請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47557完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 舒貽忠 | |
| dc.contributor.author | Shr-Ming Shiu | en |
| dc.contributor.author | 徐仕銘 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:05:49Z | - |
| dc.date.available | 2015-08-17 | |
| dc.date.copyright | 2010-08-17 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-14 | |
| dc.identifier.citation | [1] S. Meninger, J. O . Mur-Miranda, R. Amirtharajah, A. Chandrakasan and J. Lang. Vibration-to-electric energy conversion. Proceedings of the 1999 International Conference on Low Power Electronics and Design (ISLPED), p 48-53, 1999.
[2] S. Roundy, P. K. Wright and J. M. Rabaey. A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications, Vol. 26, No. 11, p 1131-1144, 2003. [3] S. Spearing. Materials issues in microelectromechanical systems (MEMS). Acta Materialia, Vol. 48, No. 1, p 179-196, 2000. [4] C. S. Lee, J. Joo, S. Han and S. K. Koh. Multifunctional transducer using poly(vinylidene fluoride) active layer and highly conducting poly(3,4-ethylenedioxythiophene) electrode: actuator and generator. Appl. Phys. Lett., Vol. 85, p 1841-1843, 2004. [5] C. S. Lee, J. Joo, S. Han, J. H. Lee and S. K. Koh. Poly(vinylidene fluoride) transducers with highly conducting poly(3,4-ethylenedioxythiophene) electrodes. Proc. Int. Conf. on Science and Technology of Synthetic Metals, Vol. 152, p 49-52, 2005. [6] J. Baker, S. Roundy and P. Wright. Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks. Proc. 3rd Int. Energy Conversion Engineering Conf. (San Francisco, CA, Aug.), p 959-70, 2005. [7] T. H. Ng and W. H. Liao. Feasibility study of a self-powered piezoelectric sensor. Proc. Smart Structures and Materials Conf.; Proc. SPIE 5389 377-88, 2004. [8] T. H. Ng and W. H. Liao. Sensitivity analysis and energy harvesting for a self-powered piezoelectric sensor. Journal of Intelligent Material Systems and Structures, Vol. 16, p 785-797, 2005. [9] J. Ajitsaria, S. Y. Choe, D. Shen and D. J. Kim. Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation. Smart Materials and Structures, Vol. 16, p 447-454, 2007. [10] N. S. Shenck and J. A. Paradiso. Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro., Vol. 21, p 30-42, 2001. [11] H. A. Sodano, G. Park, D. J. Leo and D. J. Inman. Model of piezoelectric power harvesting beam. Proceedings of the ASME Aerospace Division-2003, Vol. 68, p 345-354, 2003. [12] N. G. Elvin, A. A. Elvin and M. Spector. A self-powered mechanical strain energy sensor. Smart Materials and Structures, Vol. 10, p 293-229, 2001. [13] L. Mateu and F. Moll. Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts. Journal of Intelligent Material Systems and Structures, Vol. 16, p 835-845, 2005. [14] S. Roundy and P. K. Wright. A piezoelectric vibration based generator for wireless electronics. Smart Materials and Structures, Vol. 13, p 1131-1142, 2004. [15] J. P. Jiang and D. X. Li. Finite element formulations for thermopiezoelastic laminated composite plates. Smart Materials and Structures, 17 015027, 2008. [16] R. Paradies and B. Schlapfer. Finite element modeling of piezoelectric elements with complex electrode configuration. Smart Materials and Structures, 18 025015, 2009. [17] B. Behjat, M. Salehi, M. Sadighi. A. Armin and M. Abbasi, Static, dynamic, and free vibration analysis of functionally graded piezoelectric panels using finite element method. Journal of Intelligent Material Systems and Structures, Vol. 20, p 1635-1646, 2009. [18] M. Zhu, E. Worthington and J. Njuguna. Analyses of power output of piezoelectric energy-harvesting devices directly connected to a load resistor using a coupled piezoelectric-circuit finite element method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 56, No. 7, p 1309-1318, 2009. [19] N. G. Elvin and A. A. Elvin. A coupled finite element circuit simulation model for analyzing piezoelectric energy generators. Journal of Intelligent Material Systems and Structures, Vol. 20, p 587-595, 2009. [20] G. A. Lesieutre, G. K. Ottman and H. F. Hofmann. Damping as a result of piezoelectric energy harvesting. Journal of Sound and Vibration, Vol. 269, p 991-1001, 2004. [21] G. K. Ottman, H. F. Hofmann and G. A. Lesieutre. Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. Proc. IEEE 33rd Annual Power Electronics Specialists Conf. (Cairns, Queensland, June), Vol. 4, p 1988-1994, 2002. [22] E. Lefeuvre, A. Badel, C. Richard and D. Guyomar. Piezoelectric energy harvesting device optimization by synchronous electric charge extraction. Journal of Intelligent Material Systems and Structures, Vol. 16, p 865-876, 2005. [23] D. Guyomar, A. Badel, E. Lefeuvre and C. Richard. Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 52, p 584-595, 2005. [24] Y. C. Shu and I. C. Lien. An improved analysis of the SSHI interface in piezoelectric energy harvesting. Smart Materials and Structures, Vol. 16, p 2253-2264, 2007. [25] S. R. Anton and H. A. Sodano. A review of power harvesting using piezoelectric materials (2003-2006). Smart Materials and Structures, Vol. 16, R1-R21, 2007. [26] 鄭世裕, 壓電材料之發電器應用( Piezoelectric Generator and Applications ). 工業材料雜誌, 263期, p 111-120, 2008. [27] ANSI/IEEE Standard 176-1987 IEEE Standard on Piezoelectricity. [28] 周卓明, 壓電力學( Piezoelectricity Mechanics ). 全華科技圖書股份有限公司, 2003. [29] N. Hagood, W. Chung and A.Von Flotow. Modelling of piezoelectric actuator dynamics for active structural control. Journal of Intelligent Material Systems and Structures, Vol. 1, No. 3, p 327-354, 1990. [30] Y. C. Shu and I. C. Lien. Analysis of power output for piezoelectric energy harvesting system. Smart Materials and Structures, Vol. 15, p 1499-1512, 2006. [31] Y. C. Shu and I. C. Lien. An improved analysis of the SSHI interface in piezoelectric energy harvesting. Smart Materials and Structures, Vol. 16, p 2253-2264 , 2007. [32] Y. C. Shu and I. C. Lien. Efficiency of energy conversion for a piezoelectric power harvesting system. Journal of Micromechanics and Microengineering, Vol. 16, p 2429-2438, 2006. [33] Y. C. Shu, I. C. Lien, W. J. Wu and S. M. Shiu. Comparisons between Parallel- and Series-SSHI Interfaces Adopted by Piezoelectric Energy Harvesting Systems, SPIE's 16th International Symposium on Smart Structures and Materials, San Diego, California, 2009. [34] Y. Qin, X. Wang and Z. L. Wang. Microfibre-nanowire hybrid structure for energy scavenging. Nature, Vol. 451, p 809-814, 2008. [35] N. E. duToit, B. L. Wardle and S. G. Kim. Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integrated Ferroelectr., Vol. 71, p 121-160, 2005. [36] H. P. Hu, J. G. Cao and Z. J. Cui. Performance of a piezoelectric bimorph harvester with variable width. Journal of Mechanical, Vol. 23, p 197-202, 2007. [37] S. Jiang, X. Li, S. Guo, Y. Hu, J. Yang and Q. Jiang. Performance of a piezoelectric bimorph for scavenging vibration energy. Smart Materials and Structures, Vol. 14, p 769-774, 2005. [38] M. Umeda, K. Nakamura and S. Ueha. Energy storage characteristics of a piezo-generator using impact induced vibration. Jpn. J. Appl. Phys., Vol. 36(Part 1, No. 5B), p 3146-3151, 1997. [39] C. Richard, D. Guyomar, D. Audigier and G. Ching. Semi passive damping using continuous switching of a piezoelectric device. Proc. SPIE, Vol. 3672, p 104-111, 1998. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47557 | - |
| dc.description.abstract | 隨著積體電路製程技術的不斷進步,行動通訊設備對於功率的需求已大幅地降低,因此,將環境中所蘊含的各種型式能量轉換成電能,以提供電子設備作為驅動力來源的概念將得以實現。本論文即以壓電振動能量擷取系統之輸出功率最佳化作為研究的主軸,詳細探討近年來廣受矚目的「電感同步切換開關介面電路」(SSHI) 提升效能之機制與原理,並與傳統交流轉直流介面電路作一分析比較。實驗結果顯示,SSHI電路技術確實能有效的提升輸出功率,不僅如此,對於中力電耦合強度的壓電振動子還具有遲緩因激振頻率偏移所造成輸出功率驟降的能力,而呈現出寬頻的效果。
此外,研究中更發現SSHI能量擷取介面電路將會主動地影響振動子的機電特性,對於Parallel-SSHI介面電路而言,等效上因消除了壓電寄生電容效應而可將系統力電耦合係數放大至無限大;而Series-SSHI介面電路效果上則完全異於Parallel-SSHI介面電路,其因為採用瞬間對負載釋放能量的方式,故電容效應將被保留下來,系統的操作頻率也因此幾乎被固定在開路共振頻附近。由此可知,Parallel-SSHI與Series-SSHI兩種不同型式之能量擷取電路具有互補的特性。最後在考量電路系統損耗之情況下,多次實驗結果發現Parallel-SSHI介面電路所呈現之寬頻效果優於Series-SSHI介面電路。 | zh_TW |
| dc.description.abstract | With the great advances in the integrated circuits, the power demand of mobile communication devices has been reduced significantly. Therefore, different forms of energy available in environment can be transformed into useful electric energy via suitable medium, and the notion of energy harvesting for producing enough power is not far fetched. The present thesis investigates the effect of the synchronized switch harvesting on inductor (SSHI) interface on power optimization in vibration-based piezoelectric energy harvesting systems. The results are also compared to those achieved based on the standard electronic interface. They show that SSHI techniques can not only boost harvested power, but also enhance the bandwidth of a power generator with medium electromechanical coupling.
Besides, it is also found that the effective electromechanical coupling of a Parallel-SSHI system increases significantly due to the elimination of parasitic piezoelectric capacitance. Different from the parallel SSHI technique operated at around the short circuit resonance, Series-SSHI is effectively operated at the open circuit resonance by releasing transient energy to electric load. As a result, the electrical response of an ideal Series-SSHI system is in conjugate with that of an ideal Parallel-SSHI system. Finally, our numerous experimental results reveal that the consideration of inevitable diode loss favors the Parallel-SSHI technique, since the frequency-insensitive feature is much more pronounced in Parallel-SSHI systems than in Series-SSHI systems. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:05:49Z (GMT). No. of bitstreams: 1 ntu-99-R96543066-1.pdf: 13593220 bytes, checksum: a8a3f3513b3f1ed2462939f1b4357ce9 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 xi 第一章 導論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 壓電振動子 2 1.2.2 能量儲存電路 3 1.2.3 能量擷取電路 4 1.2.4 相關產品與應用 5 1.3 論文架構 6 第二章 壓電理論 7 2.1 壓電效應 ( Piezoelectric Effect ) 7 2.1.1 正壓電效應 7 2.1.2 逆壓電效應 8 2.2 線性壓電材料的本構方程式 ( Constitutive Equations ) 9 2.3 壓電材料之特性參數 12 2.3.1 力電耦合係數 ( Electro-Mechanical Coupling Factor ) K12 2.3.2 機械品質因子 ( Mechanical Quality Factor ) Qm12 第三章 壓電能量擷取系統理論模型之建立與分析 14 3.1 壓電懸臂複合樑之數學模型 14 3.2 壓電能量擷取器之等效電路模型 23 3.3 壓電振動子搭載標準能量擷取介面電路之分析 26 3.4 壓電振動子搭載Parallel-SSHI能量擷取介面電路之分析 34 3.5 壓電振動子搭載Series-SSHI能量擷取介面電路之分析 43 第四章 實驗結果與分析比較 51 4.1 實驗儀器與架構 51 4.2 實驗材料之等效參數量測 55 4.3 振動子之頻率響應分析 59 4.4 振動子搭載標準介面電路之實驗結果與分析 61 4.5 振動子搭載Parallel-SSHI介面電路之實驗結果與分析 78 4.6 振動子搭載Series-SSHI介面電路之實驗結果與分析 99 第五章 結論與未來展望 119 5.1 結論 119 5.2 未來展望 121 參考文獻 122 附錄 127 | |
| dc.language.iso | zh-TW | |
| dc.subject | 壓電振動能量擷取系統 | zh_TW |
| dc.subject | 電感同步切換開關介面電路 | zh_TW |
| dc.subject | 寬頻效果 | zh_TW |
| dc.subject | Wideband Effect | en |
| dc.subject | Piezoelectric Energy Harvesting | en |
| dc.subject | SSHI Interface | en |
| dc.title | 並聯與串聯電感同步切換開關介面電路應用於壓電振動能量擷取之研究 | zh_TW |
| dc.title | A Study of Parallel- and Series-SSHI Interfaces in Piezoelectric Energy Harvesting | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳文中,潘正堂 | |
| dc.subject.keyword | 壓電振動能量擷取系統,電感同步切換開關介面電路,寬頻效果, | zh_TW |
| dc.subject.keyword | Piezoelectric Energy Harvesting,SSHI Interface,Wideband Effect, | en |
| dc.relation.page | 128 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 13.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
