請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47542完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖淑貞(Shwu-Jen Liaw) | |
| dc.contributor.author | Yu-Han Yuan | en |
| dc.contributor.author | 袁于涵 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:05:04Z | - |
| dc.date.available | 2015-09-13 | |
| dc.date.copyright | 2010-09-13 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-16 | |
| dc.identifier.citation | 參考資料
1. Akerley, B. J., P. A. Cotter, and J. F. Miller. 1995. Ectopic expression of the flagellar regulon alters development of the Bordetella-host interaction. Cell 80:611-20. 2. Alavi, M., and R. Belas. 2001. Surface sensing, swarmer cell differentiation, and biofilm development. Methods Enzymol 336:29-40. 3. Allison, C., L. Emody, N. Coleman, and C. Hughes. 1994. The role of swarm cell differentiation and multicellular migration in the uropathogenicity of Proteus mirabilis. J Infect Dis 169:1155-8. 4. Allison, C., and C. Hughes. 1991. Bacterial swarming: an example of prokaryotic differentiation and multicellular behaviour. Sci Prog 75:403-22. 5. Allison, C., H. C. Lai, and C. Hughes. 1992. Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus mirabilis. Mol Microbiol 6:1583-91. 6. Bahrani, F. K., G. Massad, C. V. Lockatell, D. E. Johnson, R. G. Russell, J. W. Warren, and H. L. Mobley. 1994. Construction of an MR/P fimbrial mutant of Proteus mirabilis: role in virulence in a mouse model of ascending urinary tract infection. Infect Immun 62:3363-71. 7. Batchelor, E., D. Walthers, L. J. Kenney, and M. Goulian. 2005. The Escherichia coli CpxA-CpxR envelope stress response system regulates expression of the porins ompF and ompC. J Bacteriol 187:5723-31. 8. Belas, R. 1994. Expression of multiple flagellin-encoding genes of Proteus mirabilis. J Bacteriol 176:7169-81. 9. Belas, R., M. Goldman, and K. Ashliman. 1995. Genetic analysis of Proteus mirabilis mutants defective in swarmer cell elongation. J Bacteriol 177:823-8. 10. Belas, R., R. Schneider, and M. Melch. 1998. Characterization of Proteus mirabilis precocious swarming mutants: identification of rsbA, encoding a regulator of swarming behavior. J Bacteriol 180:6126-39. 11. Beynon, L. M., D. W. Griffith, J. C. Richards, and M. B. Perry. 1992. Characterization of the lipopolysaccharide O antigens of Actinobacillus pleuropneumoniae serotypes 9 and 11: antigenic relationships among serotypes 9, 11, and 1. J Bacteriol 174:5324-31. 12. Boll, M., J. Radziejewska-Lebrecht, C. Warth, D. Krajewska-Pietrasik, and H. Mayer. 1994. 4-Amino-4-deoxy-L-arabinose in LPS of enterobacterial R-mutants and its possible role for their polymyxin reactivity. FEMS Immunol Med Microbiol 8:329-41. 13. Bonnet, R., C. De Champs, D. Sirot, C. Chanal, R. Labia, and J. Sirot. 1999. Diversity of TEM mutants in Proteus mirabilis. Antimicrob Agents Chemother 43:2671-7. 14. Braun, V., and T. Focareta. 1991. Pore-forming bacterial protein hemolysins (cytolysins). Crit Rev Microbiol 18:115-58. 15. Burkart, M., A. Toguchi, and R. M. Harshey. 1998. The chemotaxis system, but not chemotaxis, is essential for swarming motility in Escherichia coli. Proc Natl Acad Sci U S A 95:2568-73. 16. Coker, C., C. A. Poore, X. Li, and H. L. Mobley. 2000. Pathogenesis of Proteus mirabilis urinary tract infection. Microbes Infect 2:1497-505. 17. Danese, P. N., and T. J. Silhavy. 1997. The sigma(E) and the Cpx signal transduction systems control the synthesis of periplasmic protein-folding enzymes in Escherichia coli. Genes Dev 11:1183-93. 18. Danese, P. N., W. B. Snyder, C. L. Cosma, L. J. Davis, and T. J. Silhavy. 1995. The Cpx two-component signal transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease, DegP. Genes Dev 9:387-98. 19. De Wulf, P., O. Kwon, and E. C. Lin. 1999. The CpxRA signal transduction system of Escherichia coli: growth-related autoactivation and control of unanticipated target operons. J Bacteriol 181:6772-8. 20. De Wulf, P., and E. C. Lin. 2000. Cpx two-component signal transduction in Escherichia coli: excessive CpxR-P levels underlie CpxA* phenotypes. J Bacteriol 182:1423-6. 21. De Wulf, P., A. M. McGuire, X. Liu, and E. C. Lin. 2002. Genome-wide profiling of promoter recognition by the two-component response regulator CpxR-P in Escherichia coli. J Biol Chem 277:26652-61. 22. DiGiuseppe, P. A., and T. J. Silhavy. 2003. Signal detection and target gene induction by the CpxRA two-component system. J Bacteriol 185:2432-40. 23. Dorel, C., P. Lejeune, and A. Rodrigue. 2006. The Cpx system of Escherichia coli, a strategic signaling pathway for confronting adverse conditions and for settling biofilm communities? Res Microbiol 157:306-14. 24. Dorel, C., O. Vidal, C. Prigent-Combaret, I. Vallet, and P. Lejeune. 1999. Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. FEMS Microbiol Lett 178:169-75. 25. Drechsel, H., A. Thieken, R. Reissbrodt, G. Jung, and G. Winkelmann. 1993. Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J Bacteriol 175:2727-33. 26. Foster, J. E., Q. Sheng, J. R. McClain, M. Bures, T. I. Nicas, K. Henry, M. E. Winkler, and R. Gilmour. 2004. Kinetic and mechanistic analyses of new classes of inhibitors of two-component signal transduction systems using a coupled assay containing HpkA-DrrA from Thermotoga maritima. Microbiology 150:885-96. 27. Fraser, G. M., J. C. Bennett, and C. Hughes. 1999. Substrate-specific binding of hook-associated proteins by FlgN and FliT, putative chaperones for flagellum assembly. Mol Microbiol 32:569-80. 28. Fraser, G. M., L. Claret, R. Furness, S. Gupta, and C. Hughes. 2002. Swarming-coupled expression of the Proteus mirabilis hpmBA haemolysin operon. Microbiology 148:2191-201. 29. Fraser, G. M., and C. Hughes. 1999. Swarming motility. Curr Opin Microbiol 2:630-5. 30. Frick, I. M., P. Akesson, M. Rasmussen, A. Schmidtchen, and L. Bjorck. 2003. SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J Biol Chem 278:16561-6. 31. Fukuoka, T., N. Masuda, T. Takenouchi, N. Sekine, M. Iijima, and S. Ohya. 1991. Increase in susceptibility of Pseudomonas aeruginosa to carbapenem antibiotics in low-amino-acid media. Antimicrob Agents Chemother 35:529-32. 32. Givskov, M., J. Ostling, L. Eberl, P. W. Lindum, A. B. Christensen, G. Christiansen, S. Molin, and S. Kjelleberg. 1998. Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J Bacteriol 180:742-5. 33. Groisman, E. A. 2001. The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 183:1835-42. 34. Gygi, D., M. J. Bailey, C. Allison, and C. Hughes. 1995. Requirement for FlhA in flagella assembly and swarm-cell differentiation by Proteus mirabilis. Mol Microbiol 15:761-9. 35. Hay, N. A., D. J. Tipper, D. Gygi, and C. Hughes. 1999. A novel membrane protein influencing cell shape and multicellular swarming of Proteus mirabilis. J Bacteriol 181:2008-16. 36. Hancock, R. E. 2001. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1:156-64. 37. Hirakawa, H., Y. Inazumi, T. Masaki, T. Hirata, and A. Yamaguchi. 2005. Indole induces the expression of multidrug exporter genes in Escherichia coli. Mol Microbiol 55:1113-26. 38. Humphreys, S., G. Rowley, A. Stevenson, M. F. Anjum, M. J. Woodward, S. Gilbert, J. Kormanec, and M. Roberts. 2004. Role of the two-component regulator CpxAR in the virulence of Salmonella enterica serotype Typhimurium. Infect Immun 72:4654-61. 39. Hung, D. L., T. L. Raivio, C. H. Jones, T. J. Silhavy, and S. J. Hultgren. 2001. Cpx signaling pathway monitors biogenesis and affects assembly and expression of P pili. EMBO J 20:1508-18. 40. J Mitsuyama, R Hiruma, A Yamaguchi, and T Sawai. 1987. Identification of porins in outer membrane of Proteus, Morganella, and Providencia spp. and their role in outer membrane permeation of beta-lactams. Antimicrob Agents Chemother. 3:379–384. 41. Jin, T., and R. G. Murray. 1988. Further studies of swarmer cell differentiation of Proteus mirabilis PM23: a requirement for iron and zinc. Can J Microbiol 34:588-93. 42. Jones, C. H., P. N. Danese, J. S. Pinkner, T. J. Silhavy, and S. J. Hultgren. 1997. The chaperone-assisted membrane release and folding pathway is sensed by two signal transduction systems. EMBO J 16:6394-406. 43. Jubelin, G., A. Vianney, C. Beloin, J. M. Ghigo, J. C. Lazzaroni, P. Lejeune, and C. Dorel. 2005. CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J Bacteriol 187:2038-49. 44. Kumar, A., and H. P. Schweizer. 2005. Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev 57:1486-513. 45. Leon, R., and G. Espin. 2008. flhDC, but not fleQ, regulates flagella biogenesis in Azotobacter vinelandii, and is under AlgU and CydR negative control. Microbiology 154:1719-28. 46. Li,X., Johnson,D.E. and Mobley,H.L.T. 1999. Requirement of MrpH for mannose-resistant Proteus-like fimbriae-mediated hemagglutination by Proteus mirabilis. Infect. Immun 67:2822-2833. 47. Macfarlane, E. L., A. Kwasnicka, M. M. Ochs, and R. E. Hancock. 1999. PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol Microbiol 34:305-16. 48. Manterola, L., I. Moriyon, E. Moreno, A. Sola-Landa, D. S. Weiss, M. H. Koch, J. Howe, K. Brandenburg, and I. Lopez-Goni. 2005. The lipopolysaccharide of Brucella abortus BvrS/BvrR mutants contains lipid A modifications and has higher affinity for bactericidal cationic peptides. J Bacteriol 187:5631-9. 49. McEwen, J., L. Sambucetti, and P. M. Silverman. 1983. Synthesis of outer membrane proteins in cpxA cpxB mutants of Escherichia coli K-12. J. Bacteriol.154:375–382. 50. Miticka, H., G. Rowley, B. Rezuchova, D. Homerova, S. Humphreys, J. Farn, M. Roberts, and J. Kormanec. 2003. Transcriptional analysis of the rpoE gene encoding extracytoplasmic stress response sigma factor sigmaE in Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett 226:307-14. 51. Mobley, H. L., R. Belas, V. Lockatell, G. Chippendale, A. L. Trifillis, D. E. Johnson, and J. W. Warren. 1996. Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect Immun 64:5332-40. 