請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47605完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂東武(Tung-Wu Lu) | |
| dc.contributor.author | Hsiu-Chen Lin | en |
| dc.contributor.author | 林秀真 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:08:15Z | - |
| dc.date.available | 2015-08-24 | |
| dc.date.copyright | 2010-08-24 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-13 | |
| dc.identifier.citation | [1] Lam M. H., Fong D. T., Yung P., Ho E. P., Chan W. Y. and Chan K. M., Knee stability assessment on anterior cruciate ligament injury: Clinical and biomechanical approaches. Sports Med Arthrosc Rehabil Ther Technol 2009; 1: 20
[2] Jordan S. S., DeFrate L. E., Nha K. W., Papannagari R., Gill T. J. and Li G., The in vivo kinematics of the anteromedial and posterolateral bundles of the anterior cruciate ligament during weightbearing knee flexion. Am J Sports Med 2007; 35: 547-554 [3] Wu J. L., Seon J. K., Gadikota H. R., Hosseini A., Sutton K. M., Gill T. J. and Li G., In situ forces in the anteromedial and posterolateral bundles of the anterior cruciate ligament under simulated functional loading conditions. Am J Sports Med 2010; 38: 558-563 [4] Imran A. and O'Connor J. J., Control of knee stability after ACL injury or repair: interaction between hamstrings contraction and tibial translation. Clinical Biomechanics. 1998; 13: 153-162 [5] Woo S. L., Debski R. E., Withrow J. D. and Janaushek M. A., Biomechanics of knee ligaments. American Journal of Sports Medicine. 1999; 27: 533-543 [6] Wilson D. R., Feikes J. D. and O'Connor J. J., Ligaments and articular contact guide passive knee flexion. Journal of Biomechanics. 1998; 31: 1127-1136 [7] Fleming B. C., Renstrom P. A., Ohlen G., Johnson R. J., Peura G. D., Beynnon B. D. and Badger G. J., The gastrocnemius muscle is an antagonist of the anterior cruciate ligament. Journal of Orthopaedic Research. 2001; 19: 1178-1184 [8] Pandy M. G. and Shelburne K. B., Dependence of cruciate-ligament loading on muscle forces and external load. Journal of Biomechanics. 1997; 30: 1015-1024 [9] Shelburne K. B., Pandy M. G., Anderson F. C. and Torry M. R., Pattern of anterior cruciate ligament force in normal walking. Journal of Biomechanics 2004; 37: 797-805 [10] Liu W. and Maitland M. E., The effect of hamstring muscle compensation for anterior laxity in the ACL-deficient knee during gait. Journal of Biomechanics. 2000; 33: 871-879 [11] Shelburne K. B. and Pandy M. G., A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions. Journal of Biomechanics. 1997; 30: 163-176 [12] Simonsen E. B., Magnusson S. P., Bencke J., Naesborg H., Havkrog M., Ebstrup J. F. and Sorensen H., Can the hamstring muscles protect the anterior cruciate ligament during a side-cutting maneuver? Scandinavian Journal of Medicine & Science in Sports. 2000; 10: 78-84 [13] Grood E. S., Suntay W. J., Noyes F. R. and Butler D. L., Biomechanics of the knee-extension exercise. Effect of cutting the anterior cruciate ligament. J Bone Joint Surg Am 1984; 66: 725-734 [14] Li G., Rudy T. W., Sakane M., Kanamori A., Ma C. B. and Woo S. L., The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. J Biomech 1999; 32: 395-400 [15] Li G., Zayontz S., Most E., DeFrate L. E., Suggs J. F. and Rubash H. E., In situ forces of the anterior and posterior cruciate ligaments in high knee flexion: an in vitro investigation. J Orthop Res 2004; 22: 293-297 [16] Holm I., Fosdahl M. A., Friis A., Risberg M. A., Myklebust G. and Steen H., Effect of neuromuscular training on proprioception, balance, muscle strength, and lower limb function in female team handball players. Clinical Journal of Sport Medicine 2004; 14: 88-94 [17] Noyes F. R., Bassett R. W., Grood E. S. and Butler D. L., Arthroscopy in acute traumatic hemarthrosis of the knee. Incidence of anterior cruciate tears and other injuries. J Bone Joint Surg Am 1980; 62: 687-695, 757 [18] Corry I. I. and Webb J., Injuries of the sporting knee. Br J Sports Med 2000; 34: 395 [19] Frank C. B. and Jackson D. W., The science of reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am 1997; 79: 1556-1576 [20] Hootman J. M., Dick R. and Agel J., Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. J Athl Train 2007; 42: 311-319 [21] Prodromos C. C., Han Y., Rogowski J., Joyce B. and Shi K., A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen. Arthroscopy 2007; 23: 1320-1325 e1326 [22] Gianotti S. M., Marshall S. W., Hume P. A. and Bunt L., Incidence of anterior cruciate ligament injury and other knee ligament injuries: a national population-based study. J Sci Med Sport 2009; 12: 622-627 [23] Beynnon B. D., Johnson R. J., Abate J. A., Fleming B. C. and Nichols C. E., Treatment of anterior cruciate ligament injuries, part I. Am J Sports Med 2005; 33: 1579-1602 [24] Fleming B. C., Renstrom P. A., Beynnon B. D., Engstrom B., Peura G. D., Badger G. J. and Johnson R. J., The effect of weightbearing and external