請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47675完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳瑞北(Ruey-Beei Wu) | |
| dc.contributor.author | Wei-Chih Lin | en |
| dc.contributor.author | 林威志 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:12:01Z | - |
| dc.date.available | 2016-08-22 | |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-18 | |
| dc.identifier.citation | [1] H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada,and Y. Nagatomi, “A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones,” IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, pp. 789-792, June 1997.
[2] L. C. Tsai, and C. W. Hsue, “Dual-band bandpass filters using equal-length coupled-serial-shunted lines and Z-transform techniques,” IEEE Trans. Microw. Theory Tech., vol. 52, no.4, pp. 1111-1117, April 2004. [3] K. Li, D. Kurita, and T. Matsuki, “Dual-band ultra-wideband bandpass filter,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 1193-1196, June 2006. [4] A.-S. Liu, T.-Y. Huang, and R.-B. Wu, “A dual wideband filter design using frequency mapping and stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 56, no.12, pp. 2921-2929, Dec. 2008. [5] X. Y. Chang, J.X. Chen, Q. Xue, and S.M. Li, “Dual-Band bandpass filters using stub-loaded resonators,” IEEE Microw. Wireless Comp. Lett., vol. 17, no. 8, pp. 583-585, Aug. 2007. [6] P. Mondal, and M. K. Mandal, “Design of dual-band bandpass filters using stub-loaded open loop resonators, ” IEEE Trans. Microw. Theory Tech., vol. 56, no. 1, pp. 150-155, Jan. 2008. [7] J. T. Kuo, T. H. Yeh, and C. C. Yah, “Design of microstrip bandpass filters with a dual-passband response,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1331-1337, April 2005. [8] J. T. Kuo and H. S. Cheng, “Design of quasi-elliptic function filters with a dual-passband response.” IEEE Microw. Wireless Comp. Lett., vol. 14, pp. 472-474, Oct. 2004. [9] C. Y. Chen, C. Y. Hsu, and H. R. Chuang, “Design of miniature planar dual-band filter using dual-feeding structures and embedded resonators,” IEEE Microw. Wireless Comp. Lett., vol. 16, pp. 669-671, Dec. 2006. [10] M. H. Weng, H. W. Wu, and Y. K. Su, “Compact and low loss dual-band bandpass filter using pseudo-interdigital stepped impedance resonators for WLANs,” IEEE Microw. Wireless Comp. Lett., vol.17, pp. 187-189, March 2007. [11] Y. P. Zhang and M. Sun, “Dual-band microstrip bandpass filter using stepped- impedance resonators with new coupling schemes,” IEEE Trans. Microw. Theory Tech., vol.54, no.10, pp. 3779-3785, Oct.2006. [12] S. Sun and L. Zhu, “Novel design of dual-band microstrip bandpass filters with good in-between isolation,” in Proc. Asia Pacific Microwave Conf., vol. 2, Dec.2005. [13] Y.-C. Chang, C.-H. Kao, M.-H. Weng, and R.-Y. Yang, “Design of the compact dual-band bandpass filter with high isolation for GPS/WLAN applications,” IEEE Microw. Wireless Comp. Lett., vol.19, no.12, pp. 780-782, Dec. 2009. [14] B.-J. Chen, T.-M. Shen, and R.-B. Wu, “Dual-band vertically stacked laminated waveguide filter design in LTCC technology,” IEEE Trans. Microw. Theory Tech., vol.57, no.6, pp. 1554-1562, June 2009. [15] X. Y. Zhang, Q. Xue, and B. J. Hu, “Planar tri-band bandpass filter with compact size,” IEEE Microw. Wireless Comp. Lett., vol.20, no.5, pp. 262-264, April 2010. [16] X. Lai, C.-H. Liang, S. H. Di, and B. Wu, “Design of tri-band filter based on stub loaded resonator and DGS resonator” IEEE Microw. Wireless Comp. Lett., vol.20, no.5, pp.265-267, April 2010. [17] F.-C. Chen, Q.-X. Chu and Z.-H. Tu, “Tri-band bandpass filter using stub loaded resonators,” Electron. Lett., vol.44, no.12, pp. 747-749, June 2008. [18] Y.-C. Chen, Y.-H. Hsieh, C.-H. Lee, and C.-I G. Hsu, “Tri-band microstrip BPF design using tri-section SIRs,” IEEE Antennas Propagat. Society Int. Symp., pp.3113-3116, June 2007. [19] C.-F. Chen, T.-Y. Huang, and R.-B. Wu, “Design of dual- and triple-passband filters using alternately cascaded multiband resonators,” IEEE Trans. Microw. Theory Tech., vol.54, no.9, pp.3550-3558, Sep. 2006. [20] B.-J. Chen, T.-M. Shen, and R.-B. Wu, “Design of tri-band filters with improved band allocation,” IEEE Trans. Microw. Theory Tech., vol.57, no.7, pp.1790-1797, July 2009. [21] J.-C. Liu, J.-W. Wang, B.-H. Zeng, and D.-C. Chang, “CPW-fed dual-mode double-square-ring resonators for quad-band filters,” IEEE Microw. Wireless Comp. Lett., vol.20, no.3, pp.142-144, March 2010. [22] M. Studniberg and G. V. Eleftheriades, “A quad-band bandpass filter using negative-refractive-index transmission-line (NRI-TL) metamaterials,” in IEEE Antennas Propagat. Society Int. Symp., pp. 4961-4964, June 2007. [23] C.-M. Cheng and C.-F. Yang, “Develop quad-band (1.57/2.45/3.5/5.2 GHz) bandpass filters on the ceramic substrate,” IEEE Microw. Wireless Comp. Lett., vol. 20, no.5, pp.268-270, April 2010. [24] H.-W Wu and R.-Y Yang, “A new quad-band bandpass filter using asymmetric stepped impedance resonators,” IEEE Microw. Wireless Comp. Lett., vol. 21, no.4, pp.203-205, April 2011. [25] R. J. Cameron, “General coupling matrix synthesis methods for Chebyshev filtering functions,” IEEE Trans. Microw. Theory Tech., vol.47, no.4, pp.433-442, April, 1999. [26] D. M. Pozar, Microwave Engineering, 3rd ed. New York, 2006, ch. 8. [27] J. D. Rhodes and A. S. Alseyab, “The generalized Chebyshev low-pass prototype filter ” Int. J. Circuit Theory Applicat., vol. 8, pp. 113-125, 1980. [28] R. J. Cameron, “Advanced coupling matrix synthesis techniques for microwave filter ,” IEEE Trans. Microw. Theory Tech., vol.51, no.1, pp.1-10, Jan., 2003. [29] 蔡宛伶,以多模態及頻率轉換實現之多頻段濾波器及雙工器,國立台灣大學碩士論文,2010年6月 [30] J. S. Hong and M. J. Lancaster, Microstrip Filter for RF/Microwave Applications. New York: Wiley, 2001 ch. 8. [31] C. -M. Tsai, S. -Y. Lee, and C. -C. Tsai, “Performance of a planar filter using a zero-degree feed Structure,” IEEE Trans. Microw. Theory and Tech., pp. 2362~2367, Oct. 2002. [32] 陳錡楓,具有多功能應用之小型化帶通濾波器及多工器設計,國立台灣大學博士論文,2006年6月 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47675 | - |
| dc.description.abstract | 本篇論文主要著重於不同類型頻帶配置之四頻段帶通濾波器,並提出兩種設計方法。兩種設計方法皆實現於印刷電路板上,並經過實驗的驗證。
第一種類型是針對四個頻段皆相當靠近的配置,其想法是將單頻段的濾波器經由轉換公式,把單頻的極點和零點根據各個頻段的截止頻率點去轉換組合出多頻段的極點和零點;藉由這些極點和零點可以合成該響應所對應的耦合矩陣元素值;接著我們也對n階的響應做理論分析與預測,並探討極點與零點的分布數目;最後,為了減少諧振器的使用數目,提出了多模態與單模態諧振器之間諧振頻率點之萃取方法;一旦有關諧振頻率點所組成的小模組被建立,即可從基本單頻段柴比雪夫響應直接實現出多頻段之帶通響應,以達到快速與低成本的電路設計。 第二種類型則是可任意決定頻帶位置的四個頻段之設計。其想法是利用頻率的正交性將四個單頻段通帶並接成一個四頻段的響應,再透過平行耦合線共用的方式,作為濾波器的輸入輸出級,使其同時符合四個頻段之外部品質因子,如此可避免由饋入線所造成的負載效應。此外,引入多模態諧振器來取代數個單模態諧振器的概念,並以耦合矩陣的概念說明模態頻率落點位置,可大幅減少諧振器數目與電路面積,最後則針對止帶做改善。 本論文共實作了三個電路,模擬與量測結果一致。有關第一種類型,分別使用半波長開路諧振器與網狀諧振器來實現,電路面積各為 1.18λg × 0.144λg 與 0.533λg × 0.27λg ,中心頻1.86、1.95、2.04、2.14GHz與1.82、1.94、2.06、2.18GHz,比例頻寬1.5%、1.33%、1.33%、1.5%與2.2%、1.85%、1.75%、1.84%,介入損耗則為2.2、2.3、1.8、1.3dB與1.2、1.7、2、1.2dB。至於第二種類型則是耦合線與網狀諧振器的組合,電路面積0.788λg × 0.066λg ,中心頻0.8、1.0、1.4、1.8GHz,比例頻寬12.1%、8.3%、5.5%、3.8%,介入損耗則為1.6、2、2.4、2.8dB。 | zh_TW |
| dc.description.abstract | With different requirements on the band allocations, this thesis proposes two methods for the design of quad-band bandpass filters. Thus the designed filters are fabricated on the printed circuited boards and verified by experiments.
The first part focuses on the design for closely spaced pass-bands. Through a general idea of frequency transformation, the poles and zeros of a single band response are transformed into poles and zeros of a multiband response according to the cutoff frequency of each band. Then, theoretical analysis is made to predict the nth order response and discuss the distribution of the numbers of poles and zeros. Finally, to reduce the number of resonators, a method for extracting the resonant frequency points between multi-mode and single mode resonators is proposed. If the module about resonant frequency points is constructed, the band-pass response of multi-band could be directly realized by designing the fundamental single-band Chebyshev response and achieving the fast and low-cost circuit design. The second part deals with the case of arbitrarily spaced pass-bands. The design concept is to connect four pass-bands together to form quad-band response by exploiting the frequency orthogonality. Then, to avoid loading effect by tapped line, parallel coupled lines are served as the I/O coupling structure to meet external quality factors for quad-band requirements. Moreover, multi-mode resonators are introduced to replace with many single-mode resonators and utilize the concepts of coupling matrix to explain the location of mode-frequency. By this way, the number of resonators and circuit area can be reduced. Finally, we make improvement for stopband. The four circuits are fabricated in this thesis, and the simulated results show a good agreement with the measured results. About the first part, the open-loop and net-type resonators are applied. These two quadband filters are designed and fabricated with the areas 1.18λg × 0.144λg ,0.533λg × 0.27λg , the center frequencies at 1.86、1.95、2.04、2.14GHz, 1.82、1.94、2.06、2.18GHz, the fractional bandwidth 1.5%、1.33%、1.33%、1.5%, 2.2%、1.85%、1.75%、1.84%, and the insertion loss 2.2、2.3、1.8、1.3dB, 1.2、1.7、2、1.2dB, respectively. The second part is the combination of coupled lines and net-type resonators. The occupied area is 0.788λg × 0.066λg , the center frequencies at 0.8、1.0、1.4、1.8GHz, the fractional bandwidth about 12.1%、8.3%、5.5%、3.8%, and the insertion loss 1.6、2、2.5、2.7dB. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:12:01Z (GMT). No. of bitstreams: 1 ntu-100-R98942095-1.pdf: 3009991 bytes, checksum: debb1e96f609dedf37a142b0331f7fc3 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 iii ABSTRACT iv 目錄 vi 圖目錄 x 表目錄 xiv Chapter 1 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 主要貢獻 5 1.4 章節內容概述 5 Chapter 2 濾波器之基礎理論與概念 7 2.1 轉移函數 7 2.1.1 基本定義 7 2.1.2 巴特沃斯響應 8 2.1.3 柴比雪夫響應 10 2.2 廣義耦合理論 12 2.2.1 電場性耦合 13 2.2.2 磁場性耦合 15 2.2.3 混合性耦合 18 2.3 耦合型諧振器之廣義耦合矩陣 21 2.3.1 迴圈方程式 21 2.3.2 節點方程式 24 2.3.3 廣義耦合矩陣 27 2.4 外部品質因子之萃取理論 28 2.4.1 單端負載諧振器 29 2.4.2 雙端負載諧振器 31 Chapter 3 廣義柴比雪夫響應之耦合矩陣合成 35 3.1 多項式分析 35 3.1.1 PN之求取 38 3.1.2 FN之求取 38 3.1.3 EN之求取 39 3.2 雙埠網路耦合矩陣之合成 40 3.3 耦合矩陣元素之化簡 44 Chapter 4 以頻率轉換方式實現四頻段帶通濾波器 47 4.1 低通單頻段至低通四頻段之轉換 47 4.1.1 傳輸與反射零點之求取 47 4.1.2 耦合矩陣與外部品質因子之合成 54 4.1.3 耦合矩陣元素之縮減 57 4.2 低通四頻段至帶通四頻段之轉換 59 4.2.1 耦合路徑與架構圖 59 4.2.2 電路架構與尺寸 62 4.2.3 模擬與量測結果 64 4.2.4 各個頻域下極零點之分布 68 4.3 使用微型化諧振器實現四頻段帶通濾波器 72 4.3.1 多模態之萃取 73 4.3.2 電路設計流程 77 4.3.3 模擬與量測結果 85 4.3.4 實驗結果之分析與討論 88 Chapter 5 以並接網狀諧振器實現四頻段帶通濾波器 93 5.1 單一頻帶之設計方式 93 5.1.1 耦合路徑與模態落點位置 93 5.1.2 諧振器之選定與設計 97 5.2 諧振器擺放位置之決定 99 5.3 模擬與量測結果 103 Chapter 6 結論 109 參考文獻 113 | |
| dc.language.iso | zh-TW | |
| dc.subject | 頻率轉換 | zh_TW |
| dc.subject | 頻帶配置 | zh_TW |
| dc.subject | 四頻段濾波器 | zh_TW |
| dc.subject | 多模態諧振器的萃取 | zh_TW |
| dc.subject | Frequency transformation | en |
| dc.subject | Extraction of multi-mode resonators | en |
| dc.subject | Band allocations | en |
| dc.subject | Quad-band filter | en |
| dc.title | 具多重選擇性頻帶配置之四頻段濾波器設計 | zh_TW |
| dc.title | Quadruple Band Filter Design with Flexible Band Allocation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭仁財(Jen-Tsai Kuo),張志揚(Chi-Yang Chang),湯敬文(Ching-Wen Tang),曾昭雄(Chao-Hsiung Tseng) | |
| dc.subject.keyword | 四頻段濾波器,頻帶配置,多模態諧振器的萃取,頻率轉換, | zh_TW |
| dc.subject.keyword | Quad-band filter,Band allocations,Extraction of multi-mode resonators,Frequency transformation, | en |
| dc.relation.page | 116 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
