Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47567
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張斐章(Fi-John Chang)
dc.contributor.authorWei-Guo Chengen
dc.contributor.author程惟國zh_TW
dc.date.accessioned2021-06-15T06:06:19Z-
dc.date.available2010-08-17
dc.date.copyright2010-08-17
dc.date.issued2010
dc.date.submitted2010-08-16
dc.identifier.citation1.Burn, D.H., 1989. Cluster analysis as applied to regional flood frequency. Journal of Water Resources Planning and Management, 115(5): 567-582.
2.Chang, F.J., Ghang, L.C. and Huang, H.L., 2002. Real time recurrent neural network for streamflow foreasting. Hydrological Processes, 16(13): 2577-2588.
3.Chang, F.J. and Chang, Y.T., 2006. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Advances in Water Resources, 29(1): 1-10.
4.Chang, F.J., Chang, L.C. and Wang, Y.S., 2007. Enforced self-organizing map neural networks for river flood forecasting. Hydrological Processes, 21(6): 741-749.
5.Chang, F.J., Chang, L.C., Kao, H. S., Wu, G. R., 2010. Assessing the effort of meteorological variables for evaporation estimation by Self-Organizing Map Neural Network. Journal of Hydrology, 384: 118-129.
6.Chang, L.C., Chang, F.J. and Tsai, Y.H., 2005. Fuzzy exemplar-based inference system for flood forecasting. Water Resources Research, 41(2): 12.
7.Chiang Y.M., Hsu K.L., Chang F.J., Hong Y., Sorooshian S., 2007. Merging multiple precipitation sources for flash flood forecasting. Journal of Hydrology, 340: 183-196.
8.Chang, K.T., Chiang, S.H., and Lei, F., 2008. Analysing the relationship between typhoon-triggered landslides and critical rainfall conditions. Eeath Surface Processes and Landforms, 33: 1261-1271.
9.Chen, C.C. and Chang, C.C., 2005. The impact of weather on crop yield distribution in Taiwan: some new evidence from panel data models and implications for crop insurance. Journal of Agricultural Economics, 33: 503-511.
10.Chen, S.H., Chang Chien, S.W. and Shen, Y., 2004. Vegetable production at Shilo as influenced by rainfall characteristics and strategies in response. J. Agri. Assoc. China. 37: 171-193.
11.Chia, H.H. and Ropelewski, C.F., 2002. The interannual variability in the genesis location of tropical cyclones in the northwest pacific. J.Climate, 15: 2934-2944.
12.Choi, O. and Fisher, A., 2003. The impacts of socioeconomic development andclimate change on severe weather catastrophe losses:Mid-atlantic Region(MAR)and The U.S. Climatic Change, 58: 149-170.
13.Dilley, M., Chen, R.S., Deichmann, U., Lerner-Lam, A.L., Arnold, M., Agwe, J., Buys, P., Kjekstad, O., Lyon, B. and Yteman, G., 2005. Natural Disaster Hotspots:A Global Risk Analysis. Disaster Risk Management Series No.5, The World Bank, Washington, D.C..
14.Emanuel, K.A., 2005. Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436: 686-688.
15.Emanuel, K., Sundararajan R. and Williams J., 2008. Hurricanes and global warming. Bull. Amer. Meteor. Soc., 89: 347-367.
16.Emanuel, K.A., 2005a. Divine wind:the history and science of hurricanes. Oxford University Press, New York.
17.Guttman, N.B., 1993, The use of L-moments in determination a regional precipitation climates. Journal of Climate, 6: 2309-2325.
18.Hair, J.F., Anderson, R.E., Tatham, R.L. and Black, W.C., 1995. Multivariate data analysis with reading. 4th edition, New Jersey, Prentice Hall.
19.Hardy, R.L., 1971. Multiquadric equations of topography and other irregular surfaces. Journal of Geophysical Research, 76: 1905-1915.
20.Hotelling, H., 1935. The most predictable criterion. Journal of Educational Psychology, 26: 139-142.
21.Hsu, C.C. and Hong, Z.Y., 2007. An intelligent typhoon damage prediction system from aerial photographs. KES(1): 747-756.
22.Jang, J.S.R., 1993. ANFIS - adaptive-network-based fuzzy inference system. Ieee Transactions on Systems Man and Cybernetics, 23(3): 665-685.
23.Kecman, V, 2001. Learning and soft computing: Support Vector Machines, Neural Networks and Fuzzy Logic Models, Cambridge, MA: MIT press.
24.Kohonen, T., 1982. Self-organizing formation of topologically correct feature maps. Biological Cybernetics, 43: 59-69.
25.Kohonen, T., 1997. Exploration of very large databases by self-organizing maps. Proceedings of the International Conference on Neural Networks, Vol. Ⅰ, pp. PL1-PL6, Houston.
26.Lin, Y.L., Ensley, D.B., Chiao, S. and Huang, C.Y., 2002. Orographic influences on rainfall and track deflection associated with the passage of a tropical cyclone. Mon. Wea. Rev., 130: 2929-2950.
27.Li, Y., Chun, Z. and Yuguo, W., 2005. An effective two-stage neural network model and its application on flood loss prediction. Advances In Neural Networks - Isnn, Pt 3, Proceedings. 3498: 1010-1016
28.Lin, G.F., Chen, L.H. and Kao, S.C., 2005. Development of regional design hyetographs. Hydrological Processes, 19(4): 937-946.
29.Lindau, R., 1995. A new beaufort equivalent scale. Proceedings of the International COADS Winds Workshop, Kiel, Germany, Institut für Meereskunde and NOAA Environmental Research Labs, 232-252.
30.Louberge, H., Kellezi, E. and Gilli, M., 1999. Using catastrophe-linked securities to diversify risk: A financial analysis of Cat Bonds. Journal of Insurance Issues, 22(2): 125-146.
31.Maier, H.R. and Dandy, G.C., 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environmental Modeling and Software, 15(1): 101-123.
32.Webster, P.J., Holland, G.J., Curry, J.A. and Chang, H.R., 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309: 1844-1846.
33.Pielke, R.A. and Landsea, C.W., 1998. Normalized hurricane damages in the United States: 1925-95. Weather and Forecasting, 13: 621-631.
34.Pielke, R.A. and Sarewitz, D., 2005. Bringing society back into the climate debate. Population and Environment, 26(3): 255-268.
35.Powell, M.J.D., 1987. Radial basis functions for multivariable interpolation: a review. IMA Conference on Algorithms for Approximation of Functions and Data, 143-167.
36.Punj, G. and Stewart, D.W., 1983. Cluster analysis in marketing research: review and suggestions for application. Journal of Marketing Research, 134-148.
37.Romesburg, C.H., 1984. Cluster analysis for researchers. Belmont CA: Wadsworth.
38.Saunders, M.A. and Lea, A.S., 2005. Seasonal prediction of hurricane activity reaching the coast of the United States. Nature, 434: 1005-1008.
39.Sharma, S., 1996. Applied multivariate techniques. New York: John Wiley.
40.Sokal, R.R. and Rohlf, F.J., 1962. The comparison of dendrograms by objective methods. Taxon, 11: 33-40.
41.Takagi, T. and Sugeno, M., 1985. Fuzzy identification of systems and its applications to modeling and control. Ieee Transactions on Systems Man and Cybernetics, 15(1): 116-132.
42.Trenberth, K., 2005. Uncertainty in hurricanes and global warming. Science, 308: 1753-1754.
