存在的位置,並引發牽引的作用,造成參與催化反應的cysteine遠離了受質,形成了一個無法進行反應的構形。活性分析結果更進一步顯示了異位效應及產物競爭性抑制的現象,我們因而提出了一個負反饋機制來解釋結構的變化。zh_TW
dc.description.abstractThe Gram-negative bacterium, Klebsiella pneumoniae (Kp), is an opportunistic pathogen that mainly causes primary pyogenic liver abscess, metastatic meningitis, sepsis and endophthalmitis in Taiwan. The main thrust of this thesis work is the understanding of the reaction mechanisms of two target proteins associated with the pathogenesis of K. pneumoniae. One is 6-phosphogluconate dehydrogenase (6PGDH) that acts as a new cell wall adhesin in Streptococcus pneumoniae and Streptococcus suis, as well as the third enzyme of the pentose phosphate pathway, catalyzing the oxidative decarboxylation of 6-phosphogluconate to form ribulose 5-phosphate, along with the reduction of NADP+ to NADPH. The other is UDP-glucose dehydrogenase (Ugd), catalyzing the NAD+-dependent 2-fold oxidation of UDP-glucose (UPG) to produce UDP-glucuronic acid (UGA), a requisite precursor for the biosynthesis of 4-amino-4-deoxy-L-arabinopyranose (L-Ara4N), that allows K. pneumoniae to resist the antibiotic polymyxin and protect gram-negative bacteria from the bactericidal action of cationic antimicrobial peptides (CAMPs) by the cationic modification of phosphates of lipid A with L-Ara4N. Here we report the first apo-form crystal structure of the pathogenic K. pneumoniae 6PGDH (Kp6PGDH) and the structures of the highly homologous Escherichia coli K12 6PGDH (Ec6PGDH) complexed with substrate, substrate/NADPH, and glucose at high resolution. The binding of NADPH to one subunit of the homodimeric structure triggered a 10° rotation and resulting in a 7 Å movement of the coenzyme-binding domain. The coenzyme was thus trapped in a closed enzyme conformation, in contrast to the open conformation of the neighboring subunit. Comparison of our Ec/Kp6PGDH structures with those of other species illustrated how the domain conformation can be affected upon binding of the coenzyme. For 6PGDH, we propose that the catalysis follows an ordered binding mechanism with alternating conformational changes in the corresponding subunits and the novel glycoconjugate-binding ability of 6PGDH provide important implications for the design of selective inhibitors. For K. pneumoniae Ugd (KpUgd), we have determined crystal structures of KpUgd in the apo and C-terminal 6×histidine-tagged states at high resolution as well as complexes with substrate, substrate/NADH, and two product molecules. The binding of two UGA molecules to the KpUgd structure reveals for the first time that the second UGA occupied the pre-existing position of the positively charged surface pocket distinct from the active site. Superimpositions and comparisons of our KpUgd structures indicated that the second UGA interacted with K256 and D257, which in turn gives rise to the concomitant movement of the substrate-interacting cysteine and forms an inactive configuration. The kinetic studies showed that KpUgd exhibited allosteric effects and the competitive inhibition of product implicated that the catalysis follows a negative feedback mechanism.en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:12:52Z (GMT). No. of bitstreams: 1
ntu-99-D93b46014-1.pdf: 3481496 bytes, checksum: 3adde639c9e5fd9da42fa9d09319747f (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents中文摘要 i
ABSTRACT iii
CHAPTER 1 INTRODUCTION 1
Aim 1. The crucial virulence factor for the understanding the pathogenesis of K. pneumoniae 3
The importance of the virulence factor in bacteria pathogens 3
Target protein 4
The important catalytic mechanism 5
Aim2. 4-amino-4-deoxy-L-arabinopyranose (L-Ara4N) biosynthetic pathway 6
The importance of the lipid A modification in bacteria pathogens 6
Target protein 8
The important catalytic mechanism 9
CHAPTER 2 MATERIALS AND METHODS 13
Protein preparation and crystallization 14
Diffraction data collection and crystal structure analyses 17
Enzyme assays of Ec/Kp6PGDH 19
Sedimentation velocity analysis of KpUgd 21
CHAPTER 3 RESULTS 24
Part A: Conformational changes associated with cofactor/substrate binding of 6-phosphogluconate dehydrogenase from Escherichia coli and Klebsiella pneumoniae: Implications for enzyme mechanism 25
Overall architecture of Ec/Kp6PGDH 25
Residues in substrate binding 26
Coenzyme binding and conformational changes 28
Comparison of sequence and activity of 6PGDH from different species 31
Glycoconjugate-binding Activity of 6PGDH 32
Part B: Structure and Mechanism of Klebsiella pneumoniae UDP-glucose dehydrogenase: A key enzyme for polymyxin resistance 33
Sequence Analysis of Ugd from Different Species 33
Overall architecture 35
Coenzyme binding site 37
Substrate binding site in Ugd catalytic domain 40
Binding of the second UGA in a positively charged pocket triggers conformational changes 46
KpUgd presented as a dimer in solution 52
CHAPTER 4 DISCUSSION 55
Structural similarity between Ugd and 6PGDH coenzyme binding domains 56
Proposed catalytic mechanism for 6PGDH 57
Proposed regulation mechanism for KpUgd 60
FIGURES 63
Fig. 1 Catalytic reaction of 6PGDH. 64
Fig. 2 Catalytic reaction of 6PGDH. 65
Fig. 3 Purifications of Ec/Kp6PGDH. 66
Fig. 4 Purifications of Kp6Ugd and Kp6Ugd/6His. 67
Fig. 5 Crystals of Ec/Kp6PGDH. 68
Fig. 6 Crystals of KpUgd. 69
Fig. 7 Overall and active site structures of Ec/Kp6PGDH. 70
Fig. 8 Active-site architectures of Ec6PGDH/6PG/ATR and Ec6PGDH/glucose. 71
Fig. 9 Stereoview of the substrate-binding sites. 72
Fig. 10 Conformational changes of 6PGDH and its interactions with the cofactor. 73
Fig. 11 Superpositions of individual subunits of Ec6PGDH/6PG within a dimer. 74
Fig. 12 Role of coenzyme in the catalytic mechanism of 6PGDH. 75
Fig. 13 Sequence alignments. 76
Fig. 14 Proposed biosynthetic pathway for the addition of 4-amino-arabinose to lipid A. 77
Fig. 15 The catalytic mechanism of Ugd. 78
Fig. 16 Sequence alignment of Ugd enzymes from different species. 79
Fig. 17 Overall architecture and the structural difference of Ugd structures from different species. 80
Fig. 18 Conformational changes of KpUgd structures. 81
Fig. 19 Electrostatic surface representation the conformational difference of the coenzyme-binding site. 82
Fig. 20 Stereoviews of the coenzyme-binding site. 83
Fig. 21 Stereoviews showing interactions at the catalytic site of KpUgd. 84
Fig. 22 Stereoviews of the contacts between UDP-sugars and KpUgd. 85
Fig. 23 Superimposition of C-terminal domain of KpUgd structures. 86
Fig. 24 Stereoviews of the secondary binding site of UGA in KpUgd/UGA complex. 87
Fig. 25 Comparisons of the surface electrostatic potential of KpUgd structures with different species. 88
Fig. 26 Electrostatic surface representation of the conformational difference in the second binding site. 89
Fig. 27 Binding of the second UGD induces the conformational changes. 90
Fig. 28 Sedimentation velocity analysis of KpUgd. 91
Fig. 29 The dimeric structure of KpUgd. 92
Fig. 30 Basic kinetic properties of KpUgd. 93
Fig. 31 Stereoview of cofactors binding mode in SpUgd structures. 94
Fig. 32 Comparison of the coenzyme-binding sites. 95
Fig. 33 Modeled active site of 6PGDH. 96
Fig. 34 Active-site interactions. 97
Fig. 35 Proposed catalytic pathway of 6PGDH. 98
Fig. 36 The proposed catalytic cycle of KpUgd. 99
Table 1. Data collection and refinement statistics for the crystals of 6PGDH from E. coli (Ec) and K. pneumoniae (Kp). 101
Table 2. Values of kinetic parameters of the Ec/Kp6PGDH 102
Table 3. Data collection and refinement statistics for the crystals of Ugd from K. pneumoniae (Kp). 103
Table 4. Values of kinetic parameters of the Kp/HsUgd 104
REFERENCES 105
dc.language.isoen
dc.subject抗生素失效zh_TW
dc.subject克雷伯氏肺炎桿菌zh_TW
dc.subject6-磷酸葡萄糖酸脫氫&#37238zh_TW
dc.subject尿嘧啶雙磷酸葡萄糖去氫&#37238zh_TW
dc.subject藥物標的zh_TW
dc.subjectUDP-glucose dehydrogenaseen
dc.subjectantibacterial resistanceen
dc.subjectdrug targeten
dc.subjectKlebsiella pneumoniaeen
dc.subject6-phosphogluconate dehydrogenaseen
dc.title克雷伯氏肺炎桿菌中與致病機制相關的醣酵素之結構與反應機轉研究zh_TW
dc.titleStudies on Structures and Reaction Mechanisms of the Glyco-enzymes Associated with Pathogenesis of Klebsiella pneumoniaeen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee林俊宏,蕭傳鐙,詹迺立,馬徹
dc.subject.keyword克雷伯氏肺炎桿菌,6-磷酸葡萄糖酸脫氫&#37238,尿嘧啶雙磷酸葡萄糖去氫&#37238,藥物標的,抗生素失效,zh_TW
dc.subject.keywordKlebsiella pneumoniae,6-phosphogluconate dehydrogenase,UDP-glucose dehydrogenase,drug target,antibacterial resistance,en
dc.relation.page114
dc.rights.note有償授權
dc.date.accepted2010-08-13
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
3.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved