Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47532
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇炫榮(Hsuan-Jung Su)
dc.contributor.authorYu-Hsiu Linen
dc.contributor.author林毓修zh_TW
dc.date.accessioned2021-06-15T06:04:36Z-
dc.date.available2011-08-19
dc.date.copyright2010-08-19
dc.date.issued2010
dc.date.submitted2010-08-16
dc.identifier.citation[1] A. D. Wyner and J. Ziv, “The rate-distortion function for source coding
with side information at the decoder,” IEEE Trans. Inf. Theory, vol. 22,
no. 1, pp. 1–10, Jan 1979.
[2] A. D. Wyner, “The rate-distortion function for source coding with side
information at the decoder-ii: General sources,” Inf. Contr., vol. 38, pp.
60–80, Jan 1978.
[3] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information
sources,” IEEE Trans. Inf. Theory, vol. 19, no. 4, pp. 471–480, Jul. 1973.
[4] Z. Xiong, A. D. Liveris, and S. Cheng, “Distributed source coding for
sensor networks,” IEEE Signal Process. Mag., vol. 21, no. 5, pp. 80–94,
2004.
[5] S. S. Pradhan and K. Ramchandran, “Distributed source coding using
syndromes (discus): Design and construction,” IEEE Trans. Inf. The-
ory, vol. 49, no. 3, pp. 626–643, Mar. 2003.
[6] R. Zamir and T. Berger, “Multiterminal source coding eith high resolution,”
IEEE Trans. Inf. Theory, vol. 45, no. 1, pp. 106–117, Jan.
1999.
[7] V. K. Goyal, “Multiple description coding: compression meets the network,”
IEEE Signal Process. Mag., vol. 18, no. 5, pp. 74–93, Sep. 01.
[8] H. Viswanathan and T. Berger, “Teh quadratic gaussian ceo problem,”
IEEE Trans. Inf. Theory, vol. 43, no. 5, pp. 1549–1559, Sep. 1997.
[9] Z. Z. T. Berger and H. Viswanathan, “The ceo problem [miltiterminal
source coding],” IEEE Trans. Inf. Theory, vol. 19, no. 4, pp. 887–902,
May 1996.
[10] A. Host-Madsen and J.Zhang, “Capacity bounds and power allocation
for wireless relay channels,” IEEE Trans. Inf. Theory, vol. 51, no. 6, pp.
2020–2040, Jun. 2005.
[11] M. G. G. Kramer and P. Gupta, “cooperative strategies and capacity
theorems for relay networks,” IEEE Trans. Inf. Theory, vol. 51, no. 9,
pp. 3037–3063, Sep. 2005.
[12] R. Zamir, S. Shamai, and U. Erez, “Nested linear/lattice codes for structured
multiterminal binning,” IEEE Trans. Inf. Theory, vol. 48, no. 6,
pp. 1250–1276, June 2002.
[13] S. Lin and H. J. Su, “Vector wyner-ziv coding for vector gaussian ceo
problem,” in Information Sciences and Systems, pp. 333–338, Mar. 2007.
[14] S. J. Lin, S. C. Lin, and H. J. Su, “Vector superposition quadratic gaussian
wyner-ziv coding,” Master’s thesis, National Taiwan University,
2008.
[15] S. J. Lin, K. S. C. S. C. Lin, and H. J. Su, “Coding for noisy quadraticgaussian
wyner-ziv problem : A successive encoding approach,” in Infor-
mation Theory Workshop on Networking and Information theory, Jun.
2009.
[16] M. V. Eyuboglu and J. G. D. Forney, “Lattice and trellis quantization
with lattice- and trellisbounded codebooks–high-rate theory for memoryless
sources,” IEEE Trans. Inf. Theory, vol. 39, no. 1, pp. 46–59, Jan
1993.
[17] Q. Wang and C. He, “Design and analysis of ldgm-based
codes for mse quantization,” in is avalible online in http :
//arxiv.org/PS cache/arxiv/pdf/0801/0801.2423v1.pdf.
[18] R. G. Gallager, “Low-density parity-check codes,” IEEE Trans. Inf.
Theory, vol. 8, pp. 21–28, Jan. 1962.
[19] H. Jin, A. Khandekar, and R. Mceliece, “Irregular repeat-accumulate
codes,” Proc. 2nd Int. Symp. Turbo Codes Related Topics, pp. 1–8, Sep.
2000.
[20] F. Kschischang, B. Frey, and H. Loeliger, “Factor graph and the sumproduct
algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498–
519, Feb. 2001.
[21] S. T. Brink and G. Kramer, “Turbo processing for scalar and vector
channels,” Proc. 3rd Int. Symp. Turbo Codes Related Topics, pp. 23–30,
Sep. 2003.
[22] S. T. Brink, G. Kramer, and A. Ashikhmin, “Design of low-density
parity-check codes for modulation and detection,” IEEE Trans. Com-
mun., vol. 52, no. 4, pp. 670–678, Apr. 2004.
[23] S. T. Brink and G. Kramer, “Design of repeat-accumulate codes for
iterative detection and decoding,” IEEE Trans. Signal Process., vol. 51,
no. 11, pp. 2764–2772, Nov. 2003.
[24] A. Ashikhmin, G. Kramer, and S. T. Brink, “Extrinsic information
transfer functions: model and erasure channel properties,” IEEE Trans.
Inf. Theory, vol. 50, no. 11, pp. 2657–2673, Nov. 2004.
[25] T. J. Richardson and R. Urbanke, “The capacity of low-density paritycheck
codes under message-passing decoding,” IEEE Trans. Inf. Theory,
vol. 5, no. 2, pp. 58–60, Feb. 2001.
[26] K. S. Chen, S. C. Lin, and H. J. Su, “Low density constructions for
simultaneously good for channel and source coding problem (scs) with
application,” Master’s thesis, National Taiwan University, 2009.
[27] Y. Yang, S. Cheng, Z. Xiong, and W. Zhao, “Wyner-ziv coding based on
tcq and ldpc codes,” IEEE Trans. Commun., vol. 57, no. 2, pp. 376–387,
Feb. 2009.
[28] T. Berger, Rate distortion theory. Englewood Cliffs, NJ: Prentice-Hall,
1971.
[29] S. S. Pradhan, J. Chou, and K. Ramchandran, “Duality between source
coding and channel coding and its extension to the side information
case,” IEEE Trans. Inf. Theory, vol. 49, no. 5, pp. 1181–1203, May
2003.
[30] M. Costa, “Writing on dirty paper,” IEEE Trans. Inf. Theory, vol. 29,
no. 3, pp. 439 – 441, May 1983.
[31] A. Bennatan, D. burshtein, G. Caire, and S. Shamai, “Superposition
coding for side-information channels,” IEEE Trans. Inf. Theory, vol. 52,
no. 5, pp. 1872–1889, May 2006.
[32] R. zamir and S. S. (Shitz), “Nested linear/lattice codes for wyner-ziv
encoding,” in Proc. Inforamtion Theory Workshop, Killarney, Ireland,
pp. 92–93, Nov 1998.
[33] T. Cover and J. Thomas, Elements of Information Theory. New York:
Wiley, 1991.
[34] G. D. Forney, Jr., M. D. Trott, and S. Y. Chung;, “Sphere-boundachieving
coset codes and multilevel coset codes,” IEEE Trans. Inf.
Theory, vol. 46, no. 3, pp. 820 – 850, May 2000.
[35] S. C. Lin and H. J. Su, “Practical vector dirty paper coding for mimo
gaussian broadcast channels,” IEEE J. Sel. Areas Commun., vol. 25,
no. 7, pp. 1345–1357, Sep. 2007.
[36] S. Lin and J. D. J. Costello, Error Control coding, 2nd ed. NJ: Prentice-
Hall.
[37] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes doe minimizing symbol error rate,” IEEE Trans. Inf. Theory.
[38] E. Biglieri, A. Nordio, and G. Taricco, “Iterative receivers for coded
mimo signaling,” pp. 284–287, Mar. 1974.
[39] M. J. Wainwright and E. Maneva, “Lossy source coding by messagepassing
and decimation over generalized codewords of ldgm codes,” Int.
Symp. Inform. Theory, Adelaide, Australia, Sep. 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47532-
dc.description.abstractWyner-Ziv 編碼為一失真壓縮技術,其利用解碼器所能得到的附加資訊(side information)來幫助解碼。我們提出一個能實現的編碼設計方法。同時我們也根據連續式量化架構提出一個量化演算法以用來實現二次高斯(QuadraticGaussian) Wyner-Ziv 編碼。我們使用的編碼架構會使用兩組獨立的成分編碼器(component code)。而利用隨機編碼(random coding)分析,這個編碼架構已經被證明可以達到Wyner-Ziv 邊界(Wyner-Ziv bound)。
我們會利用能夠趨近通道容量(capacity)的通道編碼(channel code)以及能夠趨近資料率失真邊界的訊號源編碼(source code)來實現我們提出的編碼設計方式。和現存的箱式(binning)編碼設計比起來,我們提出的編碼設計方法以及量化演算法有著合理的複雜度以及良好的表現。
zh_TW
dc.description.abstractWyner-Ziv coding is a lossy compression technique which uses the decoder side information to help reconstruction. We propose a practical code design methodology and a quantization algorithm inspired by successive quantization
to solve the Wyner-Ziv problem in quadratic Gaussian case. Our coding structure uses two independent component codes and this coding structure has been proven to achieve the Wyner-Ziv bound by the random coding analysis.
We also implement it with existing rate-distortion-bound-achieving quantizer and capacity-achieving channel code. Compared to the existing binningbased design approaches, our design methodology and quantization algorithm have reasonable complexity with good performance.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:04:36Z (GMT). No. of bitstreams: 1
ntu-99-R97942045-1.pdf: 1276413 bytes, checksum: 0e8235c4b501f42d6699b11802a93b50 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsContents
1 Introductions 5
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Review of the Wyner-Ziv Coding . . . . . . . . . . . . . . . . 9
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Wyner-Ziv Coding based on Successive Quantization 14
2.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . 14
2.2 Schematic Descriptions of Proposed Coding Structure . . . . . 16
2.3 Results of the Random Coding Analysis . . . . . . . . . . . . 20
3 Impacts of Non-Perfect Component Codes on Code Param-
eter Selections 26
3.1 Simultaneously Good for Source and Channel Coding Problem 26
3.2 Infinite Modulo Size Problem . . . . . . . . . . . . . . . . . . 28
3.3 Channel Decoding beyond Capacity Problem . . . . . . . . . . 29
3.4 Component Code Rates and Modulo Size Selections . . . . . . 33
3.5 Modulation Size Selections . . . . . . . . . . . . . . . . . . . . 36
4 Details of Graph-Based Component Code Design 40
4.1 Introductions to the Graph-Based Code . . . . . . . . . . . . . 41
4.2 Component Codes Design Flow . . . . . . . . . . . . . . . . . 44
4.3 Channel Code Design based on Irregular Repeat Accumulate
(IRA) Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.1 The Modulo-A Channel Model . . . . . . . . . . . . . . 44
4.3.2 Channel Decoding Algorithm in the Modulo-A Channel 45
4.3.3 Edge Distribution Design of IRA in the Modulo-A Channel
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Quantization Code Design based on Low Density Generator
Matrix (LDGM) Code . . . . . . . . . . . . . . . . . . . . . . 53
4.4.1 The Quantization Error Model . . . . . . . . . . . . . . 53
4.4.2 Iterative Joint Quantization Algorithm . . . . . . . . . 56
4.4.3 Edge Distribution Design of LDGM with Iterative Joint
Quantization Algorithm . . . . . . . . . . . . . . . . . 60
5 Simulation Results 63
6 Conclusions 66
dc.language.isoen
dc.subject通道容量zh_TW
dc.subjectWyner-Ziv 編碼zh_TW
dc.subjectWyner-Ziv 邊界zh_TW
dc.subject二次高斯zh_TW
dc.subject資料率失真zh_TW
dc.subjectWyner-Ziv codingen
dc.subjectcapacityen
dc.subjectrate distortionen
dc.subjectquadratic Gaussianen
dc.subjectWyner-Ziv bounden
dc.title利用連續式量化架構實現Wyner-Ziv編碼zh_TW
dc.titleImplementation of Wyner-Ziv coding based on successive quantizationen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林茂昭(Mao-Chao Lin),葉丙成(Ping-Cheng Yeh),易志孝(Chi-Hsiao Yih),林士駿(Shih-Chun Lin)
dc.subject.keywordWyner-Ziv 編碼,Wyner-Ziv 邊界,二次高斯,資料率失真,通道容量,zh_TW
dc.subject.keywordWyner-Ziv coding,Wyner-Ziv bound,quadratic Gaussian,rate distortion,capacity,en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2010-08-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved