Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4758
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳進庭
dc.contributor.authorPo-Chun Pengen
dc.contributor.author彭柏鈞zh_TW
dc.date.accessioned2021-05-14T17:46:35Z-
dc.date.available2020-05-01
dc.date.available2021-05-14T17:46:35Z-
dc.date.copyright2019-03-11
dc.date.issued2015
dc.date.submitted2015-04-15
dc.identifier.citation參考文獻
1. 癌症登記線上互動查詢系統 https://cris.hpa.gov.tw/default.aspx. 中華民國衛生福利部國民健康署.
2. 民國102年死因統計年報 http://www.mohw.gov.tw/cht/DOS/. 中華民國衛生福利部統計處.
3. Cheng, X. and H. Chen, Tumor heterogeneity and resistance to EGFR-targeted therapy in advanced nonsmall cell lung cancer: challenges and perspectives. Onco Targets Ther, 2014. 7: p. 1689-704.
4. Heldin, C.H., et al., High interstitial fluid pressure - an obstacle in cancer therapy. Nat Rev Cancer, 2004. 4(10): p. 806-13.
5. Raju, B., et al., High interstitial fluid pressure in rat tongue cancer is related to increased lymph vessel area, tumor size, invasiveness and decreased body weight. J Oral Pathol Med, 2008. 37(3): p. 137-44.
6. Dylla, S.J., et al., Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One, 2008. 3(6): p. e2428.
7. Lagasse, E., Cancer stem cells with genetic instability: the best vehicle with the best engine for cancer. Gene Ther, 2008. 15(2): p. 136-42.
8. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70.
9. Malhotra, V. and M.C. Perry, Classical chemotherapy: mechanisms, toxicities and the therapeutic window. Cancer Biol Ther, 2003. 2(4 Suppl 1): p. S2-4.
10. Hesketh, P.J., Chemotherapy-induced nausea and vomiting. N Engl J Med, 2008. 358(23): p. 2482-94.
11. Vidall, C., et al., Evidence-based management of chemotherapy-induced nausea and vomiting: a position statement from a European cancer nursing forum. Ecancermedicalscience, 2011. 5: p. 211.
12. Petros, R.A. and J.M. DeSimone, Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews Drug Discovery, 2010. 9(8): p. 615-27.
13. Bangham, A.D., M.M. Standish, and J.C. Watkins, Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol, 1965. 13(1): p. 238-52.
14. Bangham, A.D. and R.W. Horne, Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol, 1964. 8(5): p. 660-8.
15. Sessa, G. and Weissman.G, Phospholipid Spherules (Liposomes) as a Model for Biological Membranes. J Lipid Res, 1968. 9(3): p. 310-8.
16. Aktas, M., et al., Membrane lipids in Agrobacterium tumefaciens: biosynthetic pathways and importance for pathogenesis. Front Plant Sci, 2014. 5: p. 109.
17. Allen, T.M. and L.G. Cleland, Serum-induced leakage of liposome contents. Biochim Biophys Acta, 1980. 597(2): p. 418-26.
18. Koning, G.A., J.A. Kamps, and G.L. Scherphof, Interference of macrophages with immunotargeting of liposomes. J Liposome Res, 2002. 12(1-2): p. 107-19.
19. Allen, T.M., Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends Pharmacol Sci, 1994. 15(7): p. 215-20.
20. Ahmad, I., et al., Antibody-Targeted Delivery of Doxorubicin Entrapped in Sterically Stabilized Liposomes Can Eradicate Lung-Cancer in Mice. Cancer Res, 1993. 53(7): p. 1484-8.
21. Lasch, J., V. Weissig, and M. Brandl, Preparation of liposomes, in Liposomes: a practical approach (2nd ed.), V. Torchilin and V. Weissig, Editors. 2003, Oxford University Press: New York. p. 3-29.
22. Gregoria.G and B.E. Ryman, Liposomes as Carriers of Enzymes or Drugs - New Approach to Treatment of Storage Diseases. Biochemical Journal, 1971. 124(5): p. P58- .
23. Torchilin, V.P., Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov, 2005. 4(2): p. 145-60.
24. Drummond, D.C., et al., Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev, 1999. 51(4): p. 691-743.
25. Matsumura, Y. and H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res, 1986. 46(12 Pt 1): p. 6387-92.
26. Maeda, H., The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul, 2001. 41: p. 189-207.
27. Maeda, H., G.Y. Bharate, and J. Daruwalla, Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm, 2009. 71(3): p. 409-19.
28. Fang, J., H. Nakamura, and H. Maeda, The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev, 2011. 63(3): p. 136-51.
29. Fang, J., T. Sawa, and H. Maeda, Factors and mechanism of 'EPR' effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. Adv Exp Med Biol, 2003. 519: p. 29-49.
30. Seki, T., J. Fang, and H. Maeda, Tumor-Targeted Macromolecular Drug Delivery Based on the Enhanced Permeability and Retention Effect in Solid Tumor, in Pharmaceutical Perspectives of Cancer Therapeutics, Y. Lu and R.I. Mahato, Editors. 2009, Springer US. p. 93-120.
31. Arcamone, F., et al., Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. Biotechnol Bioeng, 1969. 11(6): p. 1101-10.
32. Cole, M.P., I.D. Todd, and P.M. Wilkinson, A preliminary trial of doxorubicin in advanced breast cancer and other malignant disease. Br J Cancer, 1974. 29(2): p. 114-6.
33. Suppiah, R., et al., Phase I/II study of docetaxel, ifosfamide, and doxorubicin in advanced, recurrent, or metastatic soft tissue sarcoma (STS). Invest New Drugs, 2006. 24(6): p. 509-14.