43.王時鼎,2003,「臺灣的颱風」,中興工程基金會。
44.任立渝,2001,「認識颱風」,任立渝氣象工作室。
45.朱蘭芬、陳吉仲、陳星瑞,2007,「臺灣稻米損失函數之估計及其天然災害保險費率之計算」,農業經濟叢刊,13(1):37-67。
46.江宜錦,2007,「臺灣天然災害統計指標體系建構與分析」,土地與環境規劃,青年論壇。
47.江衍銘、張斐章,2006,以遙測資訊建立類神經網路雲分類系統於雨量推估及洪水預測,中國農業工程學報52(4): 39-47。
48.吳瑞賢、蘇文瑞、廖偉民,2004,「歷年颱風降雨與災害特性分析之研究」,中央大學土木系,海峽兩岸水利科技交流研討會。
49.何宜樺,2009,「建構集水區多時刻降雨-逕流機制與類神經網路洪水預報模式」,國立臺灣大學生物環境系統工程學研究所碩士論文。
50.李品輝,2009,「以類神經網路探討全台蒸發量區域性分類與推估之成效」,國立臺灣大學生物環境系統工程學研究所碩士論文。
51.林永堂,2004,「結合OLS 與SGA 建構輻狀基底類神經網路於洪水預測之研究」,國立臺灣大學生物環境系統工程學研究所碩士論文。
52.林李耀,2007,「颱風災害與應變」,科學發展,410期。
53.林邦傑,1981,「集群分析及其應用」,教育與心理研究,4:31-57。
54.林幸君、高慈敏,2006,「農業天然災害產物損失對經濟影響之區域投入產出分析」,農業經濟叢刊,12(1):105-138。
55.林幸君、高慈敏、張靜貞,2008,「天然災害農作物損失對區域經濟之影響分析」,2008年臺灣災害管理研討會論文集,台北:財團法人臺灣災害管理學會。
56.唐琦、徐森雄,2007,「臺灣南部地區農業氣象環境與災害發生潛勢」,作物、環境與生物資訊,4:11-22。
57.馬宗晉與李閩峰,1990,「自然災害評估、災度和對策」,中國減災研究年報。
58.張斐章、張麗秋,2010,類神經網路導論原理與應用,滄海書局。
59.張斐章、徐國麟,1990,利用模糊集理論推估河川流量之研究,中國農業工程學報(36)4: 1-12.
60.曹鎮、陳文福、徐義人,2006,「應用模糊理論於颱風降雨量之推估」,水土保持學報,38(1):21-30。
61.陳正改,1999,「臺灣地區颱風災情的實測性評估」,中央氣象局研究告第CW88-1A-02號
62.陳正昌,2001,「觀察體的分類」,教育學門提昇研究方法論研討會。
63.陳正斌,2004,「應用模糊理論於颱風降雨量之推估」,國立成功大學水利及海洋工程研究所碩士論文。
64.陳永祥,2009,「演化式類神經網路於水文系統預測之研究」,國立臺灣大學生物環境系統工程學研究所博士論文。
65.陳守泓、李炳和、姚銘輝、申雍,2006,「臺灣地區年際異常氣象狀況對農業生產之影響」,作物、環境與生物資訊,3(4):307-316。
66.陳星瑞,2003,「颱風對臺灣稻米損失函數之估計及天然災害保險之費率計算」,國立中興大學應用經濟學研究所碩士論文。
67.黃薪螢,2008,「臺灣農作物颱風損失估算之研究」,國立高雄第一科技大學風險管理與保險所研究所碩士論文。
68.楊志賢,1999,「臺灣地區颱風災害之潛勢分析」,臺灣大學土木工程研究所碩士論文。
69.蔡亞欣,2004,「模糊範例學習推論系統於水位預測之研究」,國立台灣大學生物環境系統工程學研究所碩士論文。
70.蔡文柄,2007,「應用類神經網路推估溪流之生物多樣性」,國立臺灣大學生物環境系統工程學研究所碩士論文。
71.鄭孟育,2002,「臺灣農作物颱風損失模式之研究─以水稻為例」,高雄第一科技大學風險管理與保險所碩士論文。
72.鄭思蘋,2003,「都會區颱洪災害損失之分析與評估」,國立臺灣大學生物環境系統工程學研究所博士論文。
73.蕭景楷,2002,「防洪措施之間接效益初步評估(1/2)」,經濟部水利署。
74.簡國基,2000,「臺灣地形對侵台颱風之影響─TCM-90個案之模擬與分析」,國立臺灣大學大氣科學研究所博士論文。
75.顧婉馨,2005,「臺灣地區巨災之時間序列相關研究—以歷年颱風損失為例」,國立臺灣大學財務金融學研究所碩士論文。
76.中華民國統計資訊網:http://www.stat.gov.tw/mp.asp?mp=4
77.中央氣象局全球資訊網─颱風資料庫:http://rdc28.cwb.gov.tw/
78.內政部消防署全球資訊網:http://www.nfa.gov.tw/index.aspx
79.行政院農委會:http://www.coa.gov.tw/show_index.php
80.行政院農業委員會農糧署
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47567-
dc.description.abstract臺灣屬亞熱帶地區且位於西北太平洋颱風的主要侵襲路徑上,平均每年約有3~4次颱風影響到臺灣區域,近年因全球氣候變遷致使颱風侵台次數與強度有增加之趨勢,導致農民面對天氣驟變的災害損失與風險有明顯的增加;在農業損失方面又以稻米損失最為嚴重,且全台各縣市皆有稻田,故選用為研究標的。因此本論文希望能藉由農作物損失程度/金額探討並預測不同類型的颱風對臺灣的影響,進一步以稻米作物為標的,探究颱風造成全台區域性之損失;研究內容主要分為三部份,首先,分析歷年侵台的颱風特性,針對不同颱風類型進行相關性分析及探討各種災害損失在時間動態上的趨勢,反映出多元且複合的颱風災害特性。