請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47677完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張淑惠(Shu-Hui Chang),陳秀熙(Hsiu-Hsi Chen) | |
| dc.contributor.author | Wen-Wei Huang | en |
| dc.contributor.author | 黃文蔚 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:12:07Z | - |
| dc.date.available | 2013-09-09 | |
| dc.date.copyright | 2010-09-09 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-13 | |
| dc.identifier.citation | 一、英文部分
1.David Collett (2003) “Modelling Survival Data in Medical Research”. Chapman and Hall, New York. 2.J. D. Kalbfleisch and R. L. Prentice (2002), The Statistical Analysis of Failure Time Data, 2nd ed., JohnWiley and Son, New York. 3.Allison, P.D. (1995) “Survivail Analysis Using the SAS System:A Practical Guide.” 4.P. AVEYARD et al. Does smoking status influence the prognosis of bladder cancer? A systematic review. BJU International 2002; 90: 228–239. 5.Jinpei Kumagai at al. EBAG9 is a tumor-promoting and prognostic factor for bladder cancer. Int. J. Cancer 2009; 124: 799–805. 6.R.A. Mason et al. EGFR pathway polymorphisms and bladder cancer susceptibility and prognosis. Carcinogenesis 2009; vol.30 no.7:1155–1160. 7.Zi-Ke Qin at al. Expression of Bmi-1 is a prognostic marker in bladder cancer. BMC Cancer 2009; 9:61. 8.Andreas Hinkel et al. Identification of Bladder Cancer Patients at Risk for Recurrence or Progression: An ImmunohistochemicalStudy Based on the Expression of Metallothionein. Journal of Toxicology and Environmental Health 2008, Part A; 71: 954–959. 9.KAIJA VASALA et al. Matrix Metalloproteinase-9 (MMP-9) Immunoreactive Protein in Urinary Bladder Cancer:A Marker of Favorable Prognosis. ANTICANCER RESEARCH 2008; 28: 1757-1762. 10.J.A. Mandeville et al. P-cadherin as a prognostic indicator and a modulator of migratory behaviour in bladder carcinoma cells. BJU International 2008; 102: 1707–1714. 11.N.M. Streeper et al. The significance of lymphovascular invasion in transurethral resection of bladder tumour and cystectomy specimens on the survival of patients with urothelial bladder cancer. BJU International 2008; 103: 475–479. 12.M. Unoki et al. UHRF1 is a novel molecular marker for diagnosis and the prognosis of bladder cancer. British Journal of Cancer 2009; 101, 98 – 105. 13.Kang Su Cho et al. Differences in Tumor Characteristics and Prognosis in Newly Diagnosed Ta, T1 Urothelial Carcinoma of Bladder According to Patient Age. Urology 2009; 73 (4): 828-832. 14.S.H. Lamm et al. Arsenic Cancer Risk Confounder in Southwest Taiwan Data Set. Environmental Health Perspectives 2006; 114 (7): 1077-1082. 15.Chung-Hsin Chen et al. Clinicopathological Characteristics and Survival Outcome of Arsenic Related Bladder Cancer in Taiwan. THE JOURNAL OF UROLOGY 2009; 181: 547-553. 16.Hung-Yi Chiou et al. Incidence of Transitional Cell Carcinoma and Arsenic in Drinking Water: A Follow-up Study of 8,102 Residents in an Arseniasis-endemic Area in Northeastern Taiwan. Am J Epidemiology 2001; 153(5):411- 418. 17.Hsiao-Yu Yang et al. Increased Mortality Risk for Cancers of the Kidney and Other Urinary Organs among Chinese Herbalists. J Epidemiol 2009; 19(1):17-23. 18.Min-Pei Ling et al. Risk characterization and exposure assessment in arseniasis-endemic areas of Taiwan. Environment International 2007; 33:98–107. 19.Eun-Jung Kim et al. Methylation of the RUNX3 Promoter as a Potential Prognostic Marker for Bladder Tumor. THE JOURNAL OF UROLOGY 2008; 180: 1141-1145. 20.Yasuyoshi Miyata et al. Phosphorylated hepatocyte growth factor receptor/c-Met is associated with tumor growth and prognosis in patients with bladder cancer: correlation with matrix metalloproteinase–2 and –7 and E-cadherin. Human Pathology 2009; 40: 496–504. 21.Adela Castillejo et al. TGFB1 and TGFBR1 polymorphic variants in relationship to bladder cancer risk and prognosis. Int. J. Cancer 2009; 124: 608–613. 22.I.J. Schultz et al. Bladder cancer diagnosis and recurrence prognosis: Comparison of markers with emphasis on survivin. Clinica Chimica Acta 2006; 368: 20–32. 23.Andras Horvath et al. Therapeutic options in the management of intermediate-risk nonmuscle-invasive bladder cancer. BJU International 2008; 103:726-729. 24.Yongnan Li et al. Thymidylate synthase was associated with patient prognosis and the response to adjuvant therapy in bladder cancer. BJU International 2008; 103:547-552. 25.Jemal A et al. Cancer statistics, 2009. CA Cancer J Clin 2009; 59(4):225-49. 26.JJ Ord et al. An Investigation Into the Prognostic Significance of Necrosis and Hypoxia in High Grade and Invasive Bladder Cancer. THE JOURNAL OF UROLOGY 2007; 178:677-682. 二、中文部分 1.國民健康局,民國96年癌症登記年度報告,民國99年2月出版 2.邱耿中,「廠商存活、退出與轉業之動態分析─ 存活分析方法之應用」,國立臺 灣大學經濟學研究所碩士論文,民國九十二年。 3.陳家豪,「存活分析方法應用於汽車貸款客戶信用風險管理之研究」,國立成 功大學統計學系碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47677 | - |
| dc.description.abstract | 背景:膀胱癌(bladder cancer)為泌尿道腫瘤中最常見的癌症,膀胱癌的死亡率雖不是很高,發生率卻頗高,尤其台灣西南沿海烏腳病流行地區的北門、學甲、布袋、義竹最高,發生率甚至是台灣其他地區的2-3倍。因此膀胱癌的診斷及治療已是現代醫學及公共衛生上不容小覷的問題。
雖然大部分的膀胱癌病患有不錯的預後,但某些病患確有無法解釋的高致死率與腫瘤復發及轉移。目前膀胱癌的治療最大的挑戰就是膀胱癌本身沒有一個很好的腫瘤標記來預測其存活跟復發及轉移的時間。目前有少數研究顯示,利用分子生物學與基因分析的方式,能找出預測膀胱癌病患的存活與復發的指標。但是這些分析方式僅停留於實驗室階段,且較為昂貴、耗時,不容易於臨床上應用。因此在臨床治療方面,我們急切需要較簡便且能準確的預測膀胱癌病患,經手術切除後,其存活、復發及轉移時間的指標,以期能降低這類癌症對國人的威脅。 目標:本研究希望可以透過簡單且易取得的臨床參數,找出膀胱癌病患經手術切除後,影響其無病存活與腫瘤相關存活時間的相關因子。 方法:自1998年至2005年,收集來自於奇美醫院,經診斷為膀胱尿路上皮癌,並接受根治性手術的病患,共269位。所收集的基本資料包括病人的年齡、性別、是否居住住烏腳病(BFD)的流行地區。 臨床病理參數的部分包括檢體邊緣是否有癌細胞侵犯、腫瘤是否有不正常的分化(Differentiation)、腫瘤是否有壞死(Necrosis) 、腫瘤的分期(T,N)、組織學分級(WHO)、腫瘤乳突化的程度(papillary) 、腫瘤侵犯的方式(I, T, N)、是否有淋巴或血管侵犯(LVI)、神經侵犯(NI) 及高倍數下有絲分裂的個數(MF10)。利用所收集到的基本資料及臨床參數,將病患分組,來比較各組間病患無病的存活機率及腫瘤相關的存活機率是否不同。 統計方法以Kapaln-Meier estimate估計不同組別的存活函數,再以Log-rank test或Wilcoxon test來檢定單一因子對膀胱癌患者經手術切除之預後的影響。之後再以Cox 比例風險模型來進行多變量分析,透過適當的模式選擇,找出對膀胱癌病患無病存活與腫瘤相關存活時間有影響的因子。 結果:以無病的存活時間來看,檢體邊緣有癌細胞侵犯(p<0.0001)、較高的組織學分級(p=0.0422)、非結節狀的侵犯方式(p=0.0006)及較高的高倍數下有絲分裂個數(p=0.0138),有比較低的無病存活機率,並達到統計學上的意義。透過Cox比例風險模型,發現檢體邊緣是否有癌細胞侵犯 (p<0.0001)及組織學分級(p=0.0692)是無病存活時間的獨立預後因子,並達到顯著的意義。 以腫瘤相關的存活時間來看,較高的T分期(p<0.0001)、有淋巴結侵犯(p=0.0124)、較高的組織學分期(p=0.0036)、較低的腫瘤乳突化程度(<90%) (p<0.0001)、非結節狀的侵犯方式(p=0.0025)、有淋巴或血管的侵犯(p=0.0211)、有神經的侵犯(p=0.0166)及較高的高倍數下有絲分裂個數(≧10)(p=0.0006),有比較低的腫瘤相關存活機率,並達到統計學上的意義。在Cox 比例風險模型,發現僅有T分期(p<0.0001)、高倍數下有絲分裂的個數(p=0.0231)及年齡(p=0.0216)是腫瘤相關存活時間的獨立預後因子,並達到顯著的意義。 結論:透過存活分析的方式,我們可以找出膀胱尿路上皮癌的病患,經手術切除 腫瘤後,影響無病存活時間及腫瘤相關存活時間的因子,以提供臨床醫師 作為治療的參考。 | zh_TW |
| dc.description.abstract | Background Bladder cancer (BC) is one of the most common cancer worldwide. Its incidence is even higher at so-called “Black-Foot Disease(BFD)”endemic areas in southern Taiwan, including Pei-men, Hsieh-chia, Pu-tai and Ichu that lead to a remarkable public health problem. Although the majority of bladder cancer behaves in indolent course, however, a subset of patients suffers from unexpected lethal recurrence and metastasis. Currently, the challenge in the management of BC is the lack of ideal prognostic model. Accordingly, it is highly desirable to develop a prognostic system to aid the determinate of treatment strategies for BC with especial emphasize on those at BFD endemic areas.
Objectives To find out easily assessed clinical markers to predict the prognosis of BC in terms of disease-free and disease-specific survival after surgical resection. Methods We retrospectively reviewed the medical records of 269 patients with bladder cancer after surgical resection in a medical center in Southern Taiwan, and who had transurethral resection of bladder tumor (182) or radical cystectomy (87) between 1998 and 2005. Data collected including demographic features (age, sex, and whether living in the BFD endemic area) and clinical characteristics (pattern of invasion, tumor differentiation, tumor necrosis, T-stage, N-stage, WHO grade, lymphovascular invasion, perineural invasion, mitotic figures etc.) We compared the disease-free survival and cancer-specific survival of patients with the demographic and clinical parameters mentioned above Kaplan-Meier method was used to estimate the survival by different clinical features, of which the statistical significance was tested by using Log-rank test or Wilcoxon test. Multivariate Cox-regression was further applied to identify the significant covariates after adjusting by other covariates with a series of model selections. Results With respect to disease-free survival, positive surgical margin (p<0.0001), higher histological grade (p=0.0422), adverse invasion pattern (p=0.0006), as well as higher mitotic activity (p<0.0138) significantly affected disease-free survival. However, only positive margin (p<0.0001) and histological grade (p=0.0692) remained prognostically independent in the multivariate Cox regression model. Furthermore, numerous factors including increment of pT status (p<0.0001), the presence of nodal metastasis (p=0.0124), higher histological grade (p=0.0036), less papillary component (<90%)(p<0.0001), adverse invasion pattern (p=0.0025), the presence of lymphovascular invasion (p=0.0211), perineurial invasion (p=0.0166), and higher mitotic activity (p=0.0006) significantly predicted inferior cancer-specific survival In the multivariate analysis, the increment of pT status (p<0.0001), along with higher mitotic activity (p=0.0231), and old patient age (p=0.0216) significantly predicted inferior outcome. Conclusions Throughout this analysis, we have identified numerous significant prognosticators which identified patients at higher risk of disease relapse after surgical treatment. These can provide further information to adjust clinical management. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:12:07Z (GMT). No. of bitstreams: 1 ntu-99-P97842001-1.pdf: 1944157 bytes, checksum: d6d763536a44c1b771be4d28304bfa48 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 第一章 前言
1.1 研究動機…………………………………………………………………1 1.2 研究目的…………………………………………………………………1 1.3 研究方法及架構…………………………………………………………2 第二章 文獻回顧 2.1 膀胱癌的簡介……………………………………………………………3 2.2 膀胱癌的危險因子………………………………………………………4 2.3 膀胱癌的診斷工具………………………………………………………5 2.4 膀胱癌的治療及追蹤準則………………………………………………7 2.5 膀胱癌的預後因子………………………………………………………9 第三章 研究方法 3.1 資料來源…………………………………………………………………16 3.2 變數說明及資料結構……………………………………………………16 3.3 符號說明及定義…………………………………………………………21 3.4 存活函數及危險函數……………………………………………………24 3.5 Kaplan-Meier估計式…………………………………………………… 25 3.6 存活函數的比較…………………………………………………………26 3.7 Cox模型 3.7.1 比例風險模型……………………………………………………27 3.7.2 偏概似函數估計式………………………………………………28 3.7.3 模型的選擇………………………………………………………28 3.8 模型適合度檢定 3.8.1 殘差分析………………………………………………………… 30 3.8.2 圖形法…………………………………………………………… 33 3.9 找出有影響力的觀察值…………………………………………………34 3.10 競爭風險的處理…………………………………………………………36 3.11 時間相依的共變數………………………………………………………37 第四章 分析結果 4.1 描述性分析……………………………………………………………… 42 4.2 存活分析………………………………………………………………… 42 4.3 模型適合度檢定………………………………………………………… 51 第五章 結論及建議 5.1 研究結論…………………………………………………………………66 5.2 研究限制與建議…………………………………………………………67 參考文獻…………………………………………………………………………… 68 論文附錄…………………………………………………………………………… 72 附表………………………………………………………………………………… 74 附表1 全部病患的基本資料及臨床病理特徵的分佈…………………… 74 附表2 全部病患復發、轉移及死亡的分佈,依基本資料及臨床病理特徵 分類…………………………………………………………………75 附表3 各組間無病存活之比較……………………………………………76 附表4 各組間腫瘤相關存活之比較………………………………………77 附表5 無病存活之Cox模型選取之參數估計步驟一……………………78 附表6 無病存活之Cox模型選取之參數估計步驟二……………………78 附表7 無病存活之Cox模型選取之參數估計步驟三……………………78 附表8 無病存活之Cox模型選取之參數估計步驟四……………………79 附表9 無病存活之Cox最終模型之參數估計……………………………79 附表10腫瘤相關存活之Cox模型選取之參數估計步驟一………………79 附表11腫瘤相關存活之Cox模型選取之參數估計步驟二………………80 附表12腫瘤相關存活之Cox模型選取之參數估計步驟三………………80 附表13腫瘤相關存活之Cox模型選取之參數估計步驟四………………81 附表14腫瘤相關存活之Cox最終模型之參數估計………………………81 | |
| dc.language.iso | zh-TW | |
| dc.subject | 存活分析 | zh_TW |
| dc.subject | 膀胱癌 | zh_TW |
| dc.subject | 預後因子 | zh_TW |
| dc.subject | 臨床參數 | zh_TW |
| dc.subject | Cox模型 | zh_TW |
| dc.subject | prognostic factors | en |
| dc.subject | survival analysis | en |
| dc.subject | Cox model | en |
| dc.subject | clinical parameters | en |
| dc.subject | Bladder Cancer | en |
| dc.title | 以Cox模型來探討膀胱癌的預後因子 | zh_TW |
| dc.title | Cox models to identify prognostic factors in bladder cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 戴政,嚴明芳,陳立昇,黃崑明 | |
| dc.subject.keyword | 膀胱癌,預後因子,臨床參數,Cox模型,存活分析, | zh_TW |
| dc.subject.keyword | Bladder Cancer,prognostic factors,clinical parameters,Cox model,survival analysis, | en |
| dc.relation.page | 81 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-13 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 1.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