34. Schiller, J.H., Current standards of care in small-cell and non-small-cell lung cancer. Oncology, 2001. 61 Suppl 1: p. 3-13.
35. Kelland, L.R., Emerging drugs for ovarian cancer. Expert Opin Emerg Drugs, 2005. 10(2): p. 413-24.
36. Crivellari, D., et al., Breast cancer in the elderly. J Clin Oncol, 2007. 25(14): p. 1882-90.
37. Singal, P.K. and N. Iliskovic, Doxorubicin-induced cardiomyopathy. N Engl J Med, 1998. 339(13): p. 900-5.
38. Swain, S.M., F.S. Whaley, and M.S. Ewer, Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer, 2003. 97(11): p. 2869-79.
39. Hong, R.L., et al., Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice: is surface coating with polyethylene glycol beneficial? Clin Cancer Res, 1999. 5(11): p. 3645-52.
40. Thompson, D.H., et al., Triggerable plasmalogen liposomes: improvement of system efficiency. Biochim Biophys Acta, 1996. 1279(1): p. 25-34.
41. Tseng, Y.L., J.J. Liu, and R.L. Hong, Translocation of liposomes into cancer cells by cell-penetrating peptides penetratin and tat: a kinetic and efficacy study. Mol Pharmacol, 2002. 62(4): p. 864-72.
42. Bondurant, B., A. Mueller, and D.F. O'Brien, Photoinitiated destabilization of sterically stabilized liposomes. Biochim Biophys Acta, 2001. 1511(1): p. 113-22.
43. Daley-Yates, P.T. and D.C. McBrien, Cisplatin metabolites in plasma, a study of their pharmacokinetics and importance in the nephrotoxic and antitumour activity of cisplatin. Biochem Pharmacol, 1984. 33(19): p. 3063-70.
44. Fossa, S.D., et al., Prognostic factors in patients progressing after cisplatin-based chemotherapy for malignant non-seminomatous germ cell tumours. Br J Cancer, 1999. 80(9): p. 1392-9.
45. Armstrong, D.K., et al., Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med, 2006. 354(1): p. 34-43.
46. Peyrone, M., Ueber die Einwirkung des Ammoniaks auf Platinchlor uuml;r. Justus Liebigs Ann. Chem., 1844. 51(1): p. 1-29.
47. Pinto, A.L. and S.J. Lippard, Binding of the antitumor drug cis-diamminedichloroplatinum(II) (cisplatin) to DNA. Biochim Biophys Acta, 1985. 780(3): p. 167-80.
48. Fuertes, M.A., C. Alonso, and J.M. Perez, Biochemical modulation of Cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem Rev, 2003. 103(3): p. 645-62.
49. Fuertes, M.A., et al., Cisplatin biochemical mechanism of action: from cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Curr Med Chem, 2003. 10(3): p. 257-66.
50. Bramwell, V.H., et al., Neoadjuvant chemotherapy with doxorubicin and cisplatin in malignant fibrous histiocytoma of bone: A European Osteosarcoma Intergroup study. J Clin Oncol, 1999. 17(10): p. 3260-9.
51. Lyass, O., A. Hubert, and A.A. Gabizon, Phase I study of doxil-cisplatin combination chemotherapy in patients with advanced malignancies. Clin Cancer Res, 2001. 7(10): p. 3040-6.
52. Humber, C.E., et al., Chemotherapy for advanced, recurrent or metastatic endometrial cancer: a systematic review of Cochrane collaboration. Ann Oncol, 2007. 18(3): p. 409-20.
53. Oze, I., et al., Twenty-seven years of phase III trials for patients with extensive disease small-cell lung cancer: disappointing results. PLoS One, 2009. 4(11): p. e7835.
54. Krakoff, I.H., Nephrotoxicity of cis-dichlorodiammineplatinum(II). Cancer Treat Rep, 1979. 63(9-10): p. 1523-5.
55. Potkul, R.K., et al., Toxicities in rats with free versus liposomal encapsulated cisplatin. Am J Obstet Gynecol, 1991. 164(2): p. 652-8.
56. Arany, I. and R.L. Safirstein, Cisplatin nephrotoxicity. Semin Nephrol, 2003. 23(5): p. 460-4.
57. Coradini, P.P., et al., Ototoxicity from cisplatin therapy in childhood cancer. J Pediatr Hematol Oncol, 2007. 29(6): p. 355-60.
58. Steerenberg, P.A., et al., Liposomes as drug carrier system for cis-diamminedichloroplatinum (II). II. Antitumor activity in vivo, induction of drug resistance, nephrotoxicity and Pt distribution. Cancer Chemother Pharmacol, 1988. 21(4): p. 299-307.
59. White, S.C., et al., Phase II study of SPI-77 (sterically stabilised liposomal cisplatin) in advanced non-small-cell lung cancer. Br J Cancer, 2006. 95(7): p. 822-8.
60. Boulikas, T., Clinical overview on Lipoplatin: a successful liposomal formulation of cisplatin. Expert Opin Investig Drugs, 2009. 18(8): p. 1197-218.
61. Newman, M.S., et al., Comparative pharmacokinetics, tissue distribution, and therapeutic effectiveness of cisplatin encapsulated in long-circulating, pegylated liposomes (SPI-077) in tumor-bearing mice. Cancer Chemother Pharmacol, 1999. 43(1): p. 1-7.
62. Vail, D.M., et al., STEALTH liposome-encapsulated cisplatin (SPI-77) versus carboplatin as adjuvant therapy for spontaneously arising osteosarcoma (OSA) in the dog: a randomized multicenter clinical trial. Cancer Chemother Pharmacol, 2002. 50(2): p. 131-6.
63. Zamboni, W.C., et al., Systemic and tumor disposition of platinum after administration of cisplatin or STEALTH liposomal-cisplatin formulations (SPI-077 and SPI-077 B103) in a preclinical tumor model of melanoma. Cancer Chemother Pharmacol, 2004. 53(4): p. 329-36.
64. Gomer, C.J., et al., Properties and applications of photodynamic therapy. Radiat Res, 1989. 120(1): p. 1-18.
65. Dolmans, D.E., D. Fukumura, and R.K. Jain, Photodynamic therapy for cancer. Nat Rev Cancer, 2003. 3(5): p. 380-7.
66. Agostinis, P., et al., Photodynamic therapy of cancer: an update. CA Cancer J Clin, 2011. 61(4): p. 250-81.
67. Foote, C.S., Mechanisms of Photosensitized Oxidation - There Are Several Different Types of Photosensitized Oxidation Which May Be Important in Biological Systems. Science, 1968. 162(3857): p. 963- .
68. Peng, Q., J. Moan, and J.M. Nesland, Correlation of subcellular and intratumoral photosensitizer localization with ultrastructural features after photodynamic therapy. Ultrastruct Pathol, 1996. 20(2): p. 109-129.
69. Ormond, A.B. and H.S. Freeman, Dye Sensitizers for Photodynamic Therapy. Materials, 2013. 6(3): p. 817-40.
70. MacRobert, A.J., S.G. Bown, and D. Phillips, What Are the Ideal Photoproperties for a Sensitizer?, in Photosensitizing Compounds: Their Chemistry, Biology and Clinical Use, G. Bock and S. Harnett, Editors. 1989, Wiley: Chichester. p. 4-16.
71. Boyle, R.W. and D. Dolphin, Structure and biodistribution relationships of photodynamic sensitizers. Photochem Photobiol, 1996. 64(3): p. 469-85.
72. Nyman, E.S. and P.H. Hynninen, Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. J Photoch Photobio B, 2004. 73(1-2): p. 1-28.
73. Derycke, A.S. and P.A. de Witte, Liposomes for photodynamic therapy. Adv Drug Deliv Rev, 2004. 56(1): p. 17-30.
74. Muehlmann, L.A., et al., Liposomal photosensitizers: potential platforms for anticancer photodynamic therapy. Braz J Med Biol Res, 2011. 44(8): p. 729-37.
75. Tsai, T., et al., Improved photodynamic inactivation of gram-positive bacteria using hematoporphyrin encapsulated in liposomes and micelles. Lasers Surg Med, 2009. 41(4): p. 316-22.
76. Jin, C.S. and G. Zheng, Liposomal nanostructures for photosensitizer delivery. Lasers Surg Med, 2011. 43(7): p. 734-48.
77. Damoiseau, X., et al., Increase of the photosensitizing efficiency of the Bacteriochlorin a by liposome-incorporation. J Photochem Photobiol B, 2001. 60(1): p. 50-60.
78. Yang, Y.T., et al., Photodynamic inactivation of chlorin e6-loaded CTAB-liposomes against Candida albicans. Lasers Surg Med, 2013. 45(3): p. 175-85.
79. Namiki, Y., et al., Enhanced photodynamic antitumor effect on gastric cancer by a novel photosensitive stealth liposome. Pharmacol Res, 2004. 50(1): p. 65-76.
80. Miller, S.J., et al., Large-scale molecular comparison of human schwann cells to malignant peripheral nerve sheath tumor cell lines and tissues. Cancer Res, 2006. 66(5): p. 2584-91.
81. Rasmussen, S.A., Q. Yang, and J.M. Friedman, Mortality in neurofibromatosis 1: an analysis using U.S. death certificates. Am J Hum Genet, 2001. 68(5): p. 1110-8.
82. Abuelo, D., Neurofibromatosis: Phenotype, natural history, and pathogenesis, 3rd edition. J Dev Behav Pediatr, 2002. 23(2): p. 117-8.
83. Wong, W.W., et al., Malignant peripheral nerve sheath tumor: analysis of treatment outcome. Int J Radiat Oncol Biol Phys, 1998. 42(2): p. 351-60.
84. Rosenbaum, T., K.M. Patrie, and N. Ratner, Neurofibromatosis type 1: Genetic and cellular mechanisms of peripheral nerve tumor formation. Neuroscientist, 1997. 3(6): p. 412-20.
85. Morioka, N., et al., A case of neurofibrosarcoma associated with neurofibromatosis: light microscopic, ultrastructural, immunohistochemical and biochemical investigations. J Dermatol, 1990. 17(5): p. 312-6.
86. Ferner, R.E. and D.H. Gutmann, International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis. Cancer Res, 2002. 62(5): p. 1573-7.
87. Fishbein, L., et al., Analysis of somatic NF1 promoter methylation in plexiform neurofibromas and Schwann cells. Cancer Genet Cytogenet, 2005. 157(2): p. 181-6.
88. Menon, A.G., et al., Chromosome 17p deletions and p53 gene mutations associated with the formation of malignant neurofibrosarcomas in von Recklinghausen neurofibromatosis. Proc Natl Acad Sci U S A, 1990. 87(14): p. 5435-9.
89. Nielsen, G.P., et al., Malignant transformation of neurofibromas in neurofibromatosis 1 is associated with CDKN2A/p16 inactivation. Am J Pathol, 1999. 155(6): p. 1879-84.
90. Holtkamp, N., et al., EGFR and erbB2 in malignant peripheral nerve sheath tumors and implications for targeted therapy. Neuro Oncol, 2008. 10(6): p. 946-57.
91. Sheela, S., V.M. Riccardi, and N. Ratner, Angiogenic and invasive properties of neurofibroma Schwann cells. J Cell Biol, 1990. 111(2): p. 645-53.
92. Ferner, R.E., et al., Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet, 2007. 44(2): p. 81-8.
93. Ducatman, B.S., et al., Malignant peripheral nerve sheath tumors. A clinicopathologic study of 120 cases. Cancer, 1986. 57(10): p. 2006-21.
94. Widemann, B.C., et al., Phase I trial and pharmacokinetic study of the farnesyltransferase inhibitor tipifarnib in children with refractory solid tumors or neurofibromatosis type I and plexiform neurofibromas. J Clin Oncol, 2006. 24(3): p. 507-16.
95. Gupta, A., et al., Phase I study of thalidomide for the treatment of plexiform neurofibroma in neurofibromatosis 1. Neurology, 2003. 60(1): p. 130-2.
96. Riccardi, V.M., A controlled multiphase trial of ketotifen to minimize neurofibroma-associated pain and itching. Arch Dermatol, 1993. 129(5): p. 577-81.
97. Riccardi, V.M., Mast-cell stabilization to decrease neurofibroma growth. Preliminary experience with ketotifen. Arch Dermatol, 1987. 123(8): p. 1011-6.
98. Mantripragada, K.K., et al., High-resolution DNA copy number profiling of malignant peripheral nerve sheath tumors using targeted microarray-based comparative genomic hybridization. Clin Cancer Res, 2008. 14(4): p. 1015-24.
99. Verma, A., et al., Targeting Axl and Mer kinases in cancer. Mol Cancer Ther, 2011. 10(10): p. 1763-73.
100. Li, R.H., et al., Identification of Gas6 as a growth factor for human Schwann cells. J Neurosci, 1996. 16(6): p. 2012-9.
101. Nielsen-Preiss, S.M., et al., Adhesion-related kinase induction of migration requires phosphatidylinositol-3-kinase and ras stimulation of rac activity in immortalized gonadotropin-releasing hormone neuronal cells. Endocrinology, 2007. 148(6): p. 2806-14.
102. Weiner, T.M., et al., Expression of growth factor receptors, the focal adhesion kinase, and other tyrosine kinases in human soft tissue tumors. Ann Surg Oncol, 1994. 1(1): p. 18-27.
103. Mahadevan, D., et al., A novel tyrosine kinase switch is a mechanism of imatinib resistance in gastrointestinal stromal tumors. Oncogene, 2007. 26(27): p. 3909-19.
104. Liu, L., et al., Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. Cancer Res, 2009. 69(17): p. 6871-8.
105. Barenholz, Y., Liposome application: problems and prospects. Curr Opin Colloid In, 2001. 6(1): p. 66-77.
106. Tsai, Y.C., Investigation of dual-effect liposome in inhibiting tumor growth. , in Institute of Microbiology and Biochemistry 2009, National Taiwan University: Taiwan.
107. Peng, P.C., Fabricated dual-effect liposome for tumor treatment in C26 tumor-bearing mice. , in Institute of Microbiology and Biochemistry 2010, National Taiwan University: Taiwan.
108. Laginha, K.M., et al., Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin Cancer Res, 2005. 11(19 Pt 1): p. 6944-9.
109. Koppel, D.E., Analysis of Macromolecular Polydispersity in Intensity Correlation Spectroscopy: The Method of Cumulants. J Chem Phys, 1972. 57(11): p. 4814-6.
110. Snyder, J.W., et al., Photodynamic therapy: a means to enhanced drug delivery to tumors. Cancer Res, 2003. 63(23): p. 8126-31.
111. Gewirtz, D.A., A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol, 1999. 57(7): p. 727-41.
112. Lopes de Menezes, D.E., et al., Cellular Trafficking and Cytotoxicity of Anti-Cd19-Targeted Liposomal Doxorubicin in B Lymphoma Cells. J Liposome Res, 1999. 9(2): p. 199-228.
113. Terasaki, T., et al., Nuclear-Binding as a Determinant of Tissue Distribution of Adriamycin, Daunomycin, Adriamycinol, Daunorubicinol and Actinomycin-D. J Pharmacobiodyn, 1984. 7(5): p. 269-77.
114. Marafino, B.J., Jr., S.N. Giri, and D.M. Siegel, Pharmacokinetics, covalent binding and subcellular distribution of [3H]doxorubicin after intravenous administration in the mouse. J Pharmacol Exp Ther, 1981. 216(1): p. 55-61.
115. Peng, P.C., et al., Dual-effect liposomes encapsulated with doxorubicin and chlorin e6 augment the therapeutic effect of tumor treatment. Lasers Surg Med, 2015. 47(1): p. 77-87.
116. Lee, S.C., et al., The effect of cholesterol in the liposome bilayer on the stabilization of incorporated Retinol. J Liposome Res, 2005. 15(3-4): p. 157-66.
117. Liu, D., et al., Application of liposomal technologies for delivery of platinum analogs in oncology. Int J Nanomedicine, 2013. 8: p. 3309-19.
118. Stathopoulos, G.P. and T. Boulikas, Lipoplatin formulation review article. J Drug Deliv, 2012. 2012: p. 581363.
119. Blume, G. and G. Cevc, Liposomes for the sustained drug release in vivo. Biochim Biophys Acta, 1990. 1029(1): p. 91-7.
120. Lee, H.W., The optimization of dual-effect liposome encapsulated Ce6 and chemotherapeutic drugs, cisplatin or doxorubicin, in Department of Biochemical Science and Technology 2013, National Taiwan University: Taiwan.