其次,根據上述分析結果,去除相關性較低的颱風特性資訊,作為類神經網路輸入項,並以自組特徵映射網路(Self-Organizing Feature Map, SOM)之聚類分析成果做為自組特徵輻狀基底函數(Self-Organizing Radial Basis Function Neural Networks, SORBFNN)網路之中心點,以建構颱風侵台時全台農作物損失與全台稻米損失之預報模式;模式結果顯示若以可能覆蓋臺灣面積取代七級風暴風半徑與是否登臺兩項颱風特性作為網路輸入項,則有最佳的預報成果。對於全台稻米損失預報,除了以可能覆蓋臺灣面積訊息作為輸入,適當加入侵台旬數與損失的隸屬度關係資訊確實能提昇模式推估的精確性。最後,因考量不同地區於稻米栽種的地理環境與社經條件上略有不同,使得颱風災害有明顯的空間差異。因此以Spearman相關性分析挑選出導致稻米損失的主要氣象因子,將臺灣分為三個區域並各自建立區域性的稻米損害預報模式。由模式成果中可發現,模式的輸入項對中南部地區稻米災害損失之影響遠超過北部和東南部。根據研究成果,希望能提升臺灣農作物於颱風時期之災害風險管理,並即時評估農業天然災害救助金的參考資訊。zh_TW
dc.description.abstractTaiwan is located in subtropical zone and on the main typhoon track in the northwestern Pacific Ocean, and thus is with frequent typhoons events. On average, typhoons attack Taiwan more than three times per year because of global climate changes. In agriculture, farmers suffered from crop losses and increasing risks of damages due to climate changes. The prediction of rice losses is selected as the goal of this study because its coverage and losses is much more than other agricultural products’ in Taiwan. On the other hand, the impacts of different types of typhoons on Taiwan are also investigated according to the amount of agricultural losses. The content of this study was divided into three steps; first, the characteristic of historical typhoons and the correlation between different types of typhoons and various losses were analyzed. Second, variables highly related to agricultural losses were identified as inputs to artificial neural networks according to aforementioned results. The Self-Organizing feature Map (SOM) network was then applied to classifications which were adopted as the central points of Radial Basis Function Neural Networks (RBFNN). The SORBFNN was built for separately predicting the agricultural losses and rice losses during typhoon periods. The results indicate that the best performance could be obtained when the radius of 7th Beaufort wind scale and typhoon landfall status were replaced by possible coverage. As far as the prediction of rice losses is concerned, the accuracy of model outputs can be increased by adding the membership functions of time and losses besides possible coverage. Finally, the spatial distribution of agricultural losses is significantly distinct because rice was planted in various counties with different environment and social financial conditions. Therefore, Taiwan was classified into three sub-regions and the major climate factors resulting in rice losses in each