請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47632
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葉德銘(Der-Ming Yeh) | |
dc.contributor.author | Fu-Mei Lin | en |
dc.contributor.author | 林芙美 | zh_TW |
dc.date.accessioned | 2021-06-15T06:09:41Z | - |
dc.date.available | 2014-04-14 | |
dc.date.copyright | 2010-08-18 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-12 | |
dc.identifier.citation | 王冬良、陳友根、路娟. 2006. 植物色素對馬蹄蓮鮮切花的染色效應. 園藝園林科學 22:304-306.
王華、耿進華.2007. 百合切花染色技術的研究. 安徽農業通報 13:66. 王進學. 2005. 以膜熱穩定性技術評估菊花開花之熱延遲. 國立臺灣大學園藝學系碩士論文. 吳孟珍、李哖. 1984. 溫度與預措對蕾期採收菊花貯運品質及瓶插壽命之影響. 中國園藝 30:126-134. 李哖. 1975. 切花之採收後生理. 中國園藝 21: 211-221。 李哖. 1980. 農家要覽(上). 豐年社. 臺北. 臺灣. p.1069-1078. 林和峰. 1996. 夏植菊花品種之開花習性與插穗生產. 國立臺灣大學園藝學系碩士論文. 林嘉洋. 2006. 耐熱矮牽牛之耐熱性與耐熱指標. 國立臺灣大學園藝學研究所碩士論文. 林曉君、葉德銘. 2006. 氣溫與根溫對開運竹生長與發根之影響. 臺灣園藝 52:441-448. 徐碧徽、葉德銘. 2006. 貯藏溫度與期間對菊花插穗發根與定植後開花之影響. 臺灣園藝 52: 321-331. 徐碧徽、葉德銘. 2007. 菊花品種插穗之耐貯性生理差異. 臺灣園藝53:289-300. 袁成芳、張傳林. 1998. 晚香玉鮮切花染色技術研究. 北方園藝 119:58-59. 張致盛、黃勝忠. 1995. 不同溫度及日數之貯藏處理對菊花插穗發根之影響. 臺中區農業改良場研究彙報 49:9-18. 章玉平. 2008. 食用色素對滿天星切花的染色效應. 安徽農業通報 14:136-137. 章玉平、劉武、朱運美. 2008. 7種食用色素對香石竹的染色效應. 河北農業科學 12:26-27. 章玉平、張運鳳、張芳. 2004. 食用色素對菊花的染色效應. 亞熱帶植物科學 33:25-27. 章玉平、林雪粉、黃進、鄺榕輝. 2004. 月季花染色技術研究. 保鮮與加工 22:32-33. 許謙信. 1994. 遮陰對夏菊切花品質之影響. 臺灣花卉園藝9:50. 許謙信、吳明哲. 1992. 吸水預措時機對菊花切花品質之影響 I.切花吸水量與蒸散作用. 臺中區農業改良場研究彙報 37: 11-19. 許謙信、陳彥睿. 2004. 漂白水及蔗糖瓶插液對菊花切花觀賞壽命之影響. 臺中區農業改良場研究彙報 85:57-67. 許謙信、陳彥睿. 2005. 幾種瓶插液對菊花切花觀賞壽命及碳水化合物變化之改變. 臺中區農業改良場研究彙報 87:33-45. 陳思如. 2003. 非洲菊耐熱指標與切花生理. 國立臺灣大學園藝學系碩士論文. 陳錦木. 1996. 溫度、季節海拔對菊花生長及開花品質之影響. 國立臺灣大學園藝學系碩士論文. 黃曉昆、黃曉冬. 2007. 5種食用色素對百合切花的染色效應. 亞熱帶植物科學 36:43-45. 劉立波、岳君、竇海洋、石俊孟、王海濤. 2004. 菊花鮮切花染色技術的研究. 吉林農業大學學報 26:642-643. 劉武、章玉平、黎土嬌. 2009. 食用色素與化學染料對桔梗切花的染色效應. 中國農業通報 25:154-156. 鄭秀敏、李哖. 1983. 保鮮劑組成分對蕾期採收菊花水分平衡、品質及瓶插壽命之影響. 中國園藝 29:53-63. 鄧波、李海龍、顧仁芳、王梅、左志銳. 2008. 菊花染色技術探討. 林業科技開發 22:111-112. Adachi, M., S. Kawabata, and R. Sakiyama. 1999. Changes in carbohydrate content in cut chrysanthemum [Dendranthema ×grandiflorum (Ramat.) Kitamura] ‘Shuho-no-chikara’ stems kept at different temperatures during anthesis and senescence. J. Jpn. Soc. Hort. Sci. 68:505-512. Adams, S.R., S. Pearson, and P. Hadley. 1998. The effect of temperature on inflorescence initiation and subsequent development in chrysanthemum cv. ‘Snowdon’ (Chrysanthemum ×morifolium Ramat.). Scientia. Hort. 77:59-72. Armitage, A.W, W.H. Carlson and J.A. Flore. 1981. The effect of temperature and quantum flux density on the morphology, physiology and flowering of hybrid geraniums. J. Amer. Soc. Hort. Sci. 106:643-647. Arteca, R.N., J.M. Arteca, T.W. Wang and C.D. Schlagnhaufer. 1996. Physiological, biological and molecular changes in Pelargonium cuttings subjected to short-term storage condition. J. Amer. Soc. Hort. Sci. 12:1063-1068. Behrens, V. 1988. Storage of unrooted cuttings, p. 235-247. In: T.D. Davis, B.E. Haissig, and N. Sankhla. (eds). Adventitious root formation in cuttings. Portland, Oregon. Borochov, A., and W.R. Woodson. 1989. Physiology and biochemistry of flower petal senescence. Hort. Rev. 11: 15-43. Burge, G.K., R.A. Bicknell, and B.G. Dobson. 1996. Postharvest treatments to increase water uptake and the vase life of Leptospermum scoparium Forst. NZ J. Crop. Hort. Sci. 24:371-378. Carpenter, W.J., E.N. Hansen, and W.H. Carlson. 1973. Medium temperatures effect on geranium and poinsettia root initiation and elongation. J. Amer. Soc. Hort. Sci. 98:64-66. Carvalho, S.M.P., H. Abi-Tarabay, and E. Heuvelink. 2005. Temperature affects chrysanthemum flower characteristics differently during three phases of the cultivation period. J. Hort. Sci. Biotechnol. 80:209-216. Cockskull, K.E. 1976. Flower and leaf initiation by Chrysanthemum morfolium Ramat. in long days. J. Hort. Sci. 51:441-450. Cockskull, K.E., D.W. Hand, and F.A. Langton. 1981. The effects of day and night temperature on flower initiation and development in chrysanthemum. Acta Hort. 125:101-110. Coorts, G.D. 1973. Internal metabolic changes in cut flowers. HortScience 8:195-198. Criley, R.A. 1989. Culture and cultivars selection for anthurium in Hawaii. Acta Hort. 246:227-236. Damunupola, J.W. and D.C. Joyce. 2008. When is a vase solution biocide not, or not only, antimicrobial? J. Jpn. Soc. Hort. Sci. 77:211-228. Davies, F.S., C.E, Munoz, and W.B. Sherman. 1981. Opening and vase life extension of peach flowers on detached shoots with sucrose and ethanol. J. Amer. Soc. Hort. Sci. 106:809-813. De John, J. 1978. Selection for wide temperature adaptation in Chrysanthemum morifolium (Ramat.) Hemsl. Neth. J. Agr. Sci. 26:110-118. Dela, G., E. Or, R. Ovadia, A. Nissim-Levi, D. Weiss, and M. Oren-Shamir. 2003. Change in anthocyanin concentration and composition in ‘Jaguar’ rose flowers due to transient high-temperature condition. Plant Sci. 164:333-340. Durkin, D.J. 1980. Factors effecting hydration of cut flowers. Acta Hort. 113:109-117. Faust, J.E. and R.D. Heins. 1992. High night temperatures do not cause poor lateral branching of chrysanthemum. HortScience 27: 981-982. Faust, J.E. and R.D. Heins. 1996. Axillary bud development of poinsettia ‘Eckespoint Lilo’ and ‘Eckespoint Sails’(Euphorbia pulcherrima Willdl.) is inhibited by high temperatures. J. Amer. Soc. Hort. Sci. 121: 920-926. Fisher, P. and J. Hansen. 1977. Rooting of chrysanthemum cutting influence of irradiance during stock plant growth and of decapitation and disbudding of cutting. Scientia. Hort. 7:171-178. Fukai, S., Y, Manabe, P. Yangkhamman, and T. Takamura. 2007. Changes in pigment content and surface micro-morphology of in cut carnation flower petals under high-temperature conditions. J. Hort. Sci. Biotechnol. 82:769-775. Gislerød, H.R. 1975. The influence of temperature and water potential on rooting of poinsettia cuttings (Euphorbia pulcherrima L. ‘Lady’). Acta Hort. 54:127-136. Gladon, R.J. and G.L. Staby. 1976. Opening of immature chrysanthemum with sucrose and 8-hydroxyquinoline citrate. HortScience 11:206-208. Halevy, A.H., and S. Mayak. 1974. Improvement of cut flower quality opening and longevity by pre-shipment treatment. Acta Hort. 43:335-347. Halvey, A.H. and S. Mayak, 1979. Senescence and postharvest physiology of cut flower. Hort. Rev. 1:204-236. Halevy, A.H. and S. Mayak. 1981. Senescence and postharvest physiology of cut flowers. Part II. Hort. Rev. 3: 59-143. Hartmann, H.F., D.E. Kaster, and F.T. Davies, Jr. 1990. Anatomomic and physiological of propagation by cuttings. p. 199-255. In: Plant propagation: Principles and practice. 5th ed. Prentice-Hall, Inc. New Jersey. Heninsvig Kjaer, K., K. Thorup-Kristensen., E. Rosenqvist, and J. Mazanti. 2007. Low night temperatures change whole-plant physiology and increase starch accumulation in Chrysanthemum morifolium. J. Hort. Sci. Biotechnol. 82:867-874. Hussein, H.A.A. 1994. Varietal responses of cut flowers to different antimicrobial agents of bacterial contamination and keeping quality. Acta Hort. 368:106-116. Ichimura, K., K. Kojima, and R. Goto. 1999. Effects of temperature, 8-hydroxyquinoline sulphate and sucrose on the vase life of cut rose flowers. Postharvest Biol. Technol. 15:33-40. Karlsson, M.G., R.D. Heins, J.E. Erwin, and R.D. Berghage. 1989a. Development rate during four phases of chrysanthemum growth as determined by preceding and prevailing temperatures. J. Amer. Soc. Hort. Sci. 114:234-240. Karlsson, M.G., R.D. Heins, J.E. Erwin, R.D. Berghage, W.H. Carlson, and J.A. Biernbaum. 1989b. Irradiance and temperature effects on time of development and flower size in chrysanthemum. Sci. Hort. 39:257-267. Kaufmann, P.H., R.J. Joly, and P.A. Hammer. 2000. Influence of day and night temperature differentials on root elongation rate, root hydraulic properties, and shoot water relations in chrysanthemum. J. Amer. Soc. Hort. Sci. 125:383-389. Kofranek, A.M. and A.H. Halevy. 1972. Conditions for opening cut chrysanthemum flower buds. J. Amer. Soc. Hort. Sci. 97:578-584. Kramer, P.J. 1983. Factors affecting the absorption of water. p.297-299. In: Water Relations of Plants. Academic Press. New York. Kyalo, T.M. and H.B. Pemberton. 1996. Seasonal growing environment affects quality characteristics and postproduction longevity of potted miniature roses. HortScience 31:120-122. Lee, W.S., J.E. Barrett, and T.A. Nell. 1990. High temperature effects on the growth and flowering of Impatiens wallernana cultivars. Acta Hort. 272: 121-127. Loach, K. 1988. Controlling environmental conditions to improve adventitious rooting, p. 248-273. In: T.D. Davis, B.E. Haissig, and N. Sankhla (eds.). Adventitious root formation in cutting. Dioscorides Press, Portland, Ore. Lopez, R.G. and E.S. Runkle. 2008a. Photosynthetic daily light integral during propagation influences rooting and growth of cuttings and subsequent development of New Guinea impatiens and petunia. HortScience 43:2052-2059. Lopez, R.G and E.S. Runkle. 2008b. Low-temperature storage influences morphological and physiological characteristics of nonrooted cuttings of New Guinea impatiens (Impatiens hawkeri). Postharvest Biol.Technol. 50:95-102. Maekawa, S. 1975. Studies on the coloration of carnation flowers. V. The effect of temperature on the anthocyanin formation of detached petals. J. Jpn. Soc. Hort. Sci. 44:161-166. Maginnes, E.A. and R.W. Langhans. 1961. The effect of photoperiod and temperature on initiation and flowering of snapdragon (Antirrhinum majus- variety Jackpot). J. Amer. Soc. Hort. Sci. 77:600-607. McConchie, R. and N.S. Lang. 1991. Carbohydrate depletion and leaf blackening in Proteaneriifolia. J. Amer. Soc. Hort. Sci. 116:1019-1024. Moe, R. 1977. Effect of light, temperature and CO2 on the growth of Campanula isophylla stock plants and on the subsequent growth and development of their cuttings. Scientia Hort. 6:129-141. Mol, J., G. Jenkins, E. Schafer, and D. Weiss. 1996. Signal perception, transduction and Gene expression involved in anthocyanin biosynthesis. Crit. Rev. Plant Sci. 15: 525-557. Mortensen, L.M. 1982. Growth responses of some greenhouse plants to environment. Ⅱ. The effect of soil temperature on Chrysanthemum morifolium Ramat. Scientia Hort. 16:47-55. Mutui, T.M., H. Mibus, and M. Serek. 2005. Effects of thidiazuron, ethylene, abscisic acid and dark storage on leaf yellowing and rooting of Pelargonium cuttings. J. Hort. Sci. Biotechnol. 80:543-550. Nijsse, J., and U. van Meeteren. 2000. Air in xylem vessels of cut flowers. Acta Hort. 517: 479-486. Niu, G., R.D. Heins, A.C. Cameron, and W.H. Carlson. 2000. Day and night temperatures, daily light integral, and CO2 enrichment affect growth and flower development of pansy (Viola ×wittrockiana). J. Amer. Soc. Hort. Sci. 125: 436-441. Niu, G., R.D. Heins, A. Cameron, and W. Carlson. 2001. Temperature and daily light integral influence plant quality and flower development of Campanula carpatica ‘Blue Clips’, ‘Deep Blue Clips’, and ‘Birch Hybrid’. HortScience 36: 664-668. Nozaki, K., T. Takamura, and S. Fukai. 2006. Effects of high temperature on flower colour and anthocyanin content in pink flower genotypes of greenhouse chrysanthemum (Chrysanthemum morifolium Ramat.). J. Hort. Sci. Biotechnol. 81:728-734. Okamoto, A. and K. Suto. 2003. Morphological observation on viable and nonviable axillary bud formation in non-branching chrysanthemum ‘Iwanohakusen’. J. Jpn. Soc. Hort. Sci. 72:422-424. Ooishi, A., H. Machida, T. Hosoi, and H. Komatsu. 1978. Root formation and respiration of the cuttings under different temperature. J. Jpn. Soc. Hort. Sci. 47:243-247. Oren-Shamir, M., L. Shaked-Sachray, A. Nissim-Levi, and D. Weiss. 2000. Effect of growth temperature on Aster flower development. HortScience 35:28-29. Pompodakis, N.E., L.A. Terry, D.C. Joyce, D.E. Lydakis, and M.D. Papadimitriou. 2005. Effect of seasonal variation and storage temperature on leaf chlorophyll fluorescence and vase life of cut roses. Postharvest Biol. Technol. 36:1-8. Park, B.H., N. Oliveira, and S. Pearson. 1998. Temperature affects growth and flowering of the balloon flower [Platycodon grandiflorus (Jacq.) A. DC. Cv. Astra Blue]. HortScience 33: 233-236. Pearson, S., P. Hadley, and A.E. Wheldon. 1993. A reanalysis of the effects of temperature and irradiance on time to flowering in chrysanthemum (Dendranthema grandiflora). J. Hort. Sci. 68:89-97. Pearson, S., A. Parker, S.R. Adams, P. Hadley, and D.R. May. 1995. The effects of temperature on the flower size of pansy (Viola ×wittrockiana Gams.). J. Hort. Sci. 70:183-190. Peng, S., M.C. Laza, F.V. Garcia, and K.G. Cassman. 1994. Microwaveoven drying of rice leaves for rapid determination of dry weight and nitrogen concentration. J. Plant Nutr. 17:209-217. Pietsch, G.M., W.H. Carlson, R.D. Heins, and J.E. Faust. 1995. The effect of day and night temperature and irradiance on development of Catharanthus roseus L. ‘Grape Cooler’. J. Amer. Soc. Hort. Sci. 120:877-881. Rainey, K.M. and P.D. Griffiths. 2005. Differential response of common bean genotypes to high temperature. J. Amer. Soc. Hort. Sci. 130:18-23. Rajapakse, N.C., D.W. Reed, and J.W. Kelly. 1991. Storage temperature and duration affect quality and post-storage recovery of vegetative Dendranthema ×grandiflorum. J. Amer. Soc. Hort. Sci. 116:73-76. Rajapakse, N.C., W.B. Miller, and J.W. Kelly. 1996. Low-temperature storage of rooted chrysanthemum cuttings: Relationship to carbohydrate status of cultivars. J. Amer. Soc. Hort. Sci. 121: 740-745. Rogers, M.N. 1973. A historical and critical review of postharvest physiology research on cut flowers. HortScience 8:189-194. Schoellhorn, R.K., J.E. Barrett, and T.A. Nell. 1995. Changes in chrysanthemum meristem and lateral bud development at elevated temperatures. HortScience 30:760. (Abstr.) Schoellhorn, R.K., J.E. Barrett, and T.A. Nell. 1996. Branching of chrysanthemum cultivars varies with season, temperature, and photosynthetic photon flux. HortScience 36: 74-78. Schoellhorn, R.K., J.E. Barrett, C.A. Bartuska, and T. Nell. 2001. Elevated temperature affects axillary meristem development in Dendranthema ×grandiflorum ‘Improved Mefo’. HortScience 36: 1049-1052. Schwabe, W.W. 1952. Factors controlling flowering of the chrysanthemum. 3. Favourable effects of limited periods of long day in inflorescence initiation. J. Expt. Bot. 3:430-436. Shvarts, M., A. Borochov, and D. Weiss. 1997. Low temperature enhances petunia flower pigmentation and induces chalcone synthase gene expression. Physiol. Plant. 99:67-72. Slootweg, G., M.A., ten Hoope, and de Gelder, A. 2001. Seasonal changes in vase life, transpiration and leaf drying of cut roses. Acta Hort. 543:337-342. Torre, S., and T. Fjeld. 2001. Water loss and postharvest characteristics of cut roses grown at high or moderate relative air humidity. Scientia. Hort. 89: 217-226. Trusty, S.E. and W.B. Miller. 1991. Postproduction carbohydrate levels in pot chrysanthemums. J. Amer. Soc. Hort. Sci. 116:1013-1018. Ueyama, S., and Ichimura. 1998. Effect of 2-hydroxy-3-ionene chloride polymer on the vase life of cut rose flowers. Postharvest Biol. Technol. 14:65-70. van de Pol, P.A. and J.V.M. Vogelezang. 1983. Accelerated rooting of carnation ‘Red Baron’ by temperature pre-treatment. Scientia Hort. 20:187-194. van Doorn, W.G. 1997. Water relations of cut flowers. Hort. Rev. 1-85. van Doorn, W. G., and N. Vaslier. 2002. Wounding induced xylem occlusion in stems of cut Chrysanthemum flowers: roles of peroxidase and cathechol oxidase. Postharvest Biol. Technol. 26: 275-284. van Doorn, W.G., and P.Cruz. 2000. Evidence for a wounding induced xylem occlusion in stems of cut Chrysanthemum flowers. Postharvest Biol. Technol. 19: 73-83. van Meeteren, U. 1989. Water relations and early leaf wilting of cut chrysanthemum. Acta Hort. 261:129-135. van Meeteren, U. 1992. Role of air embolism and low water temperature in water balance of cut Chrysanthemum flowers. Scientia. Hort. 51: 275-284. van Meeteren, U. and H. van Gelder. 1999. Effect of time since harvest and handling conditions on rehydration ability of cut Chrysanthemum flowers. Postharvest Biol. Technol. 16: 169-177. van Meetren, U., L. Arévalo-Galarza, and W.G. van Doorn. 2006. Inhibition of water uptake after dry storage of cut flowers: Role of aspired air and wound-induced processes in Chrysanthemum. Postharvest Biol. Technol. 41:70-77. van Ruiten, J. E. M. and J. De Jong. 1984. Speed of flower induction in Chrysanthemum morifolium depends on cultivar and temperature. Scientia. Hort. 23:287-294. Warner, R.M. and J.E. Erwin. 2005. Prolonged high temperature and daily light integral impact growth and flowering of five herbaceous ornamrntal species. J. Amer. Soc. Hort. Sci. 319: 319-325. Warner, R.M. and J.E. Erwin. 2006. Prolonged high-temperature exposure differentially reduces growth and flowering of 12 Viola ×wittrockiana Gams. cultivars. Scientia Hort. 108: 295-302. Whealy, C.A., T.A. Nell, and J.E. Barrett. 1987. High temperature effects on growth and floral development of chrysanthemum. J. Amer. Soc. Hort. Sci. 112:464-468. Whitman, C., R.D. Heins, A.C. Cameron, and W.H. Carlson. 1997. Cold treatment and forcing temperatures influence flowering of Campanula carpatica ‘Blue Clips’. HortScience 32:861-865. Wilkerson, E.G. and R.S. Gates. 2003. Controlled environment system for studying root zone temperature effects on cutting propagation. Appl. Eng. Agr. 19:483-489. Wilkerson, E.G., R.S. Gates, S. Zolnier, S.T. Kester, and R.L. Geneve. 2005. Predicting rooting stages in poinsettia cuttings using root zone temperature-based models. J. Amer. Soc. Hort. Sci. 130:302-307. Willits, D.H. and D.A. Bailey. 2000. The effect of night temperature on chrysanthemum flowering: Heat-tolerant versus heat-sensitive cultivars. Scientia Hort. 83: 325-330. Yuan, M., W.H. Carlson, R.D. Heins, and A.C. Cameron. 1998. Effect of forcing temperature on time to flower of Coreopsis grandiflora, Gaillardia ×grandiflora, Leucanthemum ×superbum, and Rudbeckia fulgida. HortScience 33: 663-667. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47632 | - |
dc.description.abstract | 菊花[Dendranthema ×grandiflorum (Ramat.) Kitamural],為臺灣重要的經濟花卉之一,但目前多以代工方式生產國外品種保護之菊花插穗,使農民需負擔龐大之種苗成本;此外臺灣近十年來其栽培面積及出口量亦不斷下降。為解決菊花產業現況,須建立自有新品系菊花之生產體系。本研究以五個本土自行選育之菊花新品系A (‘粉炎’ × ‘粉火焰’)、B (母本為‘卡若里’開放授粉所得之後代)、C (母本為‘吉祥粉’開放授粉所得之後代)、D (母本為‘粉火焰’開放授粉所得之後代)、E (母本為‘秋陽’開放授粉所得之後代)做為試驗材料,期能找出適合外銷之新品種。
菊花新品系A-E於夏秋及秋冬季分別栽培於15/ 13 ℃、20/15 ℃、25/20 ℃、30/25 ℃及35/30 ℃,結果於溫度由15/13 ℃增加至35/30 ℃使所有參試品系之花下葉片數漸增。於20/15 ℃下栽培,所有參試品系於處理後至開花階段所需時間較短。品系B及C於15/13-25/20 ℃處理下可正常開花;品系A、D及E於25/20℃以上之高溫延遲或抑制花芽分化與發育。於35/30 ℃處理下皆不利所有參試品系開花,尤其以品系D在長日35/30 ℃處理100天後仍維持營養生長。 於秋冬季,品系A及E二品系於15/13-35/30 ℃處理下之花下葉片數無顯著增加。在品系B及C中花下葉片數隨處理溫度由15/13 ℃增加至35/30 ℃而增加,而品系D於高溫35/30 ℃下之花下葉片數最多。所有參試品系於15/13-25/20 ℃下皆可正常達開花階段,於30/25 ℃下所有參試品系花芽發育明顯受到延遲,若溫度持續增加至35/30 ℃則使所有參試品系之花芽發育延遲天數增加更多。以15/13 ℃與20/15 ℃溫度處理推估其開花所需週數;品系A類似7-8週反應,品系B及C為8週反應,品系D為9週反應,品系E為8-9週反應。 所有參試品系於秋冬季下,隨著栽培溫度由15/13 ℃增加至35/30 ℃花朵直徑而漸小;花朵數則漸增。品系B、C及D皆以高溫栽培(35/30 ℃)下於採收後之瓶插壽命較低溫栽培者長。所有參試品系於高溫30/25-35/30 ℃下之舌狀花彩度皆下降;明度多半隨栽培溫度增加而上升,因高溫會造成花瓣顏色偏白且較淡,而使得明度提高;色相角度隨著栽培溫度提高而於品系間具有差異,品系A及D之色相角度隨栽培溫度至35/30 ℃其花瓣色澤由粉紫色偏向白色,品系B、C及E之色相角度則變化較小。 將新品系菊花母株置於20/15 ℃及30/25 ℃下栽培,品系B及E之母株栽培於30/25 ℃之高溫下,其插穗之產量卻較低溫栽培者多,此應與高溫下葉片分化及生長速率較快有關。品系B、C及E皆於低溫20/15 ℃栽培者其插穗之葉綠素計讀值較高、莖徑較粗且插穗葉數較多。品系B及C第一次採收之插穗其根數皆以低溫20/15 ℃栽培者較多,品系E則為高溫30/ 25 ℃栽培者之根數較多;品系B之根長於低溫栽培者較長;第二次採收之插穗其根乾重於三品系當中皆以低溫20/15 ℃栽培者較重。從試驗中得知低溫20/15 ℃栽培新品系菊花母株所得之插穗其生長品質較高溫栽培者佳,且後續插穗發根之表現亦較好。 以三個不同月份(7-8月、8-9月及9-10月)栽培菊花新品系A-E,所有參試品系皆以9-10月栽培者其插穗產量較多。品系A、D及E於三個不同月份栽培母株所得插穗以低溫5±2 ℃貯藏4-16天皆可有較好之發根表現;品系B及C於三個不同月份栽培者則以貯藏4-12天其發根表現較好。地上部乾重於所有參試品系中皆隨著貯藏天數增加而呈現下降趨勢。 切花菊‘正陽’使用藍色及紅色兩種顏色之食用色素,以不同染劑溫度(25、45、65、80及90 ℃)、染劑濃度(5、10、15、20及25 g•L-1)及染色時間(1、3、5、7及9 h)進行染色處理,以其結果作為基礎數值。結果顯示以兩種顏色之食用色素染色時,適當之染劑溫度為80 ℃及90 ℃,染劑濃度20-25 g•L-1,染色時間以3-5 h處理能使花朵觀賞品質及瓶插壽命較佳。菊花新品系E白色系之花朵,依前述試驗所得到最佳染色品質之染色條件進行染色試驗,以兩種顏色(紅、藍)染劑做試驗,染色條件為染劑溫度80 ℃,染色濃度20 g•L-1,染色時間5小時。但染色後舌狀花花瓣無法均勻著色,且葉片經染色處理後其顏色會偏向紅褐色,花朵與葉片皆於染色後觀賞品質下降,因此推測適合切花菊‘正陽’之染色條件並不適用於菊花新品系E上,其染色條件應重新修正。 | zh_TW |