121. Nes, W.R., Role of sterols in membranes. Lipids, 1974. 9(8): p. 596-612.
122. Dos Santos, N., et al., Improved retention of idarubicin after intravenous injection obtained for cholesterol-free liposomes. Biochim Biophys Acta, 2002. 1561(2): p. 188-201.
123. Mojzisova, H., et al., Cellular uptake and subcellular distribution of chlorin e6 as functions of pH and interactions with membranes and lipoproteins. Biochim Biophys Acta, 2007. 1768(11): p. 2748-56.
124. Dos Santos, N., et al., pH gradient loading of anthracyclines into cholesterol-free liposomes: enhancing drug loading rates through use of ethanol. Biochim Biophys Acta, 2004. 1661(1): p. 47-60.
125. Barenholz, Y., Amphipathic weak base loading into preformed liposomes having a transmembrane ammonium ion gradient: From the bench to approved DOXIL, in Liposome Technology, G. Gregoriadis, Editor. 2007, Informa Healthcare: New York p. 1-25.
126. Schroit, A.J., J. Madsen, and R. Nayar, Liposome-cell interactions: in vitro discrimination of uptake mechanism and in vivo targeting strategies to mononuclear phagocytes. Chem Phys Lipids, 1986. 40(2-4): p. 373-93.
127. Wright, A.E., S.R. Douglas, and J.B. Sanderson, An experimental investigation of the role of the blood fluids in connection with phagocytosis. 1903. Rev Infect Dis, 1989. 11(5): p. 827-34.
128. Scherphof, G., et al., Disintegration of Phosphatidylcholine Liposomes in Plasma as a Result of Interaction with High-Density Lipoproteins. Biochim Biophys Acta, 1978. 542(2): p. 296-307.
129. Scherphof, G., et al., Exchange of Phosphatidylcholine between Small Unilamellar Liposomes and Human-Plasma High-Density Lipoprotein Involves Exclusively the Phospholipid in the Outer Monolayer of the Liposomal Membrane. Biochim Biophys Acta, 1983. 732(3): p. 595-9.
130. Allen, T.M., A Study of Phospholipid Interactions between High-Density Lipoproteins and Small Unilamellar Vesicles. Biochim Biophys Acta, 1981. 640(2): p. 385-97.
131. Chin, W.W., et al., Fluorescence imaging and phototoxicity effects of new formulation of chlorin e6-polyvinylpyrrolidone. J Photochem Photobiol B, 2006. 84(2): p. 103-10.
132. Chin, W.W., et al., Improved formulation of photosensitizer chlorin e6 polyvinylpyrrolidone for fluorescence diagnostic imaging and photodynamic therapy of human cancer. Eur J Pharm Biopharm, 2008. 69(3): p. 1083-93.
133. Kostenich, G., et al., Monitoring PDT-induced damage using spectrally resolved reflectance imaging of tissue oxygenation. Cancer Lett, 2005. 219(2): p. 169-75.
134. Pegaz, B., et al., Preclinical evaluation of a novel water-soluble chlorin E6 derivative (BLC 1010) as photosensitizer for the closure of the neovessels. Photochem Photobiol, 2005. 81(6): p. 1505-10.
135. Shackley, D.C., et al., Light penetration in bladder tissue: implications for the intravesical photodynamic therapy of bladder tumours. BJU Int, 2000. 86(6): p. 638-43.
136. Sugiyama, I. and Y. Sadzuka, Correlation of fixed aqueous layer thickness around PEG-modified liposomes with in vivo efficacy of antitumor agent-containing liposomes. Curr Drug Discov Technol, 2011. 8(4): p. 357-66.
137. Sadzuka, Y., et al., Effects of mixed polyethyleneglycol modification on fixed aqueous layer thickness and antitumor activity of doxorubicin containing liposome. Int J Pharm, 2002. 238(1-2): p. 171-80.
138. Dan, N., Effect of liposome charge and PEG polymer layer thickness on cell-liposome electrostatic interactions. Biochim Biophys Acta, 2002. 1564(2): p. 343-8.
139. Sadzuka, Y., et al., The phototoxicity of photofrin was enhanced by PEGylated liposome in vitro. Cancer Lett, 2006. 241(1): p. 42-8.
140. Cheng, C., et al., Photodynamic therapy selectively enhances liposomal doxorubicin uptake in sarcoma tumors to rodent lungs. Lasers Surg Med, 2010. 42(5): p. 391-9.
141. Fingar, V.H., Vascular effects of photodynamic therapy. J Clin Laser Med Surg, 1996. 14(5): p. 323-8.
142. Debefve, E., et al., Video monitoring of neovessel occlusion induced by photodynamic therapy with verteporfin (Visudyne), in the CAM model. Angiogenesis, 2008. 11(3): p. 235-43.
143. Perentes, J.Y., et al., Low-Dose Vascular Photodynamic Therapy Decreases Tumor Interstitial Fluid Pressure, which Promotes Liposomal Doxorubicin Distribution in a Murine Sarcoma Metastasis Model. Transl Oncol, 2014.
144. Wang, Y., et al., Photodynamic induced uptake of liposomal doxorubicin to rat lung tumors parallels tumor vascular density. Lasers Surg Med, 2012. 44(4): p. 318-24.
145. Selbo, P.K., et al., Multi-modality therapeutics with potent anti-tumor effects: photochemical internalization enhances delivery of the fusion toxin scFvMEL/rGel. PLoS One, 2009. 4(8): p. e6691.
146. Woodhams, J., et al., Intracellular re-localisation by photochemical internalisation enhances the cytotoxic effect of gelonin--quantitative studies in normal rat liver. J Control Release, 2010. 142(3): p. 347-53.
147. Norum, O.J., et al., Photochemical internalization (PCI) in cancer therapy: from bench towards bedside medicine. J Photochem Photobiol B, 2009. 96(2): p. 83-92.
148. Norum, O.J., et al., Photochemical internalization of bleomycin before external-beam radiotherapy improves locoregional control in a human sarcoma model. Int J Radiat Oncol Biol Phys, 2009. 75(3): p. 878-85.
149. Norum, O.J., et al., Photochemical internalization of bleomycin is superior to photodynamic therapy due to the therapeutic effect in the tumor periphery. Photochem Photobiol, 2009. 85(3): p. 740-9.
150. Raemdonck, K., et al., Prolonged gene silencing by combining siRNA nanogels and photochemical internalization. J Control Release, 2010. 145(3): p. 281-8.
151. Pluim, D., et al., 32P-postlabeling assay for the quantification of the major platinum-DNA adducts. Anal Biochem, 1999. 275(1): p. 30-8.
152. Teicher, B.A., Tumor models for efficacy determination. Mol Cancer Ther, 2006. 5(10): p. 2435-43.
153. http://www.micromedexsolutions.com/micromedex2/librarian.
154. Meerum Terwogt, J.M., et al., Phase I and pharmacokinetic study of SPI-77, a liposomal encapsulated dosage form of cisplatin. Cancer Chemother Pharmacol, 2002. 49(3): p. 201-10.
155. Harrington, K.J., et al., Phase I-II study of pegylated liposomal cisplatin (SPI-077 (TM)) in patients with inoperable head and neck cancer. Ann Oncol, 2001. 12(4): p. 493-496.
156. Seetharamu, N., et al., Phase II study of liposomal cisplatin (SPI-77) in platinum-sensitive recurrences of ovarian cancer. Anticancer Res, 2010. 30(2): p. 541-5.
157. Boulikas, T., et al., Systemic Lipoplatin infusion results in preferential tumor uptake in human studies. Anticancer Res, 2005. 25(4): p. 3031-9.
158. Stathopoulos, G.P., et al., Comparison of liposomal cisplatin versus cisplatin in non-squamous cell non-small-cell lung cancer. Cancer Chemother Pharmacol, 2011. 68(4): p. 945-50.
159. Wang, S., et al., Talaporfin sodium. Expert Opin Pharmacother, 2010. 11(1): p. 133-40.
160. Bandak, S., et al., Pharmacological studies of cisplatin encapsulated in long-circulating liposomes in mouse tumor models. Anticancer Drugs, 1999. 10(10): p. 911-20.
161. Veal, G.J., et al., A phase I study in paediatric patients to evaluate the safety and pharmacokinetics of SPI-77, a liposome encapsulated formulation of cisplatin. Br J Cancer, 2001. 84(8): p. 1029-35.
162. Devarajan, P., et al., Low renal toxicity of lipoplatin compared to cisplatin in animals. Anticancer Res, 2004. 24(4): p. 2193-200.
163. Allison, R.R., et al., Photosensitizers in clinical PDT. Photodiagnosis and Photodynamic Therapy, 2004. 1(1): p. 27-42.
164. Kato, H., et al., Phase II clinical study of photodynamic therapy using mono-L-aspartyl chlorin e6 and diode laser for early superficial squamous cell carcinoma of the lung. Lung Cancer, 2003. 42(1): p. 103-11.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4758-
dc.description.abstract癌症為現代人類主要的死亡原因之一,目前常使用之治療方式中,將化療藥物包覆於微脂體之劑型,雖然能有效降低化療藥物副作用,但也減慢藥物釋放速度,使其療效大幅減弱。近年來我們發展利用光動力效應加速化療藥物由微脂體釋出之雙效微脂體,並發現其除了具有光動力治療與化學治療各自之效果外,還能造成微脂體中化療藥物釋放模式的改變,進而更加提高在活體動物實驗中對腫瘤之療效。為了驗證雙效微脂體的概念,並擴大其適用範圍,在本研究中,我們針對另一同因藥物釋放緩慢問題,而無法產生良好療效之微脂體藥物進行改良,建立結合光動力治療的雙效微脂體,並證實即使包覆不同化療藥物,依然能產生優良治療效力,對體積較大的腫瘤(500 mm3)也能發揮治癒功效。接著我們更進一步探討雙效微脂體的作用機制,發現其能藉由改善藥物釋放、增加藥物在腫瘤部位累積,以及促進藥物進入腫瘤細胞作用,來達到增進腫瘤治療能力的結果。最後我們更嘗試針對目前除手術外,並無較佳治療方式之人類惡性周邊神經鞘瘤進行治療探討。發現在小鼠腫瘤模式的實驗中,雙效微脂體能減少化療藥物的使用量,於治療後進行血液生化分析,顯示此治療方式具良好使用安全性,而且依然能展現完全清除腫瘤的功效,代表對人類惡性周邊神經鞘瘤也能達到應用。經由對雙效微脂體的了解,希望使其能有更進一步的發展,解決目前臨床腫瘤治療的需求。zh_TW
dc.description.abstractNowadays, cancer is one of the leading causes of mortality worldwide. Using liposome-encapsulated cancer chemotherapy significantly decreases side effects. However, entrapment of drug in liposomes may slow down drug release and attenuate anticancer efficacy. Previously, a dual-effect liposome triggered by photodynamic effect (PDT) was developed to improve the therapeutic efficacy of chemotherapeutic agent-loaded liposomes. Co-encapsulation of the photosensitizer and chemotherapeutic agent in liposome not only could display PDT and chemotherapy effect but also change the release profile of the chemotherapy drug from liposome, enhancing the anti-tumor effect in animal study. To verify the concept of dual-effect liposome and apply this strategy for cancer treatment, encapsulation of another liposomal chemotherapeutic agent in dual-effect liposome was performed. This newly dual-effect liposome could enhance anti-cancer efficacy even encapsulated with other chemotherapy drugs and revealed significant therapeutic effects even on large tumors (500 or 1000 mm3). Investigation of mechanism of dual-effect liposome showed that dual-effect liposome enhanced anti-cancer efficacy by (1) changing drug release, (2) increasing drug accumulation at the target tumor site, and (3) improving more chemotherapeutic medicine to enter the tumor cell. Treatment with dual-effect liposome significantly prevented tumor growth of malignant peripheral nerve sheath tumor (MPNST) which is a neurofibrosarcoma from neurofibromatosis type 1 and difficult to be cured. Analysis of blood chemistry showed it is safe to use dual-effect liposome for cancer treatment in murine model. In this study, we evaluated the feasibility of using dual-effect liposome to treat human cancer tumor xenografts in vivo, and expected to apply dual-effect liposome to clinical cancer therapy in the near future.en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:46:35Z (GMT). No. of bitstreams: 1
ntu-104-D99b22008-1.pdf: 5900572 bytes, checksum: 37094b7491e8b6665deaeee39faccc48 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
摘要 7
Abstract 8
1.1癌症治療 9
1.2化學治療 9
1.3微脂體 10
1.3.1微脂體簡介 10
1.3.2微脂體在藥物傳輸的應用 12
1.3.3 Liposomal Doxorubicin 14
1.3.4 Liposomal Cisplatin 15
1.4光動力治療 16
1.4.1光化學作用機制 17
1.4.2光感物質 18
1.4.3 Liposomal Chlorin e6 19
1.5惡性周邊神經鞘瘤 20
1.5.1 Axl receptor tyrosine kinase 21
1.6研究動機與目的 22
第二章 材料與方法 24
2.1藥品與儀器 24
2.1.1 藥品 24
2.1.2 儀器 26
2.2 細胞株 26
2.2.1 細胞培養液 27
2.2.2 繼代培養方法 27
2.2.3 細胞解凍與冷凍方法 27
2.3 細胞計數 28
2.4 微脂體製備 28
2.5 微脂體內藥物定量 31
2.6 微脂體內脂質分析 32
2.7 PL-cDDP-Ce6保存穩定性分析 32
2.8 PL-cDDP-Ce6於血清中的穩定性分析 32
2.9微脂體藥物釋放分析 33
2.10 細胞存活率檢測 - MTT assay 33
2.11 活體動物實驗 34
2.11.1 動物與腫瘤模式 34
2.11.2 藥物於活體組織分佈 34
2.11.3 腫瘤組織細胞核內藥物分析 35
2.11.4 光動力治療 35
2.11.5 血漿中Soluble Axl (sAxl)檢測 36
2.11.6 血液生化分析及腫瘤組織切片 36
2.12 統計分析 37
第三章 結果 38
3.1雙效微脂體PL-cDDP-Ce6 38
3.1.1雙效微脂體PL-cDDP-Ce6基礎性質分析 38
3.1.2雙效微脂體PL-cDDP-Ce6之細胞毒殺效果 39
3.1.3雙效微脂體PL-cDDP-Ce6於C26小鼠腫瘤模式之治療 40
3.2雙效微脂體機制探討 44
3.2.1雙效微脂體PL-Dox-Ce6作用機制 44
3.2.2雙效微脂體PL-cDDP-Ce6作用機制 48
3.3雙效微脂體PL-cDDP-Ce6於人類惡性周邊神經鞘瘤之應用 51
3.3.1雙效微脂體PL-cDDP-Ce6對MPNST腫瘤細胞之毒殺效果 51
3.3.2雙效微脂體PL-cDDP-Ce6對MPNST小鼠腫瘤模式之治療 52
第四章 討論 56
4.1雙效微脂體的製備 56
4.1.1建構雙效微脂體PL-cDDP-Ce6 56
4.1.2脂質及光感物質對雙效微脂體製備的影響 56
4.2 PL-cDDP-Ce6用於腫瘤治療 59
4.3雙效微脂體應用機制探討 61
4.3.1光感物質對雙效微脂體治療成效的影響 65
4.4雙效微脂體尚待釐清之機制 65
4.5 PL-cDDP-Ce6於人類惡性周邊神經鞘瘤之應用 67
4.6 PL-cDDP-Ce6臨床應用未來展望 68
參考文獻 114

表目錄
表一、雙效微脂體PL-cDDP-Ce6特性分析。 72
表二、雙效微脂體PL-cDDP-Ce6保存於4℃之穩定性分析。 73
表三、靜脈注射雙效微脂體PL-cDDP-Ce6後,老鼠各器官藥物累積量。 74
表四、製作時加入 (A) 0.1、(B) 0.15、(C) 0.2 mg Ce6所製成之雙效微脂體PL-Dox-Ce6特性分析。 75
表五、靜脈注射雙效微脂體PL-Dox-Ce6後,於第2小時進行照光治療,小鼠之血液及組織藥物濃度對時間曲線下面積(AUC)。 76
表六、靜脈注射雙效微脂體PL-Dox-Ce6後,於第2小時進行照光治療,小鼠之藥物動力學參數。 77
表七、製作時不加入Ce6之PL-cDDP及加入 (A) 0.4、(B) 0.8、(C) 1.2、(D) 1.6、(E) 2.4 mg Ce6所製成之雙效微脂體PL-cDDP-Ce6特性分析。 78
表八、靜脈注射雙效微脂體PL-cDDP-Ce6後,於第2小時進行照光治療,小鼠之血液及組織藥物濃度對時間曲線下面積(AUC)。 79
表九、靜脈注射雙效微脂體PL-cDDP-Ce6後,於第2小時進行照光治療,小鼠之藥物動力學參數。 80
表十、以雙效微脂體PL-cDDP-Ce6對植有S462-TY腫瘤之小鼠進行治療後72小時之血液生化分析。 81
表十一、以雙效微脂體PL-cDDP-Ce6對植有S462-TY腫瘤之小鼠進行治療後72小時之全血細胞計數。 82

圖目錄
圖一、雙效微脂體PL-cDDP-Ce6對 (A) A375細胞,(B) A549細胞,(C) C26細胞之細胞毒殺效果。 84
圖二、靜脈注射雙效微脂體PL-cDDP-Ce6後,分別在第2或第12小時進行光動力治療之小鼠 (A)腫瘤大小,(B)生存率,(C)體重變化。 85
圖三、靜脈注射雙效微脂體PL-cDDP-Ce6後,於第2及第12小時進行光動力治療之小鼠 (A)腫瘤大小,(B)生存率,(C)體重變化。 86
圖四、腫瘤生長至300 mm3後,再以雙效微脂體PL-cDDP-Ce6進行治療之小鼠 (A)腫瘤大小,(B)生存率,(C)體重變化。 87
圖五、腫瘤生長至500 mm3後,再以雙效微脂體PL-cDDP-Ce6進行治療之小鼠腫瘤大小,生存率,體重變化。 88
圖六、雙效微脂體PL-Dox-Ce6照光後粒徑(A)及分散指數(B)變化。 89
圖七、包覆不同Ce6量之雙效微脂體PL-Dox-Ce6照光後Dox釋放情形。 90
圖八、靜脈注射雙效微脂體PL-Dox-Ce6後,於第2小時進行照光治療,小鼠之組織器官藥物累積量變化。 93
圖九、靜脈注射雙效微脂體PL-Dox-Ce6並進行照光治療後,小鼠腫瘤內Dox累積量。 94
圖十、雙效微脂體PL-cDDP-Ce6照光後粒徑(A)及分散指數(B)變化。 95
圖十一、包覆不同Ce6量之雙效微脂體PL-cDDP-Ce6於血清中的穩定性 (Ce6留存率)。 96
圖十二、包覆不同Ce6量之雙效微脂體PL-cDDP-Ce6於血清中的穩定性 (cDDP留存率)。 97
圖十三、包覆不同Ce6量之雙效微脂體PL-cDDP-Ce6照光後cDDP釋放情形。 98
圖十四、靜脈注射雙效微脂體PL-cDDP-Ce6後,於第2小時進行照光治療,小鼠之組織器官藥物累積量變化。 100
圖十五、雙效微脂體PL-cDDP-Ce6對MPNST cell lines (A) S462-TY細胞,(B) ST8814細胞,(C) T265細胞之細胞毒殺效果。 101
圖十六、(A) cDDP及(B) PL-cDDP對植有S462-TY腫瘤之小鼠進行治療,其腫瘤大小,生存率,體重變化。 102
圖十七、以不同Ce6劑量之雙效微脂體PL-cDDP-Ce6對植有S462-TY腫瘤之小鼠進行治療,小鼠 (A)腫瘤大小,(B)生存率,(C)體重變化。 103
圖十八、以雙效微脂體PL-cDDP-Ce6對植有S462-TY腫瘤之小鼠進行治療,小鼠 (A)腫瘤大小,(B)生存率,(C)體重,(D)血漿內sAxl變化。 104
圖十九、S462-TY腫瘤生長至1000 mm3後,再以雙效微脂體PL-cDDP-Ce6進行治療,小鼠 (A)腫瘤大小,(B)生存率,(C)體重變化。 105
圖二十、以雙效微脂體PL-cDDP-Ce6對植有S462-TY腫瘤之小鼠進行治療,治療後72小時之腫瘤切片。 106
附表一、 SPI-077、Lipoplatin及 PL-cDDP-Ce6比較。 107
附表二、 Temoporfin、Talaporfin及 Chlorin e6光動力治療比較。 108
附圖一、光動力作用模式。 109
附圖二、常見的磷脂質化學結構。 110
附圖三、(A) 雙效微脂體PL-Dox-Ce6的製備流程; (B)雙效微脂體PL-cDDP-Ce6的製備流程。 111
附圖四、以HPLC分析Pt(DDTC)2。 112
附圖五、雙效型微脂體PL-cDDP-Ce6示意圖。 113
dc.language.isozh-TW
dc.subject人類惡性周邊神經鞘瘤zh_TW
dc.subject光動力治療zh_TW
dc.subject微脂體zh_TW
dc.subject藥物釋放zh_TW
dc.subject化學治療zh_TW
dc.subjectMPNSTen
dc.subjectLiposomeen
dc.subjectChemotherapyen
dc.subjectPhotodynamic therapyen
dc.subjectDrug releaseen
dc.title光動力觸發微脂體化療藥物輸送系統之研究zh_TW
dc.titleInvestigation of liposomal chemotherapy triggered by photodynamic treatmenten
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree博士
dc.contributor.oralexamcommittee黃慶璨,蔡翠敏,李銘仁,曾雲龍
dc.subject.keyword微脂體,化學治療,光動力治療,藥物釋放,人類惡性周邊神經鞘瘤,zh_TW
dc.subject.keywordLiposome,Chemotherapy,Photodynamic therapy,Drug release,MPNST,en
dc.relation.page125
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-04-15
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf5.76 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved