請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47558
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林致廷(Chih-Ting Lin) | |
dc.contributor.author | Jui-Ching Wang | en |
dc.contributor.author | 王瑞慶 | zh_TW |
dc.date.accessioned | 2021-06-15T06:05:52Z | - |
dc.date.available | 2012-08-20 | |
dc.date.copyright | 2010-08-20 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-16 | |
dc.identifier.citation | [1] R. M. Lequin, 'Enzyme Immunoassay (EIA)/Enzyme-Linked Immunosorbent Assay (ELISA),' Clinical Chemistry, vol. 51, pp. 2415-2418, Dec 2005.
[2] Rashid Bashir, 'BioMEMS: state-of-the-art in detection, opportunities and prospects,' Advanced Drug Delivery Reviews, vol. 56, pp. 1565-1586, Sep 2004.. [3] Guanghua Wu, Ram H. Datar, Karolyn M. Hansen, Thomas Thundat, Richard J. Cote, Arun Majumdar., 'Bioassay of prostate-specific antigen (PSA) using microcantilevers,' Nature Biotechnology, vol. 19, pp. 856-860, Sep 2001. [4] Michael Liss, Birgit Petersen, Hans Wolf, Elke Prohaska., 'An aptamer-based quartz crystal protein biosensor,' Analytical Chemistry, vol. 74, pp. 4488-4495, Sep 2002. [5] Shankaran, Dhesingh Ravi, Gobi, K. Vengataj Alabathy, Miura, Norio., 'Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,' Sensors and Actuators B-Chemical, vol. 121, pp. 158-177, Jan 2007. [6] Yi Cui, Qingqiao Wei, Hongkun Park, Charles M. Lieber., 'Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,' Science, vol. 293, pp. 1289-1292, Aug 2001. [7] Robert J. Chen, Sarunya Bangsaruntip, Katerina A. Drouvalakis, Nadine Wong Shi Kam*, Moonsub Shim, Yiming Li, Woong Kim, Paul J. Utz, and Hongjie Dai., 'Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors,' Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 4984-4989, Apr 2003. [8] Wayne U. Wang, Chuo Chen, Keng-hui Lin, Ying Fang*, and Charles M. Lieber., 'Label-free detection of small-molecule-protein interactions by using nanowire nanosensors,' Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 3208-3212, Mar 2005. [9] Eric Stern, James F. Klemic, David A. Routenberg, Pauline N. Wyrembak, Daniel . Turner-Evans, Andrew . Hamilton, David A. LaVan, Tarek M. Fahmy, Mark A. Reed., 'Label-free immunodetection with CMOS-compatible semiconducting nanowires,' Nature, vol. 445, pp. 519-522, Feb 2007. [10] Gengfeng Zheng, Fernando Patolsky1, Yi Cui1, Wayne U Wang, Charles M Lieber., 'Multiplexed electrical detection of cancer markers with nanowire sensor arrays,' Nature Biotechnology, vol. 23, pp. 1294-1301, Oct 2005. [11] Ansoon Kim,a Chil Seong Ah, Han Young Yu, Jong-Heon Yang, In-Bok Baek, Chang-Guen Ahn, Chan Woo Park, Myung Sim Jun., 'Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors,' Applied Physics Letters, vol. 91, Sep 2007. [12] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, R. S. Williams., 'Sequence-specific label-free DNA sensors based on silicon nanowires,' Nano Letters, vol. 4, pp. 245-247, Feb 2004. [13] Yuri L. Bunimovich, Young Shik Shin, Woon-Seok Yeo, Michael Amori, Gabriel Kwong, James R. Heath., 'Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution,' Journal of the American Chemical Society, vol. 128, pp. 16323-16331, Dec 2006. [14] J. Hahm, C. M. Lieber, 'Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors,' Nano Letters, vol. 4, pp. 51-54, Jan 2004. [15] Fernando Patolsky, Gengfeng Zheng, Oliver Hayden, Melike Lakadamyali, Xiaowei Zhuang, Charles M. Lieber., 'Electrical detection of single viruses,' Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 14017-14022, Sep 2004. [16] W. Lu, C. M. Lieber, 'Semiconductor nanowires,' Journal of Physics D-Applied Physics, vol. 39, pp. R387-R406, Nov 2006. [17] Yi Cui, Zhaohui Zhong, Deli Wang, Wayne U. Wang, and Charles M. Lieber., 'High performance silicon nanowire field effect transistors,' Nano Letters, vol. 3, pp. 149-152, Feb 2003. [18] H. Nakamura, I. Karube, 'Current research activity in biosensors,' Analytical and Bioanalytical Chemistry, vol. 377, pp. 446-468, Oct 2003. [19] R. W. Wood, 'On a remarkable case of uneven distribution of light in a diffraction grating spectrum,' Philosophical Magazine, vol. 4, pp. 396-402, Jul-Dec 1902. [20] Marco Curreli, Rui Zhang, Fumiaki N. Ishikawa, Hsiao-Kang Chang, Richard J. Cote, Chongwu Zhou, and Mark E. Thompson., 'Real-Time, Label-Free Detection of Biological Entities Using Nanowire-Based FETs,' IEEE Transactions on Nanotechnology, vol. 7, pp. 651-667, Nov 2008. [21] P. Bergveld, 'DEVELOPMENT OF AN ION-SENSITIVE SOLID-STATE DEVICE FOR NEUROPHYSIOLOGICAL MEASUREMENTS,' IEEE Transactions on Biomedical Engineering, vol. BM17, pp. 70-&, 1970. [22] P. Bergveld, 'Thirty years of ISFETOLOGY - What happened in the past 30 years and what may happen in the next 30 years,' Sensors and Actuators B-Chemical, vol. 88, pp. 1-20, Jan 2003. [23] Z. Li, B. Rajendran, T.I. kamins, X. li, Y. Chen, R. Stanley Williams., 'Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation,' Applied Physics a-Materials Science & Processing, vol. 80, pp. 1257-1263, Mar 2005. [24] P. R. Nair, M. A. Alam, 'Screening-limited response of nanobiosensors,' Nano Letters, vol. 8, pp. 1281-1285, May 2008. [25] P. R. Nair, M. A. Alam, 'Design considerations of silicon nanowire biosensors,' IEEE Transactions on Electron Devices, vol. 54, pp. 3400-3408, 2007. [26] Eric Stern, Robin Wagner, Fred J. Sigworth, Ronald Breaker, Tarek M. Fahmy, and Mark A. Reed., 'Importance of the debye screening length on nanowire field effect transistor sensors,' Nano Letters, vol. 7, pp. 3405-3409, Nov 2007. [27] J. Israelachvili, Intermolecular & Surface Forces, 2nd Ed. ; Academic Press: London, 1991. [28] Sze, S. M. Physics of Semiconductor Devices 3nd (John Wiley & Sons, NewYork, 2006). [29] Niklas Elfstrom, Amelie Eriksson Karlstrom, Jan Linnros., 'Silicon nanoribbons for electrical detection of biomolecules,' Nano Letters, vol. 8, pp. 945-949, Mar 2008. [30] L. Shi, 'Biomimetic surfaces of biomaterials using mucin-type glycoproteins,' Trends in Glycoscience and Glycotechnology, vol. 12, pp. 229-239, Jul 2000. [31] Valerie A. Liu , William E. Jastromb, Sangeeta N. Bhatia., 'Engineering protein and cell adhesivity using PEO-terminated triblock polymers,' Journal of Biomedical Materials Research, vol. 60, pp. 126-134, Apr 2002. [32] Yu Chen, Xihua Wang, Shyamsunder Erramilli, Pritiraj Mohanty., 'Silicon-based nanoelectronic field-effect pH sensor with local gate control,' Applied Physics Letters, vol. 89, Nov 2006. [33] VT Moy, EL Florin, and HE Gaub., 'INTERMOLECULAR FORCES AND ENERGIES BETWEEN LIGANDS AND RECEPTORS,' Science, vol. 266, pp. 257-259, Oct 1994. [34] L. Bousse, NF De Rooij, P. Bergveld., 'Operation of chemically sensitivefield-effect sensors as a function of the insulator-electrolyte interface,' IEEE Transactions on Electron Devices, vol. 30, pp. 1263-1270, 1983. [35] Sung Keun Yoo, Sung Yang, Jong-Hyun., 'Hydrogen Ion Sensing Using Schottky Contacted Silicon Nanowire FETs,' IEEE Transactions on Nanotechnology, vol. 7, pp. 745-748, Nov 2008. [36] Xuan P. A. Gao, Gengfeng Zheng, Charles M. Lieber., 'Subthreshold Regime has the Optimal Sensitivity for Nanowire FET Biosensors,' Nano Letters, vol. 10, pp. 547-552, Feb 2010. [37] Jay Huiyi Chua, Ru-Ern Chee, Ajay Agarwal, She Mein Wong, and Guo-Jun Zhang , 'Label-Free Electrical Detection of Cardiac Biomarker with Complementary Metal-Oxide Semiconductor-Compatible Silicon Nanowire Sensor Arrays,' Analytical Chemistry, vol. 81, pp. 6266-6271, Aug 2009. [38] Xihua Wang, Xihua Wang, Yu Chen, Katherine A. Gibney, Shyamsunder Erramilli, Pritiraj Mohantyl., 'Silicon-based nanochannel glucose sensor,' Applied Physics Letters, vol. 92, Jan 2008. [39] Yu Chen, XihuaWang, Mi Hong, Shyamsunder Erramilli, Pritiraj Mohanty., 'Surface-modified silicon nano-channel for urea sensing,' Sensors and Actuators B-Chemical, vol. 133, pp. 593-598, Aug 2008. [40] Nirankar N. Mishra, Wusi C. Maki, Eric Cameron, Ron Nelson, Paul Winterrowd, Shiva K. Rastogi, Brian Filanoski and Gary K. Maki., 'Ultra-sensitive detection of bacterial toxin with silicon nanowire transistor,' Lab on a Chip, vol. 8, pp. 868-871, 2008. [41] ChanWoo Park, Chang-Geun Ahn, Jong-Heon Yang, In-Bok Baek, Chil Seong Ah, Ansoon Kim, Tae-Youb Kim, Gun Yong Sung., 'Control of channel doping concentration for enhancing the sensitivity of 'top-down' fabricated Si nanochannel FET biosensors,' Nanotechnology, vol. 20, Nov 2009. [42] Alireza Kargar, “Sensitivity Analysis of Silicon Nanowire Chemical Sensor,” in Proc. 8th IEEE NANO Conf., Arlington, Texas, Agu. 2008. [43] Martin Hedegard Sorensen, Niels Asger Mortensen, Mads Brandbyge., 'Screening model for nanowire surface-charge sensors in liquid,' Applied Physics Letters, vol. 91, Sep 2007. [44] Kangho Lee, Pradeep R. Nair, Adina Scott, Muhammad A. Alam, David B. Janes., 'Device considerations for development of conductance-based biosensors,' Journal of Applied Physics, vol. 105, 2009. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47558 | - |
dc.description.abstract | 近年來在醫學疾病的檢測,開始針對分子標誌進行診斷。治療方式也開始對於引發疾病的特定分子做特定的治療。因此我需要具有準確且快速檢測生物分子的工具或方法,期望達到疾病早期發現、早期治療的目標。矽奈米線電晶體元件,近年來已被證實可以做為高靈敏度的生物分子感測器。可以對於不同的生物分子進行高靈敏度、即時、快速、準確的感測。
在本論文中我們發展出一種簡單而快速的方法製備多晶矽奈米線薄膜電晶體元件。並將此元件應用於生化感測方面。將多晶矽奈米線通道曝露在不同酸鹼值的溶液中,並量測元件臨界電壓及電流的變化。我們利用卵白素及生物素的專一性親和力,來進行生物分子感測的實驗。將帶有螢光分子的卵白素固定在多晶矽表面,並使用螢光顯微鏡觀察其螢光圖形。將多晶矽奈米線曝露在不同濃度的蛋白質溶液環境中,偵測多晶矽奈米線元件電性的變化。我們感測的目標蛋白質為卵白素,感測的範圍為10-12莫爾濃度至10-8莫爾濃度。 | zh_TW |
dc.description.abstract | In recent years, the medical diagnostics and diagnostic judgments begin using molecular markers approach, and highly specific therapies aimed at molecular targets. Therefore we need high-throughput methods for rapid detection of biological molecules. Expect to achieve early detection of disease, early treatment goals. The silicon nanowire transistor devices had been proven as high sensitivity biomolecular sensors. The silicon nanowire devices can detect biomolecules with high sensitivity, real-time, fast and accurate.
In this work, we fabricated poly-silicon nanowire thin-film transistors with simple and fast method. The shifts of threshold voltage and the changes of current were detected by exposing the poly-silicon nanowires to buffer solutions of different pH value. A biomolecular detection experiment was set up using the specific binding of biotin to streptavidin/avidin. First we immobilized protein with fluorescent molecules on the poly-silicon surface, and used fluorescent microscope to observe the fluorescent pattern. We measured the electronic properties of the poly-silicon nanowire thin-film transistors in different concentration streptavidin/avidin. Specific electric changes were observed for streptavidin and avidin sensing when the poly-silicon nanowire surface was modified with biotin and streptavidin at pM to dozens nM range could be distinguished. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:05:52Z (GMT). No. of bitstreams: 1 ntu-99-R97945033-1.pdf: 7382620 bytes, checksum: 6f9cf18e258e8667e3515f6d266353a2 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 誌謝................................................................................................i
摘要.................................................................................................ii 英文摘要………………………………………………………..…….…iii 目錄...........................................................................................................iv 圖目錄......................................................................................................vi 表目錄......................................................................................................ix 第一章 序論...................................................................................1 1.1 序言……...........................................................................................1 1.2 研究動機...........................................................................................2 1.3 論文架構...........................................................................................4 第二章 文獻回顧及原理介紹......................................................5 2.1 近年生物分子感測技術之發展…...................................................5 2.1.1 酵素連結免役分析(ELISA)……………………………......…6 2.1.2 微懸臂樑(Micro Cantilever)…..………………………....……6 2.1.3 表面電漿共振(Surface Plasmon Resonace, SPR)…..……...…7 2.1.4 壓電晶體生物感測器………………………..………………..8 2.2 矽奈米線生物感測器………….……............................................9 2.2.1 起源與由來…………………………..………………………10 2.2.2 感測原理…….…...…………..………………………………12 2.2.3 蛋白質感測…………………..………………………………13 2.2.4 DNA感測………..…………………...………………………16 2.3 矽奈米線生物感測器之設計考量……………….........................18 2.3.1 矽奈米線尺寸與感測靈敏度..................................................18 2.3.2 德拜長度(Debye Screening Length).......................................20 第三章 元件製作與量測方法………………….…………...…...23 3.1 多晶矽奈米線薄膜電晶體元件製作.............................................23 3.1.1 電子束微影 (E-beam Lithography) .......................................23 3.1.2 反應式離子蝕刻(RIE:Reactive Ion Etch) ...........................25 3.1.3 金屬電極(Metal Contact)………………................................25 3.1.4 多晶矽奈米線薄膜電晶體元件圖………..............................27 3.2 奈米線表面修飾及蛋白質固定化.................................................29 3.2.1 生物樣品材料........................................................................29 3.2.2 奈米線表面修飾及蛋白質固定化步驟..................................31 3.2.3 帶有螢光分子蛋白質圖形化步驟..........................................32 3.3 量測架構與方法.............................................................................34 3.3.1 元件電性量測............................................................................34 3.3.2 pH感測......................................................................................34 3.3.3 Biotin-Streptavidin(Avidin)感測................................................35 第四章 實驗結果與討論……………………………………………36 4.1 元件電性分析.................................................................................36 4.1.1 元件參數定義萃取..................................................................36 4.1.2 元件電性量測........................................................................38 4.2 蛋白質固定化螢光圖.....................................................................41 4.3 pH感測結果....................................................................................46 4.4 biotin-streptavidin(avidin)感測結果...............................................48 第五章 結論………………...............................................................54 5.1 實驗結果討論................................................................................54 5.2 未來展望.........................................................................................55 參考文獻……………..…..………………………………………..……56 | |
dc.language.iso | zh-TW | |
dc.title | 多晶矽奈米線生物分子感測元件之研發 | zh_TW |
dc.title | The development of poly-silicon nanowire biosensors | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 施文彬(Wen-Pin Shih),林啟萬(Chii-Wann Lin) | |
dc.subject.keyword | 多晶矽,奈米線,生物分子感測元件, | zh_TW |
dc.subject.keyword | poly-silicon,nanowire,biosensor, | en |
dc.relation.page | 60 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-16 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
顯示於系所單位: | 生醫電子與資訊學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 7.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。