loading on anterior cruciate ligament strain. Journal of Biomechanics 2001; 34: 163-170 [25] Krosshaug T., Nakamae A., Boden B. P., Engebretsen L., Smith G., Slauterbeck J. R., Hewett T. E. and Bahr R., Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med 2007; 35: 359-367 [26] Mihata L. C., Beutler A. I. and Boden B. P., Comparing the incidence of anterior cruciate ligament injury in collegiate lacrosse, soccer, and basketball players: implications for anterior cruciate ligament mechanism and prevention. Am J Sports Med 2006; 34: 899-904 [27] Gehring D., Melnyk M. and Gollhofer A., Gender and fatigue have influence on knee joint control strategies during landing. Clin Biomech (Bristol, Avon) 2009; 24: 82-87 [28] Hewett T. E., Torg J. S. and Boden B. P., Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. Br J Sports Med 2009; 43: 417-422 [29] Griffin L. Y., Agel J., Albohm M. J., Arendt E. A., Dick R. W., Garrett W. E., Garrick J. G., Hewett T. E., Huston L., Ireland M. L., Johnson R. J., Kibler W. B., Lephart S., Lewis J. L., Lindenfeld T. N., Mandelbaum B. R., Marchak P., Teitz C. C. and Wojtys E. M., Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg 2000; 8: 141-150 [30] McLean S. G., Walker K., Ford K. R., Myer G. D., Hewett T. E. and van den Bogert A. J., Evaluation of a two dimensional analysis method as a screening and evaluation tool for anterior cruciate ligament injury. Br J Sports Med 2005; 39: 355-362 [31] Myer G. D., Ford K. R., Khoury J., Succop P. and Hewett T. E., Clinical correlates to laboratory measures for use in non-contact anterior cruciate ligament injury risk prediction algorithm. Clin Biomech (Bristol, Avon) 2010; 25: 693-699 [32] Benjaminse A., Gokeler A. and Schans C. p. v. d., Clinical diagnosis of an anterior cruciate ligament rupture: a meta-analysis. Journal of Orthopaedic & Sports Physical Therapy 2006; 36: 267-288 [33] Lubowitz J. H., Bernardini B. J. and Reid J. B., 3rd, Current concepts review: comprehensive physical examination for instability of the knee. Am J Sports Med 2008; 36: 577-594 [34] Crawford R., Walley G., Bridgman S. and Maffulli N., Magnetic resonance imaging versus arthroscopy in the diagnosis of knee pathology, concentrating on meniscal lesions and ACL tears: a systematic review. Br Med Bull 2007; 84: 5-23 [35] Lubowitz J. H., Bernardini B. J. and Reid J. B., 3rd, Current concepts review: comprehensive physical examination for instability of the knee. Am J Sports Med 2008; 36: 577-594 [36] Henning C. E., Lynch M. A. and Glick K. R., Jr., An in vivo strain gage study of elongation of the anterior cruciate ligament. Am J Sports Med 1985; 13: 22-26 [37] Rijke A. M., Perrin D. H., Goitz H. T. and McCue F. C., 3rd, Instrumented arthrometry for diagnosing partial versus complete anterior cruciate ligament tears. Am J Sports Med 1994; 22: 294-298 [38] Hanten W. P. and Pace M. B., Reliability of measuring anterior laxity of the knee joint using a knee ligament arthrometer. Phys Ther 1987; 67: 357-359 [39] Monaco E., Labianca L., Maestri B., De Carli A., Conteduca F. and Ferretti A., Instrumented measurements of knee laxity: KT-1000 versus navigation. Knee Surg Sports Traumatol Arthrosc 2009; 17: 617-621 [40] Myrer J. W., Schulthies S. S. and Fellingham G. W., Relative and absolute reliability of the KT-2000 arthrometer for uninjured knees. Testing at 67, 89, 134, and 178 N and manual maximum forces. Am J Sports Med 1996; 24: 104-108 [41] Sernert N., Kartus J., Kohler K., Ejerhed I. and Karlsson J., Evaluation of the reproducibility of the KT-1000 arthrometer. Scand J Med Sci Sports 2001; 11: 120 [42] Berchuck M., Andriacchi T. P., Bach B. R. and Reider B., Gait adaptations by patients who have a deficient anterior cruciate ligament. Journal of Bone & Joint Surgery - American Volume. 1990; 72: 871-877 [43] Wojtys E. M. and Huston L. J., Neuromuscular performance in normal and anterior cruciate ligament-deficient lower extremities. Am J Sports Med 1994; 22: 89-104 [44] Andriacchi T. P. and Dyrby C. O., Interactions between kinematics and loading during walking for the normal and ACL deficient knee. J Biomech 2005; 38: 293-298 [45] Noyes F. R., Barber S. D. and Mangine R. E., Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. American Journal of Sports Medicine. 1991; 19: 513-518 [46] Gillquist J. and Messner K., Anterior cruciate ligament reconstruction and the long-term incidence of gonarthrosis. Sports Med 1999; 27: 143-156 [47] Kowalk D. L., Duncan J. A., McCue F. C., 3rd and Vaughan C. L., Anterior cruciate ligament reconstruction and joint dynamics during stair climbing. Medicine & Science in Sports & Exercise. 1997; 29: 1406-1413 [48] Maitland M. E., Bell G. D., Mohtadi N. G. and Herzog W., Quantitative analysis of anterior cruciate ligament instability. Clin Biomech (Bristol, Avon) 1995; 10: 93-97 [49] Rudolph K. S., Axe M. J. and Snyder-Mackler L., Dynamic stability after ACL injury: who can hop? Knee Surg Sports Traumatol Arthrosc 2000; 8: 262-269 [50] St Clair Gibson A., Lambert M. I., Durandt J. J., Scales N. and Noakes T. D., Quadriceps and hamstrings peak torque ratio changes in persons with chronic anterior cruciate ligament deficiency. J Orthop Sports Phys Ther 2000; 30: 418-427 [51] von Porat A., Henriksson M., Holmstrom E., Thorstensson C. A., Mattsson L. and Roos E. M., Knee kinematics and kinetics during gait, step and hop in males with a 16 years old ACL injury compared with matched controls. Knee Surgery, Sports Traumatology, Arthroscopy 2006; 14: 546-554 [52] Zhang L. Q., Nuber G. W., Bowen M. K., Koh J. L. and Butler J. P., Multiaxis muscle strength in ACL deficient and reconstructed knees: compensatory mechanism. Medicine And Science In Sports And Exercise 2002; 34: 2-8 [53] Rudolph K. S. and Snyder-Mackler L., Effect of dynamic stability on a step task in ACL deficient individuals. J Electromyogr Kinesiol 2004; 14: 565-575 [54] Eastlack M. E., Axe M. J. and Snyder-Mackler L., Laxity, instability, and functional outcome after ACL injury: copers versus noncopers. Med Sci Sports Exerc 1999; 31: 210-215 [55] Kvist J., Sagittal plane knee motion in the ACL-deficient knee during body weight shift exercises on different support surfaces. J Orthop Sports Phys Ther 2006; 36: 954-962 [56] Markolf K. L., Mensch J. S. and Amstutz H. C., Stiffness and laxity of the knee--the contributions of the supporting structures. A quantitative in vitro study. J Bone Joint Surg Am 1976; 58: 583-594 [57] Markolf K. L., Graff-Radford A. and Amstutz H. C., In vivo knee stability. A quantitative assessment using an instrumented clinical testing apparatus. J Bone Joint Surg Am 1978; 60: 664-674 [58] Markolf K. L., Kochan A. and Amstutz H. C., Measurement of knee stiffness and laxity in patients with documented absence of the anterior cruciate ligament. The Journal Of Bone And Joint Surgery. American Volume 1984; 66: 242-252 [59] Daniel D. M., Malcom L. L., Losse G., Stone M. L., Sachs R. and Burks R., Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg Am 1985; 67: 720-726 [60] Daniel D. M., Stone M. L., Barnett P. and Sachs R., Use of the quadriceps active test to diagnose posterior cruciate-ligament disruption and measure posterior laxity of the knee. J Bone Joint Surg Am 1988; 70: 386-391 [61] Daniel D. M., Stone M. L., Sachs R. and Malcom L., Instrumented measurement of anterior knee laxity in patients with acute anterior cruciate ligament disruption. Am J Sports Med 1985; 13: 401-407 [62] Malcom L. L., Daniel D. M., Stone M. L. and Sachs R., The measurement of anterior knee laxity after ACL reconstructive surgery. Clin Orthop Relat Res 1985; 35-41 [63] Jonsson H., Elmqvist L. G., Karrholm J. and Fugl-Meyer A., Lengthening of anterior cruciate ligament graft. Roentgen stereophotogrammetry of 32 cases 2 years after repair. Acta Orthop Scand 1992; 63: 587-592 [64] Patel R. R., Hurwitz D. E., Bush-Joseph C. A., Bach B. R., Jr. and Andriacchi T. P., Comparison of clinical and dynamic knee function in patients with anterior cruciate ligament deficiency. Am J Sports Med 2003; 31: 68-74 [65] Chmielewski T. L., Wilk K. E. and Snyder-Mackler L., Changes in weight-bearing following injury or surgical reconstruction of the ACL: relationship to quadriceps strength and function. Gait Posture 2002; 16: 87-95 [66] de Jong S. N., van Caspel D. R., van Haeff M. J. and Saris D. B., Functional assessment and muscle strength before and after reconstruction of chronic anterior cruciate ligament lesions. Arthroscopy 2007; 23: 21-28, 28 e21-23 [67] Roberts D., Ageberg E., Andersson G. and Friden T., Clinical measurements of proprioception, muscle strength and laxity in relation to function in the ACL-injured knee. Knee Surg Sports Traumatol Arthrosc 2007; 15: 9-16 [68] Holcomb W. R., Rubley M. D., Lee H. J. and Guadagnoli M. A., Effect of hamstring-emphasized resistance taining on hamstring: quadriceps strength ratios. Journal of Strength & Conditioning Research 2007; 21: 41-47 [69] Baugher W. H., Warren R. F., Marshall J. L. and Joseph A., Quadriceps atrophy in the anterior cruciate insufficient knee. Am J Sports Med 1984; 12: 192-195 [70] Itoh H., Ichihashi N., Maruyama T., Kurosaka M. and Hirohata K., Weakness of thigh muscles in individuals sustaining anterior cruciate ligament injury. The Kobe Journal Of Medical Sciences 1992; 38: 93-107 [71] Kannus P. and Jarvinen M., Long-term prognosis of nonoperatively treated acute knee distortions having primary hemarthrosis without clinical instability. Am J Sports Med 1987; 15: 138-143 [72] Kvist J., Karlberg C., Gerdle B. and Gillquist J., Anterior tibial translation during different isokinetic quadriceps torque in anterior cruciate ligament deficient and nonimpaired individuals. J Orthop Sports Phys Ther 2001; 31: 4-15 [73] Lorentzon R., Elmqvist L. G., Sjostrom M., Fagerlund M. and Fuglmeyer A. R., Thigh musculature in relation to chronic anterior cruciate ligament tear: muscle size, morphology, and mechanical output before reconstruction. American Journal of Sports Medicine. 1989; 17: 423-429 [74] Urbach D., Nebelung W., Weiler H. T. and Awiszus F., Bilateral deficit of voluntary quadriceps muscle activation after unilateral ACL tear. Medicine & Science in Sports & Exercise. 1999; 31: 1691-1696 [75] Schultz R. A., Miller D. C., Kerr C. S. and Micheli L., Mechanoreceptors in human cruciate ligaments. A histological study. J Bone Joint Surg Am 1984; 66: 1072-1076 [76] Schutte M. J., Dabezies E. J., Zimny M. L. and Happel L. T., Neural anatomy of the human anterior cruciate ligament. J Bone Joint Surg Am 1987; 69: 243-247 [77] Zimny M. L., Schutte M. and Dabezies E., Mechanoreceptors in the human anterior cruciate ligament. Anat Rec 1986; 214: 204-209 [78] Krogsgaard M. R., Dyhre-Poulsen P. and Fischer-Rasmussen T., Cruciate ligament reflexes. Journal of Electromyography & Kinesiology. 2002; 12: 177-182 [79] Friden T., Roberts D., Ageberg E., Walden M. and Zatterstrom R., Review of knee proprioception and the relation to extremity function after an anterior cruciate ligament rupture. Journal of Orthopaedic & Sports Physical Therapy. 2001; 31: 567-576 [80] Lee H. M., Cheng C. K. and Liau J. J., Correlation between proprioception, muscle strength, knee laxity, and dynamic standing balance in patients with chronic anterior cruciate ligament deficiency. Knee 2009; 16: 387-391 [81] Ferber R., Osternig L. R., Woollacott M. H., Wasielewski N. J. and Lee J. H., Gait mechanics in chronic ACL deficiency and subsequent repair. Clinical Biomechanics 2002; 17: 274-285 [82] Knoll Z., Kiss R. M. and Kocsis L., Gait adaptation in ACL deficient patients before and after anterior cruciate ligament reconstruction surgery. Journal of Electromyography & Kinesiology 2004; 14: 287-294 [83] Roberts C. S., Rash G. S., Honaker J. T., Wachowiak M. P. and Shaw J. C., A deficient anterior cruciate ligament does not lead to quadriceps avoidance gait. Gait & Posture. 1999; 10: 189-199 [84] Beard D. J., Soundarapandian R. S., O'Connor J. J. and Dodd C. A., Gait and electromyographic analysis of anterior cruciate ligament deficient subjects. Gait & Posture. 1996; 4: 83-88 [85] Teixeira da Fonseca S., Silva P. L., Ocarino J. M., Guimaraes R. B., Oliveira M. T. and Lage C. A., Analyses of dynamic co-contraction level in individuals with anterior cruciate ligament injury. J Electromyogr Kinesiol 2004; 14: 239-247 [86] Andriacchi T. P. and Birac D., Functional testing in the anterior cruciate ligament-deficient knee. Clinical Orthopaedics & Related Research 1993; 40-47 [87] Hooper D. M., Morrissey M. C., Drechsler W. I., Clark N. C., Coutts F. J. and McAuliffe T. B., Gait analysis 6 and 12 months after anterior cruciate ligament reconstruction surgery. Clinical Orthopaedics & Related Research. 2002; 168-178 [88] Lewek M., Rudolph K., Axe M. and Snyder-Mackler L., The effect of insufficient quadriceps strength on gait after anterior cruciate ligament reconstruction. Clinical Biomechanics 2002; 17: 56-63 [89] Wexler G., Hurwitz D. E., Bush-Joseph C. A., Andriacchi T. P. and Bach B. R., Jr., Functional gait adaptations in patients with anterior cruciate ligament deficiency over time. Clinical Orthopaedics & Related Research. 1998; 166-175 [90] Chmielewski T. L., Rudolph K. S., Fitzgerald G. K., Axe M. J. and Snyder-Mackler L., Biomechanical evidence supporting a differential response to acute ACL injury. Clinical Biomechanics 2001; 16: 586-591 [91] Czerniecki J. M., Lippert F. and Olerud J. E., A biomechanical evaluation of tibiofemoral rotation in anterior cruciate deficient knees during walking and running. Am J Sports Med 1988; 16: 327-331 [92] Thambyah A., Thiagarajan P. and Goh Cho Hong J., Knee joint moments during stair climbing of patients with anterior cruciate ligament deficiency. Clinical Biomechanics 2004; 19: 489-496 [93] Waite J. C., Beard D. J., Dodd C. A. F., Murray D. W. and Gill H. S., In vivo kinematics of the ACL-deficient limb during running and cutting. Knee Surgery, Sports Traumatology, Arthroscopy 2005; 13: 377-384 [94] Waite J. C., Beard D. J., Dodd C. A., Murray D. W. and Gill H. S., In vivo kinematics of the ACL-deficient limb during running and cutting. Knee Surg Sports Traumatol Arthrosc 2005; 13: 377-384 [95] Quatman C. E. and Hewett T. E., The anterior cruciate ligament injury controversy: is 'valgus collapse' a sex-specific mechanism? Br J Sports Med 2009; 43: 328-335 [96] Renstrom P., Ljungqvist A., Arendt E., Beynnon B., Fukubayashi T., Garrett W., Georgoulis T., Hewett T. E., Johnson R., Krosshaug T., Mandelbaum B., Micheli L., Myklebust G., Roos E., Roos H., Schamasch P., Shultz S., Werner S., Wojtys E. and Engebretsen L., Non-contact ACL injuries in female athletes: an International Olympic Committee current concepts statement. Br J Sports Med 2008; 42: 394-412 [97] Cowling E. J. and Steele J. R., Is lower limb muscle synchrony during landing affected by gender? Implications for variations in ACL injury rates. Journal of Electromyography & Kinesiology. 2001; 11: 263-268 [98] Thomas A. C., McLean S. G. and Palmieri-Smith R. M., Quadriceps and hamstrings fatigue alters hip and knee mechanics. J Appl Biomech 2010; 26: 159-170 [99] Barber S. D., Noyes F. R., Mangine R. E., McCloskey J. W. and Hartman W., Quantitative assessment of functional limitations in normal and anterior cruciate ligament-deficient knees. Clin Orthop Relat Res 1990; 204-214 [100] Gauffin H., Pettersson G., Tegner Y. and Tropp H., Function testing in patients with old rupture of the anterior cruciate ligament. Int J Sports Med 1990; 11: 73-77 [101] Itoh H., Kurosaka M., Yoshiya S., Ichihashi N. and Mizuno K., Evaluation of functional deficits determined by four different hop tests in patients with anterior cruciate ligament deficiency. Knee Surg Sports Traumatol Arthrosc 1998; 6: 241-245 [102] Risberg M. A., Holm I., Myklebust G. and Engebretsen L., Neuromuscular training versus strength training during first 6 months after anterior cruciate ligament reconstruction: a randomized clinical trial. Phys Ther 2007; 87: 737-750 [103] Risberg M. A., Lewek M. and Snyder-Mackler L., A systematic review of evidence for anterior cruciate ligament rehabilitation: how much and what type? Physical Therapy in Sports 2004; 5: 125-145 [104] Meyers M. C., Sterling J. C. and Marley R. R., Efficacy of stairclimber versus cycle ergometry in postoperative anterior cruciate ligament rehabilitation. Clin J Sport Med 2002; 12: 85-94 [105] Tovin B. J., Wolf S. L., Greenfield B. H., Crouse J. and Woodfin B. A., Comparison of the effects of exercise in water and on land on the rehabilitation of patients with intra-articular anterior cruciate ligament reconstructions. Phys Ther 1994; 74: 710-719 [106] Ageberg E., Consequences of a ligament injury on neuromuscular function and relevance to rehabilitation - using the anterior cruciate ligament-injured knee as model. J Electromyogr Kinesiol 2002; 12: 205-212 [107] Jonsson H. and Karrholm J., Three-dimensional knee joint movements during a step-up: evaluation after anterior cruciate ligament rupture. Journal of Orthopaedic Research 1994; 12: 769-779 [108] Mattacola C. G., Jacobs C. A., Rund M. A. and Johnson D. L., Functional assessment using the step-up-and-over test and forward lunge following ACL reconstruction. Orthopedics 2004; 27: 602-608 [109] Costigan P. A., Deluzio K. J. and Wyss U. P., Knee and hip kinetics during normal stair climbing. Gait & Posture. 2002; 16: 31-37 [110] Moffet H., Richards C. L., Malouin F. and Bravo G., Impact of knee extensor strength deficits on stair ascent performance in patients after medial meniscectomy. Scandinavian Journal of Rehabilitation Medicine 1993; 25: 63-71 [111] Nadeau S., McFadyen B. J. and Malouin F., Frontal and sagittal plane analyses of the stair climbing task in healthy adults aged over 40 years: what are the challenges compared to level walking? Clinical Biomechanics 2003; 18: 950-959 [112] Mittlmeier T., Weiler A., Sohn T., Kleinhans L., Mollbach S., Duda G. and Sudkamp N. P., Functional monitoring during rehabilitation following anterior cruciate ligament reconstruction. Clin Biomech (Bristol, Avon) 1999; 14: 576-584 [113] Taylor W. R., Heller M. O., Bergmann G. and Duda G. N., Tibio-femoral loading during human gait and stair climbing. Journal of Orthopaedic Research 2004; 22: 625-632 [114] Lin H. C., Lu T. W. and Hsu H. C., Comparisons of joint kinetics in the lower extremity between stair ascent and descent. Journal of Mechanics 2005; 21: 41-50 [115] Lu T.-W. and Lu C.-H., Forces transmitted in the knee joint during stair ascent and descent. Journal of Mechanics 2006; 22: 289-297 [116] Andriacchi T. P. and Birac D., Functional testing in the anterior cruciate ligament-deficient knee. Clinical Orthopaedics & Related Research. 1993; 40-47 [117] Berchuck M., Andriacchi T. P., Bach B. R. and Reider B., Gait adaptations by patients who have a deficient anterior cruciate ligament. J Bone Joint Surg Am 1990; 72: 871-877 [118] Kowalk D. L., Duncan J. A., McCue F. C., 3rd and Vaughan C. L., Anterior cruciate ligament reconstruction and joint dynamics during stair climbing. Med Sci Sports Exerc 1997; 29: 1406-1413 [119] Bush-Joseph C. A., Hurwitz D. E., Patel R. R., Bahrani Y., Garretson R., Bach B. R., Jr. and Andriacchi T. P., Dynamic function after anterior cruciate ligament reconstruction with autologous patellar tendon. American Journal of Sports Medicine 2001; 29: 36-41 [120] Kowalk D. L., Duncan J. A., McCue F. C., 3rd and Vaughan C. L., Anterior cruciate ligament reconstruction and joint dynamics during stair climbing. Medicine & Science in Sports & Exercise 1997; 29: 1406-1413 [121] Shelbourne K. D. and Patel D. V., Rehabilitation after autogenous bone-patellar tendon-bone ACL reconstruction. Instructional Course Lectures 1996; 45: 263-273 [122] Decker M. J., Torry M. R., Noonan T. J., Sterett W. I. and Steadman J. R., Gait retraining after anterior cruciate ligament reconstruction. Archives of Physical Medicine & Rehabilitation 2004; 85: 848-856 [123] Gokeler A., Schmalz T., Knopf E., Freiwald J. and Blumentritt S., The relationship between isokinetic quadriceps strength and laxity on gait analysis parameters in anterior cruciate ligament reconstructed knees. Knee Surgery, Sports Traumatology, Arthroscopy 2003; 11: 372-378 [124] Kvist J., Rehabilitation following anterior cruciate ligament injury: current recommendations for sports participation. Sports Medicine 2004; 34: 269-280 [125] Timoney J. M., Inman W. S., Quesada P. M., Sharkey P. F., Barrack R. L., Skinner H. B. and Alexander A. H., Return of normal gait patterns after anterior cruciate ligament reconstruction. American Journal of Sports Medicine 1993; 21: 887-889 [126] Fithian D. C., Paxton E. W., Stone M. L., Luetzow W. F., Csintalan R. P., Phelan D. and Daniel D. M., Prospective trial of a treatment algorithm for the management of the anterior cruciate ligament-injured knee. Am J Sports Med 2005; 33: 335-346 [127] Risberg M. A., Lewek M. and Snyder-Mackler L., A systematic review of evidence for anterior cruciate ligament rehabilitation: how much and what type? Physical Therapy in Sports 2004; 5: 125-145 [128] Myer G. D., Paterno M. V., Ford K. R., Quatman C. E. and Hewett T. E., Rehabilitation after anterior cruciate ligament reconstruction: criteria-based progression through the return-to-sport phase. J Orthop Sports Phys Ther 2006; 36: 385-402 [129] Shelbourne K. D. and Wilckens J. H., Current concepts in anterior cruciate ligament rehabilitation. Orthopaedic Review 1990; 19: 957-964 [130] Fitzgerald G. K., Axe M. J. and Snyder-Mackler L., Proposed practice guidelines for nonoperative anterior cruciate ligament rehabilitation of physically active individuals. Journal of Orthopaedic & Sports Physical Therapy. 2000; 30: 194-203 [131] Risberg M. A., Moksnes H., Storevold A., Holm I. and Snyder-Mackler L., Rehabilitation after anterior cruciate ligament injury influences joint loading during walking but not hopping. Br J Sports Med 2009; 43: 423-428 [132] Paluska S. A. and McKeag D. B., Knee braces: current evidence and clinical recommendations for their use. American Family Physician 2000; 61: 411-418 [133] Decoster L. C. and Vailas J. C., Functional anterior cruciate ligament bracing: a survey of current brace prescription patterns. Orthopedics. 2003; 26: 701-706; discussion 706 [134] Kramer J. F., Dubowitz T., Fowler P., Schachter C. and Birmingham T., Functional knee braces and dynamic performance: a review. Clinical Journal of Sport Medicine 1997; 7: 32-39 [135] Mallory N., Kelsberg G. and Ketchell D., Does a knee brace decrease recurrent ACL injuries? Journal of Family Practice. 2003; 52: 803-804; discussion 804 [136] Najibi S. and Albright J. P., The use of knee braces, part 1: Prophylactic knee braces in contact sports. American Journal of Sports Medicine 2005; 33: 602-611 [137] Rebel M. and Paessler H. H., The effect of knee brace on coordination and neuronal leg muscle control: an early postoperative functional study in anterior cruciate ligament reconstructed patients. Knee Surgery, Sports Traumatology, Arthroscopy 2001; 9: 272-281 [138] Ramsey D. K., Wretenberg P. F., Lamontagne M. and Nemeth G., Electromyographic and biomechanic analysis of anterior cruciate ligament deficiency and functional knee bracing. Clinical Biomechanics 2003; 18: 28-34 [139] Beynnon B. D., Fleming B. C., Churchill D. L. and Brown D., The effect of anterior cruciate ligament deficiency and functional bracing on translation of the tibia relative to the femur during nonweightbearing and weightbearing. American Journal of Sports Medicine 2003; 31: 99-105 [140] Fleming B. C., Renstrom P. A., Beynnon B. D., Engstrom B. and Peura G., The influence of functional knee bracing on the anterior cruciate ligament strain biomechanics in weightbearing and nonweightbearing knees. American Journal of Sports Medicine 2000; 28: 815-824 [141] Warming T. and Jorgensen U., The effect of bracing on extension strength in patients with ACL insufficiency. Scandinavian Journal of Medicine & Science in Sports 1998; 8: 14-19 [142] Wojtys E. M., Kothari S. U. and Huston L. J., Anterior cruciate ligament functional brace use in sports. American Journal of Sports Medicine 1996; 24: 539-546 [143] McDevitt E. R., Taylor D. C., Miller M. D., Gerber J. P., Ziemke G., Hinkin D., Uhorchak J. M., Arciero R. A. and Pierre P. S., Functional bracing after anterior cruciate ligament reconstruction: a prospective, randomized, multicenter study. American Journal of Sports Medicine 2004; 32: 1887-1892 [144] Moller E., Forssblad M., Hansson L., Wange P. and Weidenhielm L., Bracing versus nonbracing in rehabilitation after anterior cruciate ligament reconstruction: a randomized prospective study with 2-year follow-up. Knee Surgery, Sports Traumatology, Arthroscopy 2001; 9: 102-108 [145] Wu G. K., Ng G. Y. and Mak A. F., Effects of knee bracing on the functional performance of patients with anterior cruciate ligament reconstruction. Archives of Physical Medicine & Rehabilitation 2001; 82: 282-285 [146] Logan M. C., Williams A., Lavelle J., Gedroyc W. and Freeman M., Tibiofemoral kinematics following successful anterior cruciate ligament reconstruction using dynamic multiple resonance imaging. Am J Sports Med 2004; 32: 984-992 [147] Matsumoto H., Toyoda T., Kawakubo M., Otani T., Suda Y. and Fujikawa K., Anterior cruciate ligament reconstruction and physiological joint laxity: earliest changes in joint stability and stiffness after reconstruction. J Orthop Sci 1999; 4: 191-196 [148] Beynnon B. D., Good L. and Risberg M. A., The effect of bracing on proprioception of knees with anterior cruciate ligament injury. Journal of Orthopaedic & Sports Physical Therapy 2002; 32: 11-15 [149] Anderson K., Wojtys E. M., Loubert P. V. and Miller R. E., A biomechanical evaluation of taping and bracing in reducing knee joint translation and rotation. American Journal of Sports Medicine 1992; 20: 416-421 [150] DeVita P., Lassiter T., Jr., Hortobagyi T. and Torry M., Functional knee brace effects during walking in patients with anterior cruciate ligament reconstruction. American Journal of Sports Medicine 1998; 26: 778-784 [151] DeVita P., Torry M., Glover K. L. and Speroni D. L., A functional knee brace alters joint torque and power patterns during walking and running. Journal of Biomechanics 1996; 29: 583-588 [152] Ramsey D. K., Lamontagne M., Wretenberg P. F., Valentin A., Engstrom B. and Nemeth G., Assessment of functional knee bracing: an in vivo three-dimensional kinematic analysis of the anterior cr | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47605 | - |
| dc.description.abstract | 前十字韌帶斷裂的發生率在運動參與者的發生率相當高,而導致其膝關節不穩定以及功能受損,因此能夠快速且精確的診斷前十字韌帶斷裂對於患者後續的臨床照護是必要的。本研究利用區段性地分析方式來探討正常人與前十字韌帶缺損膝關節前向鬆弛度檢查的差異,從而訂定出兩個與診斷標準:第二區段位移量大於3.7 mm(公厘),以及第三區段勁度(stiffness)小於22 N/mm(牛頓/公厘),兩標準的診斷精確度並經證實具有良好的敏感度(sensitivity)以及特異性(specificity)。在前十字韌帶缺損患者隨後的復健過程中,詳細監測其各項功能活動能力的恢復,對其是否能回復以往運動活動有重要的決定性。本研究利用臨床平衡運動功能儀的長型力板上的登階-跨越測試(step up and over test)以檢測不同恢復階段患者之功能表現,結果顯示抬升力指標(lift-up index),擺盪跨越時間(time of swing-over),以及擺盪腳落地瞬間的兩下肢承重分配(load-distribution at impact)等三項參數能夠作為鑑別前十字韌帶缺損患者功能缺損的參考。上述兩項研究皆應用生物力學觀點切入常用之臨床檢查,並確認其能提供具良好的檢測敏感度可應用前十字韌帶缺損患者。
完成階梯活動有賴於雙下肢各關節具有足夠的活動度與力量,以及複雜的相互連動。膝關節位於構成下肢之三關節連桿系統的中心位置,與同側肢其他關節以及對側肢關節透過精密地神經肌肉與骨骼系統之聯合控制方能完成各項功能性活動。而在前十字韌帶受損後,膝關節的機構產生了缺損,即可能會讓上述緊密的關係產生改變而造成後續的適應與調整。本研究利用完整的三維運動學與動力學分析探討單側前十字韌帶受損患者於從事階梯活動時下肢的變化與適應策略。外在地面反作用力的分析顯示前十字韌帶患者會採用較慢的步頻及減少患肢承重的保護性策略。在下階梯時,患側肢較健側肢承擔相對較大地面反作用力參數,也顯示與患者對下樓梯感到比較困難有其關聯性。在關節運動學方面,單側前十字韌帶缺損患者主要的改變發生在髖關節,產生較大的屈曲與內收的角度範圍,以及較少的外轉角度,踝關節也顯示出較小的整體活動範圍。在身體穩定性的控制部份,上階梯時,患者的身體質量中心-足底壓力中心連線(center-of-mass-to-center-of-pressure)會有較大的最大後傾角度,以及內外傾角度範圍減小的現象。而在下階梯時,則是後向與內向的傾斜角度皆有明顯下降的情形。而在足部擺盪的控制,則可以觀察到上階梯以健側肢為後腳時,由於沒有視覺回饋的輔助,會保留與階梯間較大的間隙距離,以因應患側為前測支撐腳時可能的不穩定現象。進一步對於關節動力學的深入探討,發現單側前十字韌帶缺損患者會把較大比例的軸向力承擔放在健側肢的每個關節,以減少患側肢關節所需承擔的比例,而更重要的目標,為了達到減少患側膝關節所需承擔的前向力,兩側踝關節的前向力都因應而有顯著地提高的現象。在各關節力矩的表現上,也可以在不論是上或下階梯時的前半段支撐期,觀察到膝伸直肌力矩的顯著下降(亦即「避免股四頭肌作用」之現象),因應而在健側另外兩個關節則會發現明顯的髖關節外展肌與踝關節蹠曲肌力矩的增加。雙下肢各個關節間運動學與動力學的改變會導致彼此間相互地牽動與影響,對於單側前十字韌帶缺損患者在從事階梯活動時的運動學與動力學在本論文中已完成詳細而深入的探討。這些研究結果期能對這類患者在受傷後的適應機制有更完整的了解,而能進一步應用於對這類患者有更適當的訓練計畫設計,以及減少或避免患者爾後產生重複受傷的情形。 | zh_TW |
| dc.description.abstract | The incidences of ACL tears were high in particular sports participations. The injury of the ACL could lead to anterior instability of the knee joint and substantial functional disability. The accurate diagnosis of ACL tear is vital to the following patient care. The regional analysis of the anterior knee laxity was used to show the differences of the anterior knee laxity between the normal and ACL-deficient knees. Two diagnostic criteria were developed based on our results: Region 2 with a displacement larger than 3.7 mm and Region 3 with stiffness smaller than 22 N/mm. They demonstrated good levels of both sensitivity and specificity in distinguishing the ACL-injured knees from possible ACL patients. Careful monitoring of functional recovery was essential for these patients before returning to sport activities. Investigation on stepping up and over test on a clinical forceplate system revealed the alterations in kinetic characteristics in ACL-deficient patients in different recovery phases. The results showed that the lift-up index, the time of swing-over and load-distributing strategy at impact could be important parameters in indentifying functional impairments for patients with ACL deficiency. These studies confirmed that, with a biomechanical approach, two assessments with instruments frequently used in clinics were presented and proved to be sensitive to the impairments in patients after ACL injury.
The lower extremity is a three-joint linkage system and stair locomotion is achieved through a complicated interaction of these joints. The knee joint is located in the middle of the linkage system and works sophisticatedly with the complex and interactive neuromusculoskeletal system. Injury of the ACL may change the relationship between these joints and the subsequent adaptations were expected. Three-dimensional kinematic and kinetic analyses of the lower limb joints during stair ascent and descent were performed on the patients with ACL deficiency and compared with the healthy controls. The results showed that these patients would adopt a protective strategy with slower cadences and reduced force-bearing on the affected limb. During stair descent, relatively larger magnitudes of the GRF parameters were also found in the affected limb than in the unaffected limb, which supported the responses in patients with ACL deficiency who would find it more challenging to perform stair descent. The kinematic adaptations during stair locomotion in patients with ACL deficiency were mainly made by the hip joint, with larger flexion and adduction, and less ER angles. A smaller range of motion at the ankle joint was also noticeable. Studies on control of the body stability and foot clearance during stair locomotion showed that the ACL-deficient patients demonstrated the increased posterior body center-of-mass-to-center-of-pressure (COM-COP) inclination and reduced medial COM-COP inclination during stair ascent. However, the ACL-deficient patients would reduce the body inclinations in both posterior and medial directions during stair descent. During stair ascent, the increased foot clearances in the trailing legs were demonstrated in the unaffected limbs, suggesting that because of the unstable stance leg, these patients may have to preserve a larger spacing from the obstacle under the condition without visual assistances. Further investigation on the kinetic alterations confirmed that ACL-deficient patients tended to leave a larger proportion of loadings on the three joints of the unaffected limbs and try to reduce those on the affected limb during stair locomotion. The anterior forces transmitted at the affected knees were found reduced significantly during stair ascent and descent. In response, the increased anterior forces were demonstrated at the ankles in both the affected and unaffected limbs. The reduced extensor moments were demonstrated at the affected knees in the early stance phase of stair ascent and descent. The corresponding adaptations occurred mainly in the hip and ankle joints of the unaffected limbs with increased hip abductor and ankle plantarflexor moments. Knowledge of the kinematics and kinetics of stair locomotion in the healthy young subjects and in patients with unilateral ACL deficiency were established. These investigations provided the insight in the adaptations during stair locomotion in the patients with unilateral deficiency, and could be used further in designing training programs or developing prevention strategies to avoid repeated injuries in the patients with unilateral ACL deficiency. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:08:15Z (GMT). No. of bitstreams: 1 ntu-99-D90548011-1.pdf: 2584518 bytes, checksum: bab208463f258a031c98a3c86c1003a3 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract iii Table of Contents vi List of Tables ix List of Figures xi Chapter 1 Introduction 1 1.1. Biomechanical Roles of Anterior Cruciate Ligament (ACL) 1 1.2. The ACL Injury 3 1.3. Clinical Diagnosis of ACL Injury 5 1.4. Consequences after the ACL Injury 9 1.5. Rehabilitation for the ACL injured Patients 18 1.5. Aims of This Dissertation 22 Chapter 2 A Biomechanical Approach with Regional Analysis of Knee Laxity for Assisting Diagnosis of ACL Tear 24 2.1 Background 24 2.2. Participants 27 2.3. Instruments 28 2.4. Experiments 28 2.5. Data Analysis 30 2.6. Results 32 2.7. Discussion 38 2.8. Conclusion 42 Chapter 3 Kinetic Characteristics of Stepping-Up-and-Over Test in Young Healthy and ACL-Deficient Subjects 43 3.1. Background 43 3.2. Participants 46 3.3. Instruments and Data Acquisition 47 3.4. Data Analysis 48 3.5. Results 50 3.6. Discussion 55 3.7. Conclusion 61 Chapter 4 Comparisons of Three-Dimensional Joint Kinetics in the Lower Extremity Between Stair Ascent and Descent in Young Healthy Subjects 62 4.1. Background 62 4.2. Participants 64 4.3. Instruments 64 4.4. Data Analysis 66 4.5. Results 69 4.6. Discussion 78 4.7. Conclusion 82 Chapter 5 Comparisons of the Ground Reaction Forces Between Healthy and ACL-Deficient Subjects in Consecutive Steps During Stair Locomotion 84 5.1. Background 84 5.2. Participants 87 5.2. Experiment Setup and Testing Procedures 88 5.3. Data Analysis 89 5.4. Results 93 5.4. Discussion 99 5.5. Conclusion 104 Chapter 6 Comparisons of the Lower Limb Kinematics Between Healthy and ACL-Deficient Subjects during Stair Locomotion 105 6.1. Background 105 6.2. Participants 106 6.3. Instruments and Experiment Setup 107 6.4. Data Analysis and Data Reduction 109 6.5. Results 122 6.6. Discussion 137 6.7. Conclusion 144 Chapter 7 Control of Dynamic Stability and Foot Clearances in Transition between the Ground and Stairs in Healthy and ACL-Deficient Groups 145 7.1. Background 145 7.2. Participants and Experimental Setup 146 7.3. Data Analysis 147 7.4. Results 156 7.5. Discussion 164 7.6. Conclusion 170 Chapter 8 Comparisons of the Lower Limb Kinetics in Consecutive Steps During Stair Locomotion Between Healthy and ACL-Deficient Groups 171 8.1. Background 171 8.2. Data Analysis 173 8.3. Results 177 8.4. Discussion 205 8.5. Conclusion 210 Chapter 9 Conclusions and Suggestions 211 9.1. Conclusions 211 9.2. Suggestions for Further Studies 217 Appendix A Publications 219 References 221 | |
| dc.language.iso | en | |
| dc.subject | 前十字韌帶缺損 | zh_TW |
| dc.subject | 力動學 | zh_TW |
| dc.subject | 運動學 | zh_TW |
| dc.subject | 生物力學分析 | zh_TW |
| dc.subject | 上下階梯 | zh_TW |
| dc.subject | Biomechanical analysis | en |
| dc.subject | stair locomotion | en |
| dc.subject | anterior cruciate ligament | en |
| dc.subject | kinetics | en |
| dc.subject | kinematics | en |
| dc.title | 前十字韌帶受損患者上下階梯之生物力學分析 | zh_TW |
| dc.title | Biomechanical Analysis of Stair Locomotion in Patients with Anterior Cruciate Ligament Injury | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 許弘昌(Horng-Chaung Hsu),王淑芬(Shwu-Fen Wang),周立善(Li-Shan Chou),林光華(Kwan-Hwa Lin) | |
| dc.subject.keyword | 生物力學分析,前十字韌帶缺損,上下階梯,運動學,力動學, | zh_TW |
| dc.subject.keyword | Biomechanical analysis,anterior cruciate ligament,stair locomotion,kinematics,kinetics, | en |
| dc.relation.page | 242 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
