Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47586
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor阮雪芬,歐陽彥正
dc.contributor.authorYa-Jen Chenen
dc.contributor.author陳亞任zh_TW
dc.date.accessioned2021-06-15T06:07:17Z-
dc.date.available2011-08-22
dc.date.copyright2011-08-22
dc.date.issued2011
dc.date.submitted2011-08-19
dc.identifier.citation1. He, L. & Hannon, G.J. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet5, 522-531 (2004).
2. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell136, 215-233 (2009).
3. Chen, C.Y., Chen, S.T., Fuh, C.S., Juan, H.F. & Huang, H.C. Coregulation of transcription factors and microRNAs in human transcriptional regulatory network. BMC Bioinformatics12 Suppl 1, S41 (2011).
4. Qiu, C., Wang, J., Yao, P., Wang, E. & Cui, Q. microRNA evolution in a human transcription factor and microRNA regulatory network. BMC Syst Biol4, 90 (2010).
5. Baltimore, D., Boldin, M.P., O'Connell, R.M., Rao, D.S. & Taganov, K.D. MicroRNAs: new regulators of immune cell development and function. Nat Immunol9, 839-845 (2008).
6. Schickel, R., Boyerinas, B., Park, S.M. & Peter, M.E. MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene27, 5959-5974 (2008).
7. Tavazoie, S.F. et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature451, 147-152 (2008).
8. Rosenbauer, F. & Tenen, D.G. Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol7, 105-117 (2007).
9. Leupold, J.H. et al. Tumor suppressor Pdcd4 inhibits invasion/intravasation and regulates urokinase receptor (u-PAR) gene expression via Sp-transcription factors. Oncogene26, 4550-4562 (2007).
10. Mertens-Talcott, S.U., Chintharlapalli, S., Li, X. & Safe, S. The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res67, 11001-11011 (2007).
11. Stelzl, U. et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell122, 957-968 (2005).
12. Barabasi, A.L. & Oltvai, Z.N. Network biology: understanding the cell's functional organization. Nat Rev Genet5, 101-113 (2004).
13. Tsang, J., Zhu, J. & van Oudenaarden, A. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell26, 753-767 (2007).
14. Mangan, S. & Alon, U. Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci U S A100, 11980-11985 (2003).
15. Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120, 15-20 (2005).
16. Shirdel, E.A., Xie, W., Mak, T.W. & Jurisica, I. NAViGaTing the micronome--using multiple microRNA prediction databases to identify signalling pathway-associated microRNAs. PLoS One6, e17429 (2011).
17. Jiang, C., Xuan, Z., Zhao, F. & Zhang, M.Q. TRED: a transcriptional regulatory element database, new entries and other development. Nucleic Acids Res35, D137-140 (2007).
18. Prasad, T.S., Kandasamy, K. & Pandey, A. Human Protein Reference Database and Human Proteinpedia as discovery tools for systems biology. Methods Mol Biol577, 67-79 (2009).
19. Brandes, U. A faster algorithm for betweenness centrality. J Math Sociol25, 163-177 (2001).
20. Boross, G., Orosz, K. & Farkas, I.J. Human microRNAs co-silence in well-separated groups and have different predicted essentialities. Bioinformatics25, 1063-1069 (2009).
21. Thuault, S. et al. HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem283, 33437-33446 (2008).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47586-
dc.description.abstract系統生物學已成為生物醫學研究中一個新興的領域,其著重於以系統的觀點來了解生物系統的運作。由於細胞內的各種生物反應過程,皆由許多基因與蛋白質共同參與,形成複雜的生物分子網路,因此,建構出完整基因調控網路的系統模型,對於了解細胞的生理,以及疾病的分子機制更顯重要。
近年來,微型核糖核酸(microRNA,簡稱miRNA)被發現普遍存在於動植物以及某些病毒之中,長度為~22個鹼基,並不會轉錄成蛋白質,但是會和細胞內與其部分序列互補的mRNA結合,破壞mRNA的穩定性或抑制其轉錄為蛋白質,進而調控基因在蛋白質層面上的表現。過去的研究發現,microRNA參與生物的發育、分化、生長及代謝等過程,調控基因的表現;此外,已發現microRNA與基因轉綠因子(transcription factor)存在一些特殊的相關性。雖然microRNA對單一基因的調控機制已經有許多研究,其分子反應機制也日漸明朗,但是因為單一的microRNA所調控的基因眾多,所以無法有效的辨別microRNA在生物反應機制中的功能或是角色,以及如何與轉錄因子合作調控仍然不清楚,需要進一步的研究與探討。
本論文結合了大規模的生物實驗數據以及電腦演算法預測的結果分別建立了microRNA調控蛋白質交互作用網路的模型,以及轉錄因子調控蛋白質交互作用網路的模型,利用電腦程式篩選並分析找出可能存在的調控模型,並分析這些模型對蛋白質交互作用網路中的影響。
本篇論文分析結果顯示,在蛋白質交互作用關係中會伴隨著被microRNA或是轉錄因子共調控(co-regulate)以及crosstalk(間接交談),也就是說microRNA或是轉錄因子會相互藉著兩個或兩個以上去影響特定的生物反應機制。特別是在crosstalk這種調控模型,是本論文發現的一種較為特殊的調控模型,結果顯示microRNA或是轉錄因子會藉由調控第三者的基因間接調控蛋白質交互作用,有50%以上(P值<0.001)的基因都會被此種模型調控,並且間接影響蛋白質交互作用。
zh_TW
dc.description.abstractSystems biology is a rising field of biomedical research. It uses systematic analysis to characterize or discover the mechanism of biological systems. Biological processes involve numerous genes and proteins, which interact with each other to form complicated molecular networks. Thus, finding and conducting a complete module of gene regulatory network is important for understanding mechanisms of cellular physiologies or diseases.
In recent years, microRNAs (miRNAs, small RNA molecules with ~22 bps) have been widely discovered in plants, animals and viruses. MicroRNAs will not be translated to proteins but can recognize target genes based on complementary sequence similarity and then suppress the translations of target genes. Previous studies found that microRNAs are involved in growth development, differentiation and metabolism through down-regulating target genes. Furthermore, there exist some characteristic correlations between microRNAs and transcription factors (TFs). Although many studies have uncovered the mechanism of microRNA biogenesis and functions, their corporation with transcription factors remains unclear. One of the reasons is that microRNAs usually have numerous target genes, which made functional prediction or classification difficult and complicated.
Here we build a model of microRNAs and transcription factors regulating human protein-protein interaction networks from experimental results and computational predictions. Using computational analysis finds out possible existing regulatory motifs and relations between protein-protein interaction networks.
Our results show that protein-protein interaction networks might be regulated by microRNAs and/or transcription factors through their co-regulation and crosstalk regulatory motifs. In other words, more than two microRNAs or transcription factors might be involved in specific biological processes together. Most interestingly, we have identified crosstalk motifs for the first time and found that microRNAs or transcription factors might indirectly regulate protein-protein interactions through regulating a third gene. More than half of all the genes participate in crosstalk motifs (P-value < 0.001).
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:07:17Z (GMT). No. of bitstreams: 1
ntu-100-R98945025-1.pdf: 3716415 bytes, checksum: e0cd566f538ed6231a600f6e73f05df5 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents中文摘要 ii
Abstract iv
目錄 vi
圖表目錄 x
表格目錄 xii
1 簡介 1
1.1 MicroRNA的調控機制 1
1.2 TF的調控機制 1
1.3 蛋白質交互作用網路 1
1.4 TF與microRNA協同作用 2
2 材料與方法 3
2.1 實驗設計流程 3
2.2 MicroRNA與基因的調控關係 4
2.3 TF與基因的調控關係 4
2.4 二分調控網路的建立 5
2.5 人類蛋白質網路的取得與建立 5
2.6 有條件的基因篩選 6
2.7 蛋白質交互作用的顯著性統計分析 7
2.8 伯努利分布 8
2.9 Z-分數標準化 8
3 結果 9
3.1 欲分析的調控模型 9
3.2 MicroRNA形成的調控模型 11
3.2.1 MicroRNA調控網路基本性質概要 11
3.2.2 MicroRNA成對的個別調控 12
3.2.3過少的基因樣本影響microRNA的co-regulate分析結果 13
3.2.4蛋白質交互作用網路與microRNA調控模型的相互關係 16
3.2.5 MicroRNA有過多的調控基因Crosstalk調控分析造成的影響 18
3.3 TF形成的調控模型 20
3.3.1 TF調控網路基本性質概要 20
3.3.2 TF成對的個別調控 21
3.3.3過少的基因樣本影響TF的co-regulate分析結果 22
3.3.4蛋白質交互作用網路與TF調控模型的相互關係 24
3.3.5 TF擁有過多的調控基因對Crosstalk調控分析造成的影響 25
3.4 MicroRNA混合TF形成的調控模型 27
3.4.1 MicroRNA與TF混合調控網路基本性質概要 27
3.4.2 MicroRNA或TF混合成對的個別調控 28
3.4.3過少的基因樣本影響microRNA與TF的co-regulate分析結果 30
3.4.4蛋白質交互作用網路與microRNA-TF調控模型的相互關係 31
3.4.5 MicroRNA或TF擁有過多的調控基因對Crosstalk調控分析造成的影響 32
3.5 Crosstalk調控模型的延伸分析 35
3.6 受調控之蛋白質交互作用網路基本性質分析 38
4 結論與討論 43
參考文獻 45
附錄 47
A. TargetScanHuman資料庫中的microRNA Family清單 47
B. TRED資料庫中的TF清單 52
C. microRNA調控網路中顯著的調控模型 56
C.1 前20名的單調控模型 56
C.2 前20名的co-regulate模型 57
C.3 前20名的Crosstalk調控模型 58
C.4 前20名Crosstalk調控的延伸模型(a) 59
C.5 前20名Crosstalk調控的延伸模型(b) 60
D. TF調控網路中顯著的調控模型 61
D.1 前20名的單調控模型 61
D.2 前20名的co-regulate模型 62
D.3 前20名的Crosstalk調控模型 63
D.4 前20名Crosstalk調控的延伸模型(a) 64
D.5 前20名Crosstalk調控的延伸模型(b) 65
E. microRNA混合TF調控網路中顯著的調控模型 66
E.1 前20名的co-regulate模型 66
E.2 前20名的Crosstalk調控模型 67
E.3 前20名Crosstalk調控的延伸模型(a) 68
E.4 前20名Crosstalk調控的延伸模型(b) 69
F. 中英文對照表 70
dc.language.isozh-TW
dc.subject蛋白質交互作用網路zh_TW
dc.subject系統生物學zh_TW
dc.subject生物資訊zh_TW
dc.subject微型核醣核酸zh_TW
dc.subject基因轉錄因子zh_TW
dc.subject基因調控網路zh_TW
dc.subjectBioinformaticsen
dc.subjectProtein Interaction Networken
dc.subjectGene Regulatory Networken
dc.subjectTranscription Factorsen
dc.subjectSystem Biologyen
dc.subjectMicroRNAen
dc.title探討人類微型核醣核酸轉錄因子於蛋白質交互作用網路的協同調控特性與模型zh_TW
dc.titleCo-regulation and Crosstalk of MicroRNA and Transcription Factor in Human Protein Interaction Networken
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃宣誠,陳倩瑜
dc.subject.keyword系統生物學,生物資訊,微型核醣核酸,基因轉錄因子,基因調控網路,蛋白質交互作用網路,zh_TW
dc.subject.keywordSystem Biology,Bioinformatics,MicroRNA,Transcription Factors,Gene Regulatory Network,Protein Interaction Network,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2011-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
3.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved