Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47562
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高照村
dc.contributor.authorYi-Jan Huangen
dc.contributor.author黃怡然zh_TW
dc.date.accessioned2021-06-15T06:06:05Z-
dc.date.available2012-09-13
dc.date.copyright2010-09-13
dc.date.issued2010
dc.date.submitted2010-08-14
dc.identifier.citation1. Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk. 1996 Apr;3(2):213-9.
2. Heller DA, de Faire U, Pedersen NL, Dahlen G, McClearn GE. Genetic and environmental influences on serum lipid levels in twins. N Engl J Med. 1993 Apr 22;328(16):1150-6.
3. Murthy V, Julien P, Gagne C. Molecular pathobiology of the human lipoprotein lipase gene. Pharmacol Ther. 1996;70(2):101-35.
4. Hahn PF. Abolishment of Alimentary Lipemia Following Injection of Heparin. Science. 1943 Jul 2;98(2531):19-20.
5. Anfinsen CB, Boyle E, Brown RK. The Role of Heparin in Lipoprotein Metabolism. Science. 1952 May 30;115(2996):583-6.
6. Korn ED. Clearing factor, a heparin-activated lipoprotein lipase. I. Isolation and characterization of the enzyme from normal rat heart. J Biol Chem. 1955 Jul;215(1):1-14.
7. Havel RJ, Gordon RS, Jr. Idiopathic hyperlipemia: metabolic studies in an affected family. J Clin Invest. 1960 Dec;39:1777-90.
8. Krauss RM, Herbert PN, Levy RI, Fredrickson DS. Further observations on the activation and inhibition of lipoprotein lipase by apolipoproteins. Circ Res. 1973 Oct;33(4):403-11.
9. Krauss RM, Windmueller HG, Levy RI, Fredrickson DS. Selective measurement of two different triglyceride lipase activities in rat postheparin plasma. J Lipid Res. 1973 May;14(3):286-95.
10. Breckenridge WC, Little JA, Steiner G, Chow A, Poapst M. Hypertriglyceridemia associated with deficiency of apolipoprotein C-II. N Engl J Med. 1978 Jun 8;298(23):1265-73.
11. Sparkes RS, Zollman S, Klisak I, Kirchgessner TG, Komaromy MC, Mohandas T, Schotz MC, Lusis AJ. Human genes involved in lipolysis of plasma lipoproteins: mapping of loci for lipoprotein lipase to 8p22 and hepatic lipase to 15q21. Genomics. 1987 Oct;1(2):138-44.
12. Deeb SS, Peng RL. Structure of the human lipoprotein lipase gene. Biochemistry. 1989 May 16;28(10):4131-5.
13. Wong H, Davis RC, Thuren T, Goers JW, Nikazy J, Waite M, Schotz MC. Lipoprotein lipase domain function. J Biol Chem. 1994 Apr 8;269(14):10319-23.
14. Staels B, Auwerx J. Perturbation of developmental gene expression in rat liver by fibric acid derivatives: lipoprotein lipase and alpha-fetoprotein as models. Development. 1992 Aug;115(4):1035-43.
15. Braun JE, Severson DL. Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochem J. 1992 Oct 15;287 ( Pt 2):337-47.
16. Camps L, Reina M, Llobera M, Vilaro S, Olivecrona T. Lipoprotein lipase: cellular origin and functional distribution. Am J Physiol. 1990 Apr;258(4 Pt 1):C673-81.
17. Bengtsson G, Olivecrona T. Interaction of lipoprotein lipase with heparin-Sepharose. Evaluation of conditions for affinity binding. Biochem J. 1977 Oct 1;167(1):109-19.
18. Eckel RH. Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N Engl J Med. 1989 Apr 20;320(16):1060-8.
19. Hussain MM, Kancha RK, Zhou Z, Luchoomun J, Zu H, Bakillah A. Chylomicron assembly and catabolism: role of apolipoproteins and receptors. Biochim Biophys Acta. 1996 May 20;1300(3):151-70.
20. Fielding PE FC. Dynamics of lipoprotein transport in the circulatory system. Biochemistry of lipids, lipoproteins and membranes. 1991:427-59.
21. Kirchgessner TG, Svenson KL, Lusis AJ, Schotz MC. The sequence of cDNA encoding lipoprotein lipase. A member of a lipase gene family. J Biol Chem. 1987 Jun 25;262(18):8463-6.
22. Wang CS, McConathy WJ, Kloer HU, Alaupovic P. Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. J Clin Invest. 1985 Feb;75(2):384-90.
23. Mead JR, Cryer A, Ramji DP. Lipoprotein lipase, a key role in atherosclerosis? FEBS Lett. 1999 Nov 26;462(1-2):1-6.
24. Mead JR, Ramji DP. The pivotal role of lipoprotein lipase in atherosclerosis. Cardiovasc Res. 2002 Aug 1;55(2):261-9.
25. Goldberg IJ. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res. 1996 Apr;37(4):693-707.
26. Mamputu JC, Levesque L, Renier G. Proliferative effect of lipoprotein lipase on human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2000 Oct;20(10):2212-9.
27. Renier G, Skamene E, DeSanctis JB, Radzioch D. Induction of tumor necrosis factor alpha gene expression by lipoprotein lipase. J Lipid Res. 1994 Feb;35(2):271-8.
28. Esenabhalu VE, Cerimagic M, Malli R, Osibow K, Levak-Frank S, Frieden M, Sattler W, Kostner GM, Zechner R, Graier WF. Tissue-specific expression of human lipoprotein lipase in the vascular system affects vascular reactivity in transgenic mice. Br J Pharmacol. 2002 Jan;135(1):143-54.
29. Lucas M, Iverius PH, Strickland DK, Mazzone T. Lipoprotein lipase reduces secretion of apolipoprotein E from macrophages. J Biol Chem. 1997 May 16;272(20):13000-5.
30. Fielding CJ, Shore VG, Fielding PE. A protein cofactor of lecithin:cholesterol acyltransferase. Biochem Biophys Res Commun. 1972 Feb 25;46(4):1493-8.
31. Shachter NS. Apolipoproteins C-I and C-III as important modulators of lipoprotein metabolism. Curr Opin Lipidol. 2001 Jun;12(3):297-304.
32. Cox DW, Breckenridge WC, Little JA. Inheritance of apolipoprotein C-II deficiency with hypertriglyceridemia and pancreatitis. N Engl J Med. 1978 Dec 28;299(26):1421-4.
33. Mahley RW, Innerarity TL, Rall SC, Jr., Weisgraber KH. Plasma lipoproteins: apolipoprotein structure and function. J Lipid Res. 1984 Dec 1;25(12):1277-94.
34. Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 1992 Oct 16;258(5081):468-71.
35. Duverger N, Tremp G, Caillaud JM, Emmanuel F, Castro G, Fruchart JC, Steinmetz A, Denefle P. Protection against atherogenesis in mice mediated by human apolipoprotein A-IV. Science. 1996 Aug 16;273(5277):966-8.
36. Bruns GA, Karathanasis SK, Breslow JL. Human apolipoprotein A-I--C-III gene complex is located on chromosome 11. Arteriosclerosis. 1984 Mar-Apr;4(2):97-102.
37. Pennacchio LA, Olivier M, Hubacek JA, Cohen JC, Cox DR, Fruchart JC, Krauss RM, Rubin EM. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science. 2001 Oct 5;294(5540):169-73.
38. Alborn WE, Johnson MG, Prince MJ, Konrad RJ. Definitive N-terminal protein sequence and further characterization of the novel apolipoprotein A5 in human serum. Clin Chem. 2006 Mar;52(3):514-7.
39. Weinberg RB, Cook VR, Beckstead JA, Martin DD, Gallagher JW, Shelness GS, Ryan RO. Structure and interfacial properties of human apolipoprotein A-V. J Biol Chem. 2003 Sep 5;278(36):34438-44.
40. Beckstead JA, Wong K, Gupta V, Wan CP, Cook VR, Weinberg RB, Weers PM, Ryan RO. The C terminus of apolipoprotein A-V modulates lipid-binding activity. J Biol Chem. 2007 May 25;282(21):15484-9.
41. O'Brien PJ, Alborn WE, Sloan JH, Ulmer M, Boodhoo A, Knierman MD, Schultze AE, Konrad RJ. The novel apolipoprotein A5 is present in human serum, is associated with VLDL, HDL, and chylomicrons, and circulates at very low concentrations compared with other apolipoproteins. Clin Chem. 2005 Feb;51(2):351-9.
42. Ishihara M, Kujiraoka T, Iwasaki T, Nagano M, Takano M, Ishii J, Tsuji M, Ide H, Miller IP, Miller NE, Hattori H. A sandwich enzyme-linked immunosorbent assay for human plasma apolipoprotein A-V concentration. J Lipid Res. 2005 Sep;46(9):2015-22.
43. Pennacchio LA, Rubin EM. Apolipoprotein A5, a newly identified gene that affects plasma triglyceride levels in humans and mice. Arterioscler Thromb Vasc Biol. 2003 Apr 1;23(4):529-34.
44. van der Vliet HN, Sammels MG, Leegwater AC, Levels JH, Reitsma PH, Boers W, Chamuleau RA. Apolipoprotein A-V: a novel apolipoprotein associated with an early phase of liver regeneration. J Biol Chem. 2001 Nov 30;276(48):44512-20.
45. Pennacchio LA, Olivier M, Hubacek JA, Krauss RM, Rubin EM, Cohen JC. Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels. Hum Mol Genet. 2002 Nov 15;11(24):3031-8.
46. Ribalta J, Figuera L, Fernandez-Ballart J, Vilella E, Castro Cabezas M, Masana L, Joven J. Newly identified apolipoprotein AV gene predisposes to high plasma triglycerides in familial combined hyperlipidemia. Clin Chem. 2002 Sep;48(9):1597-600.
47. Talmud PJ, Hawe E, Martin S, Olivier M, Miller GJ, Rubin EM, Pennacchio LA, Humphries SE. Relative contribution of variation within the APOC3/A4/A5 gene cluster in determining plasma triglycerides. Hum Mol Genet. 2002 Nov 15;11(24):3039-46.
48. Endo K, Yanagi H, Araki J, Hirano C, Yamakawa-Kobayashi K, Tomura S. Association found between the promoter region polymorphism in the apolipoprotein A-V gene and the serum triglyceride level in Japanese schoolchildren. Hum Genet. 2002 Dec;111(6):570-2.
49. Aouizerat BE, Kulkarni M, Heilbron D, Drown D, Raskin S, Pullinger CR, Malloy MJ, Kane JP. Genetic analysis of a polymorphism in the human apoA-V gene: effect on plasma lipids. J Lipid Res. 2003 Jun;44(6):1167-73.
50. Talmud PJ, Palmen J, Putt W, Lins L, Humphries SE. Determination of the functionality of common APOA5 polymorphisms. J Biol Chem. 2005 Aug 5;280(31):28215-20.
51. Kao JT, Wen HC, Chien KL, Hsu HC, Lin SW. A novel genetic variant in the apolipoprotein A5 gene is associated with hypertriglyceridemia. Hum Mol Genet. 2003 Oct 1;12(19):2533-9.
52. Priore Oliva C, Pisciotta L, Li Volti G, Sambataro MP, Cantafora A, Bellocchio A, Catapano A, Tarugi P, Bertolini S, Calandra S. Inherited apolipoprotein A-V deficiency in severe hypertriglyceridemia. Arterioscler Thromb Vasc Biol. 2005 Feb;25(2):411-7.
53. Marcais C, Verges B, Charriere S, Pruneta V, Merlin M, Billon S, Perrot L, Drai J, Sassolas A, Pennacchio LA, Fruchart-Najib J, Fruchart JC, Durlach V, Moulin P. Apoa5 Q139X truncation predisposes to late-onset hyperchylomicronemia due to lipoprotein lipase impairment. J Clin Invest. 2005 Oct;115(10):2862-9.
54. Schaap FG, Rensen PC, Voshol PJ, Vrins C, van der Vliet HN, Chamuleau RA, Havekes LM, Groen AK, van Dijk KW. ApoAV reduces plasma triglycerides by inhibiting very low density lipoprotein-triglyceride (VLDL-TG) production and stimulating lipoprotein lipase-mediated VLDL-TG hydrolysis. J Biol Chem. 2004 Jul 2;279(27):27941-7.
55. Schaap F VP, Rensen P, Van der Vliet H, Chamuleau R, Maeda N, Havekes L, Groen A, Willems van Dijk K. Apolipoprotein AV expression ameliorates type III hyperlipidemia in mouse models by stimulating lipoprotein lipase-mediated VLDL-triglyceride hydrolysis. circulation. 2003:108-257.
56. Fruchart-Najib J, Bauge E, Niculescu LS, Pham T, Thomas B, Rommens C, Majd Z, Brewer B, Pennacchio LA, Fruchart JC. Mechanism of triglyceride lowering in mice expressing human apolipoprotein A5. Biochem Biophys Res Commun. 2004 Jun 25;319(2):397-404.
57. Grosskopf I, Baroukh N, Lee SJ, Kamari Y, Harats D, Rubin EM, Pennacchio LA, Cooper AD. Apolipoprotein A-V deficiency results in marked hypertriglyceridemia attributable to decreased lipolysis of triglyceride-rich lipoproteins and removal of their remnants. Arterioscler Thromb Vasc Biol. 2005 Dec;25(12):2573-9.
58. Merkel M, Loeffler B, Kluger M, Fabig N, Geppert G, Pennacchio LA, Laatsch A, Heeren J. Apolipoprotein AV accelerates plasma hydrolysis of triglyceride-rich lipoproteins by interaction with proteoglycan-bound lipoprotein lipase. J Biol Chem. 2005 Jun 3;280(22):21553-60.
59. Nilsson SK, Lookene A, Beckstead JA, Gliemann J, Ryan RO, Olivecrona G. Apolipoprotein A-V interaction with members of the low density lipoprotein receptor gene family. Biochemistry. 2007 Mar 27;46(12):3896-904.
60. Davanloo P, Rosenberg AH, Dunn JJ, Studier FW. Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc Natl Acad Sci USA 1984; 81: 2035-2039.
61. Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 1986; 189: 113-130.
62. Rosenberg AH, Lade BN, Chui DS, Lin SW, Dunn JJ, Studier FW. Vector for selective expression of cloned DNAs by T7 RNA polymerase. Gene 1987; 56: 125-135.
63. Dyke MWV, Sirito M, Sawadogo M. Single-step purification of bacterially expressed polypeptides containing an oligo-histidine domain. Gene 1992; 111: 99-104.
64. Beckstead JA, Oda MN, Martin DD, Forte TM, Bielicki JK, Berger T, Luty R, Kay CM, Ryan RO.Structure-function studies of human apolipoprotein A-V: a regulator of plasma lipid homeostasis.Biochemistry. 2003;42(31):9416-23.
65. Henneman P, Schaap FG, Havekes LM, Rensen PC, Frants RR, van Tol A, Hattori H, Smelt AH, van Dijk KW. Plasma apoAV levels are markedly elevated in severe hypertriglyceridemia and positively correlated with the APOA5 S19W polymorphism. Atherosclerosis. 2007 Jul;193(1):129-34.
66. Sun G, Bi N, Li G, Zhu X, Zeng W, Wu G, Xue H, Chen B. Identification of lipid binding and lipoprotein lipase activation domains of human apoAV. Chem Phys Lipids. 2006 Sep;143(1-2):22-8.
67. B. Dorfmeister, W.W. Zeng, A. Dichlberger, S.K. Nilsson, F.G. Schaap, J.A. Hubacek, M. Merkel, J.A. Cooper, A. Lookene, W. Putt, R. Whittall, P.J. Lee, L. Lins, N. Delsaux, M. Nierman.Effects of Six APOA5 Variants, Identified in Patients With Severe Hypertriglyceridemia, on In Vitro Lipoprotein Lipase Activity and Receptor Binding.Arterioscler Thromb Vasc Biol.2008 Oct;28:1866-1871.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47562-
dc.description.abstract高三酸甘油脂血症(HTG)是冠心病的獨立危險因子。根據先前的研究,三酸甘油脂代謝不良與脂蛋白元A5基因(APOA5)的多型性(polymorphism)相關。APOAV可經由幫助lipoprotein lipase (LPL)進行水解反應,進而降低血液中的三酸甘油脂含量。不過APOAV完整的功能與作用機制到目前都不甚清楚。
本實驗室於2003年發現一東方族群特有的single nucleotide polymorphism (SNP) APOA5 c.553G>T,造成第185胺基酸由glycine變為cysteine。具有此SNP的病人罹患高脂血症的機率較正常人高,此一現象啟發本實驗室的研究方向:是否此SNP會破壞或減低APOAV的功能。
本實驗室過去曾以HEK293細胞為實驗工具,探討三種APOAV變異型蛋白幫助LPL水解功能上的差異,然而結果並不顯著。推測原因可能由於細胞表現的蛋白量不足,以及細胞中有無法排除的內源性APOAV蛋白。為了改善上述問題,本論文改用大腸桿菌表現APOAV蛋白。本論文中利用site directed mutagenesis製造十九種變異型蛋白,分別以DMPC(1,2-dimyristoyl-sn-glycero-3-phosphocholine)模擬人類VLDL構造,及apoa5 基因剔除小鼠的VLDL進行實驗,希望得知第185胺基酸影響AV功能的原因。實驗結果在DMPC系統與基因剔除小鼠VLDL系統有相同趨勢,即野生型APOAV蛋白促進LPL的能力明顯高於其他十九種變異型(DMPC部分P<0.00014,基因剔除小鼠VLDL部分P<0.00012)。此結果證實185G在影響LPL水解三酸甘油脂的重要性,也呼應了臨床上SNP病人較易產生高脂血症的現象。另外,根據實驗結果,APOAV功能上的差異,與185位置胺基酸的親水性,酸鹼度,大小等特質並無明顯關聯,提示185G除了原先認知的與脂蛋白結合之外,或許還有與LPL活化相關的功能。
zh_TW
dc.description.abstractHypertriglyceridemia (HTG) is an independent risk factor for coronary heart disease. According to the previous studies, triglyceride (TG) metabolic disorder was associated with the apolipoprotein A5 (APOA5) gene polymorphisms. APOAV can modulate the triacylglycerol hydrolase activity of lipoprotein lipase (LPL) through direct activation or indirect effects to reduce the plasma TG. However, the mechanism of APOAV modulation is still unclear.
We have identified a c.553G>T polymorphism, which was found in oriental populations only, cause a G185C substitution effect. Moreover, patients with c.553G>T polymorphism tend to suffer from hypertriglyceridemia. These phenomena inspired us that substitution of G185C might results in losing, or at least lowering the function of APOAV.
In our previous studies, we had expressed the recombinant APOAV protein by HEK293 cell model. However, the activation of LPL revealed no significant. Explanations of this result might be the unavoidable intrinsic APOAV, and the inadequate protein concentration expressed by cell. Overcoming the problems mentioned above, we shifted the expression system to bacteria (E.coli BL21).
To study the function of 185G, we generate 19 kinds of mutant-type APOAV proteins by site-direct mutagenesis. Before applying to the animal model, we constructed a synthetic system of DMPC (1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine), which is similar to VLDL. We found that in the DMPC system, mutant-type APOAV did decrease its function on the activation of LPL comparing to that of wild-type (P<0.00014). Besides, mutant-type APOAV proteins show lower abilities to hydrolyze TG in VLDL from apoa5 knockout mice (P<0.00012). It may somehow suggest the importance of 185G.
We repeated the experiment with apoa5 knockout mice model, similar to DMPC system, 185G showed its importance in hydrolysing TG by LPL. It could probably bring up a clue why patients with c.553G>T polymorphism come across the problem with hypertriglyceridemia more often. Meanwhile it seems the characteristic of amino acid (hydrophilic, hydrophobic, or size) dose not affect so much.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:06:05Z (GMT). No. of bitstreams: 1
ntu-99-R97424001-1.pdf: 1315297 bytes, checksum: 19ae36b0df149d277b3bfa13d0d6cf8a (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents總目次.............................................................Ⅰ
圖目次..............................................................Ⅲ
表目次..............................................................Ⅲ
簡稱或縮寫對照表....................................................Ⅳ
中文摘要..........................................................Ⅵ
Abstract..........................................................Ⅶ
第一章 導論
第一節 前言..........................................................1
第二節 高三酸甘油脂血症..............................................1
第三節 脂蛋白解脂酶..................................................1
第四節 脂蛋白元......................................................3
第五節 脂蛋白元AV....................................................3
第六節 研究動機......................................................6
第二章 實驗材料與方法
第一節 儀器設備......................................................8
第二節 詴藥、詴劑組與耗材............................................9
第三節 實驗方法.....................................................12
第三章 實驗結果
第一節 變異型脂蛋白的選殖...........................................16
第二節 重組脂蛋白元AV的表現、純化、及確認...........................16
第三節 脂蛋白元AV與VLDL相對比例對脂蛋白解脂酶活性之影響.............16
第四節 野生型與變異型脂蛋白元AV對脂蛋白解脂酶活性之影響.............17
第四章 討論.........................................................18
附圖................................................................21
附表................................................................28
附錄實驗流程........................................................29
參考文獻............................................................40
dc.language.isozh-TW
dc.title變異脂蛋白元AV功能之研究zh_TW
dc.titleFunctional Studies of Mutant Apolipoprotein AVen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林淑華,謝絹珠,江福田
dc.subject.keyword脂蛋白元A5,高三酸甘油脂血症,DMPC,apoa5 基因剔除小鼠,zh_TW
dc.subject.keywordApolipoprotein A5,HTG,DMPC,apoa5 knockout mice,en
dc.relation.page46
dc.rights.note有償授權
dc.date.accepted2010-08-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
1.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved