請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47524完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡詩偉(Shih-Wei Tsai) | |
| dc.contributor.author | Yen-Hua Chen | en |
| dc.contributor.author | 陳燕嬅 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:04:12Z | - |
| dc.date.available | 2015-09-09 | |
| dc.date.copyright | 2010-09-09 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-16 | |
| dc.identifier.citation | 1. Wessén, B. and K.O. Schoeps, Microbial Volatile Organic Compounds - What Substances Can Be Found in Sick Buildings? Analyst, 1996. 121(9): p. 1203-1205.
2. Korpi, A., J. Jarnberg, and A.L. Pasanen, Microbial Volatile Organic Compounds. Critical Reviews in Toxicology, 2009. 39(2): p. 139-193. 3. Fischer, G. and W. Dott, Relevance of Airborne Fungi and Their Secondary Metabolites for Environmental, Occupational and Indoor Hygiene. Archives of Microbiology, 2003. 179(2): p. 75-82. 4. Ström, G., J. West, B. Wessén, et al., Quantitative Analysis of Microbial Volatiles in Damp Swedish Houses, in Health Implications of Fungi in Indoor Environments, R.A. Samson, et al., Editors. 1994, Elsevier Science, Amsterdam. p. 291-305. 5. Morey, P., A. Worthan, A. Weber, et al., Microbial VOCs in Moisture Damaged Buildings, in Proc. Healthy Build/IAQ. 1997. p. 245-250. 6. Kreja, L. and H.J. Seidel, On the Cytotoxicity of Some Microbial Volatile Organic Compounds as Studied in the Human Lung Cell Line A549. Chemosphere, 2002. 49(1): p. 105-110. 7. Wady, L. and L. Larsson, Determination of Microbial Volatile Organic Compounds Adsorbed on House Dust Particles and Gypsum Board Using SPME/GC-MS. Indoor Air, 2005. 15: p. 27-32. 8. Elke, K., J. Begerow, H. Oppermann, et al., Determination of Selected Microbial Volatile Organic Compounds by Diffusive Sampling and Dual-Column Capillary GC-FID - a New Feasible Approach for the Detection of an Exposure to Indoor Mould Fungi? Journal of Environmental Monitoring, 1999. 1(5): p. 445-452. 9. Institute of Medicine, Exposure Assessment, in Damp Indoor Spaces and Health. 2004, National Academy Press: Washington DC. p. 90-124. 10. Ahearn, D.G., S.A. Crow, R.B. Simmons, et al., Fungal Colonization of Air Filters and Insulation in a Multi-Story Office Building: Production of Volatile Organics. Current Microbiology, 1997. 35(5): p. 305-308. 11. Otten, J. and H. Burge, Fungi, in Bioaerosols, Assessment and Control., J.M. Macher, et al., Editors. 1999, American Conference of Governmental Industrial Hygienists. p. 19-1-13. 12. Lacey, J. and J. Dutkiewicz, Bioaerosols and Occupational Lung-Disease. Journal of Aerosol Science, 1994. 25(8): p. 1371-1404. 13. Ji, B.F. and H.J. Su, Fungal Growth on Building Materials., in Department of Environmental and Occupational Health Medical College. 2003, National Cheng Keng University. 14. Kuo, Y.M. and C.S. Li, Seasonal Fungus Prevalence inside and Outside of Domestic Environments in the Subtropical Climate. Atmospheric Environment, 1994. 28(19): p. 3125-3130. 15. Su, H.J., P.C. Wu, H.L. Chen, et al., Exposure Assessment of Indoor Allergens, Endotoxin, and Airborne Fungi for Homes in Southern Taiwan. Environmental Research, 2001. 85(2): p. 135-144. 16. Su, H.J.J., P.C. Wu, and C.Y. Lin, Fungal Exposure of Children at Homes and Schools: A Health Perspective. Archives of Environmental Health, 2001. 56(2): p. 144-149. 17. Schleibinger, H., D. Laussmann, C. Brattig, et al., Emission Patterns and Emission Rates of MVOC and the Possibility for Predicting Hidden Mold Damage? Indoor Air, 2005. 15: p. 98-104. 18. Pasanen, A.L., A Review: Fungal Exposure Assessment in Indoor Environments. Indoor Air, 2001. 11(2): p. 87-98. 19. AIHA, Microbial Volatile Organic Compounds (MVOCs), in Field Guide for Determination of Biological Contaminants in Environmental Samples, L.-L. Hung, J.D. Miller, and H.K. Dillon, Editors. 2006, American Industrial Hygiene Association(AIHA). p. 161-171. 20. Fiedler, K., E. Schutz, and S. Geh, Detection of Microbial Volatile Organic Compounds (MVOCs) Produced by Moulds on Various Materials. International Journal of Hygiene and Environmental Health, 2001. 204(2-3): p. 111-121. 21. Wady, L., A. Bunte, C. Pehrson, et al., Use of Gas Chromatography-Mass Spectrometry/Solid Phase Microextraction for the Identification of MVOCs from Moldy Building Materials. Journal of Microbiological Methods, 2003. 52(3): p. 325-332. 22. Augusto, F., J. Koziel, and J. Pawliszyn, Design and Validation of Portable SPME Devices for Rapid Field Air Sampling and Diffusion Based Calibration. Analytical Chemistry, 2001. 73(3): p. 481-486. 23. Arthur, C.L. and J. Pawliszyn, Solid-Phase Microextraction with Thermal-Desorption Using Fused-Silica Optical Fibers. Analytical Chemistry, 1990. 62(19): p. 2145-2148. 24. Pawliszyn, J., Applications of Solid Phase Microextraction,. 1999, Cornwall, UK The Royal Society of Chemistry. 25. Zeng, E.Y. and J.A. Noblet, Theoretical Considerations on the Use of Solid-Phase Microextraction with Complex Environmental Samples. Environmental Science & Technology, 2002. 36(15): p. 3385-3392. 26. Louch, D., S. Motlagh, and J. Pawliszyn, Dynamics of Organic-Compound Extraction from Water Using Liquid-Coated Fused-Silica Fibers. Analytical Chemistry, 1992. 64(10): p. 1187-1199. 27. Koziel, J., M.Y. Jia, and J. Pawliszyn, Air Sampling with Porous Solid-Phase Microextraction Fibers. Analytical Chemistry, 2000. 72(21): p. 5178-5186. 28. Fuller, E.N., Schettle.Pd, and J.C. Giddings, A New Method for Prediction of Binary Gas-Phase Diffusion Coeffecients. Industrial and Engineering Chemistry, 1966. 58(5): p. 19-&. 29. Pawliszyn, J., Solid Phase Microextraction: Theory and Practice. 1997, New York: Wiley-VCH. 30. Tuduri, L., V. Desauziers, and J.L. Fanlo, Potential of Solid-Phase Microextraction Fibers for the Analysis of Volatile Organic Compounds in Air. Journal of Chromatographic Science, 2001. 39(12): p. 521-529. 31. Lee, W.-C., Analysis of Indoor Microbial Volatile Organic Compounds by Solid-Phase Microextraction with GC/MS under Nonequilibrium Situation, in Institute of Environmental Health. 2008, NTU. 32. Newton, P.W., S. Baum, K. Bhatia, et al., Human Settlements. 2001. p. 96-100. 33. Salonen, H.J., A.L. Pasanen, S.K. Lappalainen, et al., Airborne Concentrations of Volatile Organic Compounds, Formaldehyde and Ammonia in Finnish Office Buildings with Suspected Indoor Air Problems. Journal of Occupational and Environmental Hygiene, 2009. 6(3): p. 200-209. 34. Hsieh, L.L., C.C. Chang, U. Sree, et al., Determination of Volatile Organic Compounds in Indoor Air of Buildings in Nuclear Power Plants, Taiwan. Water Air and Soil Pollution, 2006. 170(1-4): p. 107-121. 35. Lee, S.C., W.-M. Li, and C.-H. Ao, Investigation of Indoor Air Quality at Residential Homes in Hong Kong--Case Study. Atmospheric Environment, 2002. 36(2): p. 225. 36. NIOSH, Methods 1300, 1301, 1402, and 1405, in Niosh Manual of Analytical Methods. 1994, National Institute for Occupational Safety and Health (NIOSH). 37. Schupfer, P.Y. and C.K. Huynh, Solid Phase Microextraction as a Short-Term Sampling Technique for BTEX Occupational Exposure. Journal of Occupational and Environmental Hygiene, 2008. 5(8): p. 490-500. 38. Gao, P.F., F. Korley, J. Martin, et al., Determination of Unique Microbial Volatile Organic Compounds Produced by Five Aspergillus Species Commonly Found in Problem Buildings. Aihaj, 2002. 63(2): p. 135-140. 39. Wilkins, K., K. Larsen, and M. Simkus, Volatile Metabolites from Mold Growth on Building Materials and Synthetic Media. Chemosphere, 2000. 41(3): p. 437-446. 40. Morse, R. and D. Acker. Indoor Air Quality and Mold Prevention of the Building Envelope. 2009 [cited 2009 12-01]; Available from: http://www.wbdg.org/resources/env_iaq.php. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47524 | - |
| dc.description.abstract | MVOCs (microbial volatile organic compounds)為黴菌在生長過程中所釋放出的揮發性有機物質。根據過去文獻指出MVOCs除了可能對人類產生健康危害外(如:過敏及病態大樓症候群等),亦可作為室內黴菌生長的指標。
本研究目的為針對先前發展出的非平衡狀態下固相微萃取(Solid-Phase Microextraction, SPME)採樣技術進行應用於實際採樣MVOCs前的相關驗證;而所選取為台灣室內常見的MVOCs,包括:2-methyl-1-propanol, 1-butanol, 3-methyl-1-butanol, 2-hexanone, 2-heptanone, 1-octen-3-ol 及 2-pentylfuran。 室內環境空氣中除了MVOCs之外,尚存在其他的化學物質,包括常見的VOCs,例如:苯、甲苯、乙苯及對二甲苯(benzene, toluene, ethylenebenzene, xylene; BTEX)。因此,當應用SPME於MVOCs及BTEX共存情況下採樣時,可能發生SPME纖維上的競爭及取代等干擾效應。為釐清室內環境的BTEX是否會對MVOCs的動態採樣產生影響,本研究在動態暴露系統中,同時產生MVOCs與BTEX共存的標準蒸氣。 以Carboxen/PDMS SPME 纖維在非平衡狀態下進行40分鐘採樣MVOCs (4.24 μg/m3 to 149.31 μg/m3),經不同的暴露條件測試後,分別計算僅有MVOCs及有BTEX共存狀況下的結果,發現兩組數據並沒有顯著差異;實驗採樣率分別為: 2-methyl-1-propanol 0.0127±0.0040 cm3/s、1-butanol 0.0276±0.0010 cm3/s、3-methyl-1-butanol 0.0390±0.0017 cm3/s、2-hexanone 0.0757±0.0021 cm3/s、2-heptanone 0.0771±0.0019 cm3/s、1-octan-3-ol 0.0323±0.0015 cm3/s及2-pentylfuran 0.0587±0.0023 cm3/s。 本研究顯示,在BTEX室內環境濃度下,動態採樣系統結合Carboxen/PDMS SPME纖維對MVOCs的採樣表現穩定,並沒有競爭效應的發生;也顯示此方法未來應用於室內環境MVOCs偵測之潛力。 | zh_TW |
| dc.description.abstract | Microbial volatile organic compounds (MVOCs) not only have potential adverse effects on human health but also could be the indictors for mold’s growth. Thus, measuring the indoor MVOCs level is important in respect to indoor air quality. Past research has shown the potential of MVOCs sampling by dynamic system with solid phase microextraction (SPME). However, possible competitive adsorption might occur when sampling in field, especially with the co-exist of other compounds (e.g., volatile organic compounds; VOCs). Therefore, the objective of this study was to examine if BTEX, the most abundant VOC indoors, will affect the dynamic sampling of MVOCs by SPME.
The MVOCs and BTEX vapors were generated simultaneously in the exposure system in this study, while Carboxen/PDMS fiber was employed for the 40 min sampling. Afterwards, gas chromatography/mass spectrometry (GC/MS) was used for the analysis. The experimental sampling rates of MVOCs under different conditions were validated. The results showed that no competitive adsorption effects were observed when sampling MVOCs (4.24 μg/m3 to 149.31 μg/m3) by Carboxen/PDMS fiber for 40 minutes under nonequilibrium situation with the co-exist of indoor-level BTEX. Besides, the experimental sampling rate were found to be 0.0127±0.0040 cm3/s for 2-methyl-1-propanol, 0.0276±0.0010 cm3/s for 1-butanol, 0.0390±0.0017 cm3/s for 3-methyl-1-butanol, 0.0757±0.0021 cm3/s for 2-hexanone, 0.0771±0.0019 cm3/s for 2-heptanone, 0.0323±0.0015 cm3/s for 1-octan-3-ol, and 0.0587±0.0023 cm3/s for 2-pentylfuran, respectively. This study showed the potential to apply SPME under non-equilibrium condition for field MVOCs sampling. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:04:12Z (GMT). No. of bitstreams: 1 ntu-99-R97844010-1.pdf: 2824982 bytes, checksum: 26f9b501e60acce80f20403c32700e34 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌謝................................................... I
中文摘要............................................... II ABSTRACT............................................... III TABLE OF CONTENTS...................................... IV LIST OF TABLES......................................... VI LIST OF FIGURES........................................ VII CHAPTER 1. INTRODUCTION........................... 1 1.1. MVOCs.......................................... 1 1.2. Importance of MVOCs............................ 2 1.3. Common indoor molds and MVOCs in Taiwan........ 3 1.4. Sampling and analysis of MVOCs................. 3 1.5. SPME technique................................. 5 1.6. Rapid air sampling -- interface calibration theory................................................. 6 1.7. Competitive adsorption and displacement effect on SPME fiber............................................. 9 1.8. Indoor environment............................. 10 CHAPTER 2. RESEARCH OBJECTIVES AND STRUCTURE...... 11 2.1. Research objectives............................ 11 2.2. Research structure............................. 12 CHAPTER 3. MATERIALS AND METHODS.................. 13 3.1. Chemicals...................................... 13 3.2. Instrumental analysis.......................... 14 3.3. Standard gas generation and exposure system.... 15 3.3.1. Set up of the system........................... 15 3.3.2. Injection rate of the syringe pump............. 15 3.3.3. Dynamic system................................. 16 3.4. Dynamic sampling of MVOCs...................... 17 3.4.1. SPME fiber..................................... 17 3.4.2. SPME sampling condition........................ 17 3.4.3. SPME sampling scenarios........................ 17 3.5. Parallel comparison with active sampling by charcoal tube.......................................... 18 3.5.1. Gas bag sampling preparation................... 18 3.5.2. The sampling condition of Charcoal tube........ 19 CHAPTER 4. RESULTS AND DISCUSSIONS................ 20 4.1. Dynamic SPME sampling.......................... 20 4.1.1. MVOCs sampling with the co-exist of BTEX....... 20 4.1.2. MVOCs sampling with different levels of BTEX... 21 4.1.3. Other possible factors......................... 23 4.1.3.1. Effect of humidity..................... 23 4.1.3.2. Effect of temperature.................. 23 4.2. Active sampling by charcoal sorbent tube....... 25 4.2.1. Desorption efficiencies........................ 25 4.2.2. Comparisons between the SPME dynamic sampling and charcoal tube sampling................................. 26 CHAPTER 5. CONCLUSIONS............................ 28 REFERENCES ....................................... 29 | |
| dc.language.iso | en | |
| dc.subject | 競爭效應 | zh_TW |
| dc.subject | 固相微萃取 | zh_TW |
| dc.subject | MVOCs | zh_TW |
| dc.subject | BTEX | zh_TW |
| dc.subject | 動態非平衡採樣 | zh_TW |
| dc.subject | MVOCs | en |
| dc.subject | competitive adsorption | en |
| dc.subject | non-equlibrium sampling | en |
| dc.subject | BTEX | en |
| dc.subject | solid-phase microextrction | en |
| dc.title | 以固相微萃取搭配動態暴露系統採集MVOCs之方法驗證-環境BTEX共存的影響 | zh_TW |
| dc.title | Sampling Indoor MVOCs by Solid-Phase Microextraction under Nonequilibrium Situation with Environmental Levels of BTEX | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林嘉明(Jia-Ming Lin),陳美蓮(Mei-Lien Chen) | |
| dc.subject.keyword | 固相微萃取,MVOCs,BTEX,動態非平衡採樣,競爭效應, | zh_TW |
| dc.subject.keyword | solid-phase microextrction,MVOCs,BTEX,non-equlibrium sampling,competitive adsorption, | en |
| dc.relation.page | 52 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-16 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境衛生研究所 | zh_TW |
| 顯示於系所單位: | 環境衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