dc.description.abstract | Chrysanthemum is one of the most important cut flowers in Taiwan. However, in the past decade, production area and export quantity have decreased in Taiwan. In additions, most growers spend lots of money to buy chrysanthemum cuttings, which have been granted with plant breeders right in European countries. To improve the situation, evaluation of self-bred lines production system is needed. Thus, this research evaluated five new chrysanthemum lines, A: ‘Feng-Yan’ × ‘Feng Huo-Yan’; and lines B, C, D, and E, obtained from open pollination with ‘Kaa Luoh-Lii’, ‘Feng Jyi-Shyang’, ‘Feng Huo-Yan’, ‘Chiu-Yang’ as mother parents, respectively.
Plants of chrysanthemum lines A-E were grown at day/night temperatures of 15/ 13 ℃, 20/15 ℃, 25/20 ℃, 30/25 ℃ and 35/30 ℃ in summer and autumn, or autumn and winter. Leaf number below the inflorescence increased in all chrysanthemum lines as day/night temperature increased from 15/13 ℃ to 35/30 ℃ in summer and autumn. All chrysanthemum lines flowered earliest at 20/15 ℃. Chrysanthemum lines B and C flowered normally when grown at 15/13 to 30/25 ℃, while flowering-heat-delay of lines A, D, and E occurred at 25/ 20 ℃ or higher temperatures. All chrysanthemum lines did not reach show color stage when grown at 35/30 ℃, especially for line D, which remained vegetative growth after 35/30 ℃ treatment for 100 days. Leaf number below the inflorescence did not change in chrysanthemum lines A and E, while this leaf number increased in lines B and C, as day/night temperature increased from 15/13 ℃ to 35/30 ℃ in autumn and winter conditions. Leaf number below the inflorescence in line D was highest at 35/30 ℃. All chrysanthemum lines grown at 15/13 to 25/20 ℃ flowered normally within nine weeks, but exhibited flowering-heat-delay at 30/25 ℃ or 35/30 ℃. Calculating the days to flower in autumn and winter in plants grown at 20/15 ℃, chrysanthemum line A behaved as 7 to 8-week cultivar, lines B and C were 8-week cultivars, line D was 9-week cultivar, while line E was 8 to 9-week cultivar. Inflorescence diameter decreased as day/night temperature increased from 15/13 ℃ to 35/30 ℃ in all chrysanthemum lines in autumn and winter conditions. Inflorescence number increased as the growing temperature increased. Vase life after harvest was longest in plants grown at 35/30 ℃ in lines B, C, and D. Ray floret C* value decreased in all chrysanthemum lines grown at high temperatures of 30/25 or 35/30 ℃, while L* value increased as growing temperature increased. High temperatures >25/20 ℃ caused pale color in ray florets and increased the L* value. High temperature at 35/30 ℃ increased ho value and resulted in fading pink color of ray florets in lines A and D, while ho values were changed little in lines B, C, and E. Lines B and E had more cuttings in stock plants grown at 30/25 ℃ than at 20/15 ℃. Lines B, C, and E had higher SPAD-502 value, thicker stem diameter and more number of leaves per cutting in stock plants at 20/15 ℃ than at 30/25 ℃. At the first harvest, more roots found in cuttings from stock plants at 20/15 ℃ in lines B and C, but at 30/25 ℃ in line E. At second harvest, root dry weight of cuttings was higher in three lines of stock plants grown at 20/15 ℃ than at 30/25 ℃. When planted in Tao-Yuan during three different months, stock plants grown in September and October had highest cutting yield for all chrysanthemum lines. Regardless of growing month, cuttings of lines A, D, and E stored at 5±2 ℃ for 4 to 16 days had better subsequent rooting; and cuttings of line B and C stored at 5±2 ℃ for 4 to 12 days had more subsequent root growth. Shoot dry weight tended to decrease in all chrysanthemum lines when the storage duration increased. Cut flowers of chrysanthemum ‘Jeng-yang’ were treated with two dyers, various temperatures (25, 45, 65, 80 and 90 ℃), concentrations (5, 10, 15, 20 and 25 g•L-1), and durations (1, 3, 5, 7 and 9 h). The best flower color quality and longest vase life was achieved in cut flowers treated at 80 and 90 ℃ in 20 to 25 g•L-1 of two color dyers for 3 to 5 hours. However, adopting these dyeing conditions to the cut flowers of line E failed to achieve good dyeing quality. Ray florets could not be dyed uniformly and leaves were dyed in red and brown. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:09:41Z (GMT). No. of bitstreams: 1 ntu-99-R97628103-1.pdf: 3876340 bytes, checksum: 195720e072eccc93e71a2392a9caaf39 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 目錄 I
表目錄 III 圖目錄 IV 中文摘要(Abstract) VII Summary IX 前言 (Introduction) 1 前人研究 (Literature Review) 4 一、貯藏溫度與根溫對菊花等草本花卉插穗發根之影響 4 (一) 貯藏溫度 4 (二) 根溫 5 二、溫度對菊花等草本花卉營養生長之影響 6 (一) 日夜溫差(Difference between day and night temperature, DIF) 6 (二) 高溫、適溫及低溫對菊花營養生長之影響 7 三、溫度對菊花等草本花卉開花與花色之影響 8 (一) 花芽誘導 8 (二) 花芽創始、分化及發育 8 (三) 溫度對花朵數目及花朵大小之影響 9 (四) 溫度對花色之影響 11 四、影響菊花切花瓶插壽命之內生因子 12 (一) 輸水障礙 12 (二) 切花採後處理 14 五、染色技術之研究 16 (一)菊花之染色技術 16 (二)其他切花類之染劑濃度及染色時間 17 材料與方法 (Materials and Methods) 19 溫度對新品系菊花生長及開花之影響 19 試驗一、夏秋季13.5-14.7小時日長下,日/夜溫對新品系菊花生長及開花之影響 19 試驗二、秋冬季11.6-13.1小時日長下,日/夜溫對新品系菊花生長、花朵形態及顏色之影響 20 溫度對新品系插穗生產與貯藏後發根之影響 21 試驗三、日/夜溫對新品系菊花對插穗生長及後續發根之影響 21 試驗四、新品系菊花於桃園夏秋季之插穗產量及貯藏期間對插穗發根之影響 22 染色菊技術之研究 23 試驗五、染劑溫度對切花菊染色品質之影響 23 試驗六、染劑濃度對切花菊染色品質之影響 24 試驗七、染色時間對切花菊染色品質之影響 25 試驗八、新品系菊花經染色後對花朵染色程度之影響 25 結果 (Results) 27 試驗一、夏秋季13.5-14.7小時日長下,日/夜溫對新品系菊花生長及開花之影響 27 試驗二、秋冬季11.6-13.1小時日長下,日/夜溫對新品系菊花生長及開花後花朵形態及顏色之影響 28 試驗三、日/夜溫對新品系菊花插穗生長及後續發根之影響 31 試驗四、新品系菊花於桃園夏秋季之插穗產量及貯藏期間對插穗發根之影響 32 試驗五、染劑溫度對切花菊染色品質之影響 35 試驗六、染劑濃度對切花菊染色品質之影響 36 試驗七、染色時間對切花菊染色品質之影響 37 試驗八、新品系菊花經染色後對花朵染色程度之影響 38 討論 (Discussion) 96 溫度對新品系菊花生長及開花之影響 96 溫度對自有新品系插穗生產與貯藏後發根之影響 99 染色菊技術之研究 102 結論 (Conclusion) 106 參考文獻 (References) 108 | |
dc.language.iso | zh-TW | |
dc.title | 新品系菊花之生長與開花試驗評估 | zh_TW |
dc.title | Performance Evaluation of Growth and Flowering in Chrysanthemum Lines | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃光亮(Kuang-Liang Huang),陳麗筠(Li-Yun Chen),張耀乾(Yao-Chien Alex Chang) | |
dc.subject.keyword | 插穗,貯藏,溫度,染色, | zh_TW |
dc.subject.keyword | cutting,storage,temperature,dyeing, | en |
dc.relation.page | 122 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-15 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝學研究所 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 3.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。