52. Mobley, H. L., G. R. Chippendale, K. G. Swihart, and R. A. Welch. 1991. Cytotoxicity of the HpmA hemolysin and urease of Proteus mirabilis and Proteus vulgaris against cultured human renal proximal tubular epithelial cells. Infect Immun 59:2036-42. 53. Mobley, H. L., M. D. Island, and R. P. Hausinger. 1995. Molecular biology of microbial ureases. Microbiol Rev 59:451-80. 54. Mobley,H.L.T. 2000. Virulence of the two primary uropathogens. ASM News, 66, 403-410. 55. Mobley,H.L.T., Belas,R., Lockatell,C.V., Chippendale,G., Trifillis,A.T.,Johnson,D.E. and Warren,J.W. 1996. Construction of a flagellumnegative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect. Immun 64:5332-5340 56. Morris, N. S., D. J. Stickler, and R. J. McLean. 1999. The development of bacterial biofilms on indwelling urethral catheters. World J Urol 17:345-50. 57. Nevesinjac, A. Z., and T. L. Raivio. 2005. The Cpx envelope stress response affects expression of the type IV bundle-forming pili of enteropathogenic Escherichia coli. J Bacteriol 187:672-86. 58. Nishino, K., E. Nikaido, and A. Yamaguchi. 2007. Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella enterica serovar Typhimurium. J Bacteriol 189:9066-75. 59. O'Hara, C. M., F. W. Brenner, and J. M. Miller. 2000. Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin Microbiol Rev 13:534-46. 60. Pearson, M. M., and H. L. Mobley. 2008. Repression of motility during fimbrial expression: identification of 14 mrpJ gene paralogues in Proteus mirabilis. Mol Microbiol 69:548-58. 61. Peerbooms, P. G., A. M. Verweij, and D. M. MacLaren. 1984. Vero cell invasiveness of Proteus mirabilis. Infect Immun 43:1068-71. 62. Peschel, A., and H. G. Sahl. 2006. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4:529-36. 63. Pogliano, J., A. S. Lynch, D. Belin, E. C. Lin, and J. Beckwith. 1997. Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. Genes Dev 11:1169-82. 64. Pratt, L. A., W. Hsing, K. E. Gibson, and T. J. Silhavy. 1996. From acids to osmZ: multiple factors influence synthesis of the OmpF and OmpC porins in Escherichia coli. Mol Microbiol 20:911-7. 65. Rauprich, O., M. Matsushita, C. J. Weijer, F. Siegert, S. E. Esipov, and J. A. Shapiro. 1996. Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol 178:6525-38. 66. Rezuchova, B., H. Miticka, D. Homerova, M. Roberts, and J. Kormanec. 2003. New members of the Escherichia coli sigmaE regulon identified by a two-plasmid system. FEMS Microbiol Lett 225:1-7. 67. Rodriguez Barbosa, J. I., C. B. Gutierrez Martin, R. I. Tascon, O. R. Gonzalez, K. R. Mittal, and E. F. Rodriguez Ferri. 1996. Characterization of monoclonal antibodies that recognize common epitopes located on O antigen of lipopolysaccharide of serotypes 1, 9 and 11 of Actinobacillus pleuropneumoniae. FEMS Immunol Med Microbiol 16:173-81. 68. Rowley, G., M. Spector, J. Kormanec, and M. Roberts. 2006. Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol 4:383-94. 69. Schweizer, H. P., and T. T. Hoang. 1995. An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene 158:15-22. 70. Sieprawska-Lupa, M., P. Mydel, K. Krawczyk, K. Wojcik, M. Puklo, B. Lupa, P. Suder, J. Silberring, M. Reed, J. Pohl, W. Shafer, F. McAleese, T. Foster, J. Travis, and J. Potempa. 2004. Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48:4673-9. 71. Silverblatt, F. J., and I. Ofek. 1978. Influence of pili on the virulence of Proteus mirabilis in experimental hematogenous pyelonephritis. J Infect Dis 138:664-7. 72. Snyder, W. B., L. J. Davis, P. N. Danese, C. L. Cosma, and T. J. Silhavy. 1995. Overproduction of NlpE, a new outer membrane lipoprotein, suppresses the toxicity of periplasmic LacZ by activation of the Cpx signal transduction pathway. J Bacteriol 177:4216-23. 73. Stock, J. B., M. G. Surette, M. Levit, and P. Park. 1995. Two-component signal transduction systems: structure-function relationships and mechanisms of catalysis. ASM Press, Washington, D.C. 74. Storm, D. R., K. S. Rosenthal, and P. E. Swanson. 1977. Polymyxin and related peptide antibiotics. Annu Rev Biochem 46:723-63. 75. Tobe, T., M. Yoshikawa, T. Mizuno, and C. Sasakawa. 1993. Transcriptional control of the invasion regulatory gene virB of Shigella flexneri: activation by virF and repression by H-NS. J Bacteriol 175:6142-9. 76. Verstraeten, N., K. Braeken, B. Debkumari, M. Fauvart, J. Fransaer, J. Vermant, and J. Michiels. 2008. Living on a surface: swarming and biofilm formation. Trends Microbiol 16:496-506. 77. Vogt, S. L., A. Z. Nevesinjac, R. M. Humphries, M. S. Donnenberg, G. D. Armstrong, and T. L. Raivio. The Cpx envelope stress response both facilitates and inhibits elaboration of the enteropathogenic Escherichia coli bundle-forming pilus. Mol Microbiol 76:1095-110. 78. Walker, K. E., S. Moghaddame-Jafari, C. V. Lockatell, D. Johnson, and R. Belas. 1999. ZapA, the IgA-degrading metalloprotease of Proteus mirabilis, is a virulence factor expressed specifically in swarmer cells. Mol Microbiol 32:825-36. 79. Wang, W. B., I. C. Chen, S. S. Jiang, H. R. Chen, C. Y. Hsu, P. R. Hsueh, W. B. Hsu, and S. J. Liaw. 2008. Role of RppA in the regulation of polymyxin b susceptibility, swarming, and virulence factor expression in Proteus mirabilis. Infect Immun 76:2051-62. 80. Warren, J. W., J. H. Tenney, J. M. Hoopes, H. L. Muncie, and W. C. Anthony. 1982. A prospective microbiologic study of bacteriuria in patients with chronic indwelling urethral catheters. J Infect Dis 146:719-23. 81. Wiese, A., T. Gutsmann, and U. Seydel. 2003. Towards antibacterial strategies: studies on the mechanisms of interaction between antibacterial peptides and model membranes. J Endotoxin Res 9:67-84. 82. Wiese, A., M. Munstermann, T. Gutsmann, B. Lindner, K. Kawahara, U. Zahringer, and U. Seydel. 1998. Molecular mechanisms of polymyxin B-membrane interactions: direct correlation between surface charge density and self-promoted transport. J Membr Biol 162:127-38. 83. Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415:389-95. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47542 | - |
| dc.description.abstract | Proteus mirabilis為革蘭氏陰性的腸內菌,在健康人類腸道屬於正常菌叢,但在長期使用導尿管之病患身上,會造成伺機性感染,嚴重甚至可能導致腎臟病、肺炎等併發症。
Polymyxin B (PB) 屬cationic antimicrobial peptides(CAMPs)的一種,其利用與格蘭陰性菌的lipopolysaccharide (LPS)結合,進而造成細胞膜的破壞。P. mirabilis天生就對PB具有很高的抗性,其中一機制可能是透過LPS 上lipid A之修飾,使細胞表面負電性降低,造成PB與細胞結合減少而產生抗性。先前研究指出在Salmonella中lipid A修飾是透過雙組成系統 two-component system (TCS) 來調控。本實驗室先前發現P. mirabilis中有RppA-RppB雙組成系統,會透過調控表面特性之基因來影響PB的感受性及致病因子表現,為了探討P. mirabilis中是否還有其他雙組成系統可以感知細胞外來的訊息以調控對抗生素的抗性及致病力,我們選擇與表面特性調控相關之Cpx雙組成系統來研究其在P. mirabilis中所扮演的角色。Cpx pathway在E. coli中是一個廣泛被研究的TCS,它是由CpxA (histidine kinase)接收外界訊息後,藉由磷酸根活化將訊息傳給CpxR (response regulator),磷酸化的CpxR-P則會結合其下游基因之啟動子進而調控基因表現。E. coli Cpx TCS扮演維持細胞外膜穩定的角色,Cpx pathway活化後也會影響細菌的swarming、biofilm生成能力、抗藥性及細胞入侵能力等毒力因子的表現。而在Salmonella中Cpx pathway和致病力有密切的關係。 在本論文中,首先將Cpx雙組成系統中的cpxR knockout,觀察相關表現型是否有改變。結果發現cpxR突變株有以下特徵:1.對抗PB及gentamycin的感受性分別上升為四倍及兩倍,且CpxR有助於此菌形成biofilm後之對抗gentamycin及PB的能力2.表面移行能力稍顯上升 3.鞭毛蛋白合成在第5~8小時大量增加 4.隔夜培養後長細胞數變多5.入侵細胞能力下降 6.生物膜生成量降低 7.外膜蛋白及LPS的改變。而將cpxAR operon補回突變株中,可觀察到PB MIC、biofilm、LPS pattern及swarming能力的恢復。 在E. coli中已發現cpxA* (缺 phosphatase 活性) 突變株cpxR會過度表現,進而造成細菌envelope的改變,使得生物膜形成力受到破壞、swarming能力下降,而且對aminoglycosides類的藥物抗性增加。我們利用transposon mutagenesis在P. mirabilis中篩選到一株cpxA突變株,其插入位點為phosphatase 活性所在。利用cpxR reporter assay發現Proteus的cpxA突變株cpxR會大量表現,因此想了解其表現型,結果發現表現型態如: swarming、swimming、生物膜生成能力、細菌外膜的改變、對抗gentamycin及PB的MIC與cpxR突變株相較皆呈現相反的情形。 先前文獻指出,E. coli中滲透壓的改變會刺激Cpx的活化,在本論文中,利用高滲透壓來觀察是否會刺激Proteus的Cpx pathway,由cpxR reporter assay證實高滲透壓為其訊號分子。之前研究室發現,cpxR突變株對PB的感受性上升,推測PB也有可能為其訊號分子,以cpxR reporter assay得知PB為其訊號分子。而在高滲透壓或PB存在下也觀察到swarming能力的下降、ampicillin及tetracycline的MIC上升、biofilm生成力上升。 利用mrpJ及flhDC reporter assay探究Cpx與表面移行能力的關係,發現Cpx會促進與生物膜生成相關的mrpJ基因表現進而使鞭毛合成相關的flhDC基因表現減少,另外mrpJ reporter assay結果顯示,在高滲透壓及PB的存在下會促進mrpJ基因的表現進而抑制表面移行能力。此外,我們發現Proteus cpxA突變株OmpF的表現量大輻減少,而對ampicillin及tetracycline呈現抗性較高的現象,也發現高滲透壓會藉由活化Cpx而造成ampicillin及tetracycline的MIC上升,在E. Coli中也是相同的情形。 由於TCS會造成細菌抗藥性和致病性,因此近年來有關用以抑制這些TCS之小分子藥物的研究相當多。我們意外發現小分子藥物Compound X可以上升Proteus PB的感受性,降低細胞入侵能力,此兩項表現型態與rppA突變株相當。而由rppA reporter assay證實Compound X會抑制rppA的表現,表示Compound X會藉由抑制rppA造成PB的感受性上升,因此推測Compound X可和PB合併使用以降低PB的治療使用量。 本研究讓我們了解到Cpx 雙組成系統在P. mirabilis中所扮演的角色,以及Compound X對rppA的相關調控,並發現Compound X和PB可合併使用以治療對CAMPs有高度抗性的細菌。 | zh_TW |
| dc.description.abstract | Proteus mirabilis is a facultative Gram-negative bacterium and a member of the Enterobacteriaceae family. It’s a normal flora in intestines of healthy human. However, it commonly causes urinary tract infection (UTI), even kidney disease, pneumonia and septicemia in individuals with long-term catheterization or with structural or functional abnormalities in the urinary tract.
Polymyxin B (PB) is a kind of cationic antimicrobial peptides. While the positive-charge structure of PB combine with the negative-charge bacterium membrane, the bacterium membrane is disrupted and leak the cytoplasm contents out. The well known mechanism about the resistance of PB is the modification of the lipid A of the lipopolysaccharides (LPSs) in Gram-negative bacteria by 4-amino-4-deoxy-L-arabinose (L-Ara4N), which decreases negative charge of the membrane. In this way, the binding ability decreases between PB and membrane, leading to the the resistance of PB. P. mirabilis is naturally resistant to PB, previous studies showed that the modification of L-Ara4N is modulated by PhoP-PhoQ and PmrA-PmrB two-component system (TCS), causing poor binding between LPS and PB in Salmonella. Our lab also found that there was a TCS, RppA-RppB, which can regulate surface gene expression to affect PB sensitivity and virulence in P. mirabilis. In order to know if there is any other TCS which can also regulate surface gene expression in P. mirabilis, we knockout cpxR gene to study the Cpx TCS, previous studies showed that perturbations on cell envelope are postulated to be the triggers of this pathway, the Cpx regulon has been implicated in the virulence of a number of bacterial pathogens, and more-recent work on the CpxAR regulon has identified a greater range of targets for phosphorylated CpxR in E. coli. The cpxR mutant exhibited inceasing swarming and swimming ability, increased flagellin synthesis, increased number of swarmer cells, increased haemolysin activity, decreased cell invasion ability, decreased biofilm formation, and altered membrane integrity in P. mirabilis. In E. coli, all of the phenotypes of cpxA* (lacks phosphatase activity) mutants can be accounted for by elevated levels of phosphorylated CpxR (CpxR-P), in this study, we found a cpxA mutant which phosphatase activity was also disrupted by transposon-mutagenesis, by using cpxR reporter assay, we also observed that cpxA mutant significantly increase cpxR expression in P. mirabilis. Complementation of cpxAR operon restored swarming, biofilm, LPS, and PB MIC in the cpxR mutant. Previous studies showed that, in E. coli, high osmolarity is one of the signals of Cpx pathway. We used cpxR reporter assay, and found that after treating high osmolarity, Cpx pathway could be activated in Proteus. Furthermore, we observed that cpxR mutant cause PB sensitivity in Proteus, so we think that PB could be the signal of Cpx, by using cpxR reporter assay, we also found that PB is one of the Cpx signals. In addition, under such signals like PB and high osmolarity, Cpx could be activated to cause decreased swarming ability in Proteus. We used mrpJ and flhDC reporter assay to investigate the mechanism of swarming of the cpxR mutant in Proteus. We found that Cpx can up-regulate mrpJ gene, which increased biofilm formation and down-regulate flhDC expression, therefore leading decreased swarming ability. In addition, previous studies showed that Cpx activation decreased the extracytoplasmic function (ECF) sigma factor σE (RpoE) expression in E. coli, by using rpoE reporter assay, we found that cpxR gene mutation led to decreased expression of rpoE in P. mirabilis. Furthermore, previous studies showed that cpxA* highly decreased OmpF expression, and high osmolarity induce Cpx to cause decreased expression of OmpF, therefore leading increased ampicillin and tetracycline MIC in E. coli, we also observed that an outer membrane prorin OmpF is highly reduced in cpxA mutant in Proteus, and under high osmolarity, Cpx can be induced to increase ampicillin and tetracyclin resistance. In this report, we also investigate if there is any small molecular drug can inhibit TCS activation, we found that Compound X can inhibit P. mirabilis swarming, increased PB sensitivity and decreased invasion ability, by using rppA reporter assay, it showed that Compound X can decrease rppA expression to cause polymyxin B sensitivity, thus, it is possible to combine Compound X and PB to reduce the dosage of PB during therapy. In this study, we investigated the roles of Cpx in antibiotics resistance, swarming ability and virulence factor expression in P. mirabilis. In addition, we also found that Compound X and PB can combine to treat on pathogens which are highly resistant to CAMPs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:05:04Z (GMT). No. of bitstreams: 1 ntu-99-R97424028-1.pdf: 5724441 bytes, checksum: 44a4263620d4ab9bddf0dbb9bf98a648 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 目錄
口委審定書 誌謝 i 目錄 iii 摘要 x Abstract xii 第一章 緒論 1 第一節 奇異變形桿菌 (Proteus mirabilis) 介紹 1 第二節 多黏菌素B (Polymyxin B) 及抗藥機轉的介紹 8 第三節 Cpx的相關研究 12 第四節 研究動機與目的 14 第五節 實驗設計 15 第二章 實驗材料與方法 16 第一節 實驗材料 16 第二節 cpxR knockout方法 18 第三節 跳躍子卡匣突變方法 (cpxA transposon mutagenesis) 19 第四節 突變基因之鑑定 (identification) 23 第五節 分析突變株毒力因子 (virulence factor) 表現 31 第六節 補償 (complementation) 試驗 53 第七節 探究Cpx pathway 56 第三章 實驗結果 61 第一節 利用knockout建立P. mirabilis cpxR突變菌株 61 第二節 利用跳躍子突變方法篩選cpxA基因並鑑定 61 第三節 cpxR基因與毒力因子表現之分析 62 第四節 分析Cpx可能調控的機制 68 第五節 cpxR突變株的補回(complementation)試驗 71 第六節 Compound X與雙組成調控系統的關係 72 第四章 結論與討論 75 第一節 結論 75 第二節 Cpx的調控與抗藥關係 78 第三節 其他菌種Cpx研究 79 第四節 Cpx影響的表現型在不同物種間的異同 80 第五節 Compound X與雙組成系統的調控關係 83 第五章 表…………………………………………………………………………84 第六章 圖…………………………………………………………………………90 第七章 附錄……………………………………………………………………109 參考資料………………………………………………………………120 表目錄 表一、實驗中所使用的菌株及質體 84 表二、實驗中所使用的引子 85 表三、對於polymyxin B及gentamycin的最小抑菌濃度 87 表四、脂多醣合成之定量 87 表五、對於介面活性劑SDS的抗性 87 表六、野生株及加入Compound X對於polymyxin B的最小抑菌濃度 88 表七、野生株及加入Compound X的脂多醣合成之定量 88 表八、在高滲透壓下對於ampicillin與tetracycline的最小抑菌濃度 88 表九、Cpx影響的表現型在E. coli與P. mirabilis之間的異同 89 圖目錄 圖一、Cpx示意圖 90 圖二、Kanamycin cassette 插入突變處示意圖 90 圖三、野生株與cpxR突變株生長曲線之比較 91 圖四(a)、藉由SDS-PAGE與銀染色分析脂多醣的型態 91 圖四(b)、PB binding能力試驗 92 圖五(a)、表面移行 93 圖五(b)、swimmimg能力 94 圖六、以SDS-PAGE分析鞭毛蛋白表現量 94 圖七、細胞型態 95 圖八、溶血酶活性 96 圖九、入侵細胞能力 96 圖十(a)、生物膜形成能力 97 圖十(b)、生物膜形成後之抗藥性 97 圖十一、分析cpxA突變株中cpxR表現量 98 圖十二(a)、以SDS-PAGE分析外膜蛋白 99 圖十二(b)、LC-MS蛋白質質譜分析 100 圖十三(a)、分析在高滲透壓環境下Cpx的表現情形 101 圖十三(b)、分析在PB環境下Cpx的表現情形 101 圖十四、以reporter assay探究Cpx與rpoE之關係 102 圖十五(a)、以reporter assay探究Cpx與flhDC之關係 102 圖十五(b)、以reporter assay探究Cpx與mrpJ之關係 103 圖十五(c)、以reporter assay探究在高滲透壓下Cpx與mrpJ之關係 103 圖十五(d)、分析在高滲透壓下Cpx與生物膜形成之關係 104 圖十五(e)、分析在高滲透壓下Cpx與表面移行之關係 104 圖十六、分析在高滲透壓下Cpx與ompF之關係 105 圖十七、野生株與加Compound X生長曲線之比較 105 圖十八、野生株與加Compound X表面移行之比較 106 圖十九(a)、野生株與加Compound X以SDS-PAGE與銀染色分析脂多 醣的型態 106 圖十九(b)、野生株與加Compound X之PB binding能力試驗 107 圖二十、分析野生株及加入Compound X之溶血酶活性 107 圖二十一、分析野生株加入Compound X之入侵細胞能力 108 圖二十二、分析野生株與加入Compound X之rppA表現量 108 附錄目錄 附錄一、P. mirabilis致病因子 109 附錄二、P. mirabilis表面移行現象 110 附錄三、Polymyxin B的結構 110 附錄四、革蘭氏陰性菌envelope的結構 111 附錄五、P. mirabilis LPS的lipid A被4-aminoarabinose所修飾 111 附錄六、P. mirabilis中表面移行能力與毒力因子的相關調控 112 附錄七、cpxR基因 knockout方法 113 附錄八、E. coli中Cpx的調控 114 附錄九、E. coli中Cpx調控的基因表現 115 附錄十、pUT-Tn5 (mini-Tn5) map 116 附錄十一、pGEM®-4Z vector map (Promega) 117 附錄十二、pGEM®-T Easy cloning vector map (Promega) 118 附錄十三、pACYC-184 map 119 | |
| dc.language.iso | zh-TW | |
| dc.subject | Cpx雙組成系統 | zh_TW |
| dc.subject | 奇異變形桿菌 | zh_TW |
| dc.subject | Protues mirabilis | en |
| dc.subject | Cpx two-component system | en |
| dc.title | 一、奇異變形桿菌中Cpx雙組成系統之研究
二、探討Compound X在奇異變形桿菌中的作用 | zh_TW |
| dc.title | Roles of the Cpx two-component system in Proteus mirabilis
The effects of Compound X on Proteus mirabilis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄧麗珍(Lee-Jeng Teng),林淑萍(Shwu-Bin Lin),張雅雯(Ya-Wen Chang),賴信志(Hsin-Chih Lai) | |
| dc.subject.keyword | Cpx雙組成系統,奇異變形桿菌, | zh_TW |
| dc.subject.keyword | Cpx two-component system,Protues mirabilis, | en |
| dc.relation.page | 126 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-16 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 5.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