sub-region were also selected by using Spearman correlation analysis. Results obtained from three regional rice-loss models show that the selected inputs have higher impact on the model built in central region. According to the results achieved, the model is expected to increase the risk management of agricultural losses during typhoon periods and to immediately provide the information on the agricultural subvention when natural disaster occurs.en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:06:19Z (GMT). No. of bitstreams: 1
ntu-99-R97622021-1.pdf: 8434655 bytes, checksum: a78f25e3eddbcb957f44402a776106b4 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目 錄
摘 要 I
Abstract III
目 錄 V
表目錄 VIII
圖目錄 X
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
1-3 研究流程 3
1-4 論文架構 5
第二章 文獻回顧 6
2-1 颱風特性分析 6
2-2 天然災害損失之評估與風險管理 7
2-3 颱風規模分級制度 11
2-4 空間區域特性劃分 13
2-5 應用類神經網路於颱風期間水文預報模式 14
第三章 理論概述 16
3-1 相關性分析檢定 16
3-1-1 Pearson相關係數 16
3-1-2 Spearma相關係數 17
3-1-3 典型相關分析 18
3-1-4 共表型相關分析 21
3-2 區域化變數理論概述 22
3-3 群集分析概述 24
3-4 類神經網路架構 28
3-4-1 自組特徵映射網路(SOM) 32
3-4-2 輻狀基底函數類神經網路(RBFNN) 35
3-4-3 自組特徵輻狀基底類神經網路(SORBNN) 37
3-4-4 調適性網路模糊推論系統(ANFIS) 38
第四章 研究案例 44
4-1 研究區域簡介 44
4-2 資料蒐集與處理 45
4-2-1 資料蒐集 45
4-2-2 資料處理 49
4-3 侵台颱風特性概述 54
4-4 自組特徵輻狀基底類神經網路損失預報模式建構 64
4-4-1 全台農作物損失金額模式SORBNN建構 66
4-4-2 全台稻米損失金額模式SORBNN建構 68
4-4-3 分區稻米損失金額模式SORBNN建構 74
第五章 預報結果與討論 81
5-1 全台農作物損失金額模式SORBNN 82
5-1-1 第一階段分類颱風規模結果討論 83
5-1-2 第二階段推估全台農作物損失之結果討論 87
5-2 全台稻米損失金額模式SORBNN 91
5-3 分區稻米損失金額模式SORBNN 94
5-3-1 臺灣分區結果 94
5-3-2 分區稻米損失推估之結果討論 97
第六章 結論與建議 100
6-1 結論 100
6-2 建議 103
參考文獻 105
附錄一 113
附錄二 114
附錄三 115
附錄四 117
附錄五 118
附錄六 120
dc.language.isozh-TW
dc.subject颱風zh_TW
dc.subject稻米損失zh_TW
dc.subject分群聚類zh_TW
dc.subject類神經網路zh_TW
dc.subject農業損失zh_TW
dc.subjectClusteren
dc.subjectArtificial neural networken
dc.subjectRice lossesen
dc.subjectAgricultural lossesen
dc.subjectTyphoonen
dc.title類神經網路應用於颱風期間全台區域農業損失之研究zh_TW
dc.titleInvestigation on the regional agricultural losses during typhoon periods by artificial neural networksen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃文政,林尉濤,張麗秋,江衍銘
dc.subject.keyword颱風,農業損失,稻米損失,分群聚類,類神經網路,zh_TW
dc.subject.keywordTyphoon,Agricultural losses,Rice losses,Cluster,Artificial neural network,en
dc.relation.page121
dc.rights.note有償授權
dc.date.accepted2010-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
8.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved