請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47503完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧信嘉(Hsin-Chia Lu) | |
| dc.contributor.author | Wei-Li Lai | en |
| dc.contributor.author | 賴瑋俐 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:03:13Z | - |
| dc.date.available | 2015-08-17 | |
| dc.date.copyright | 2010-08-17 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-16 | |
| dc.identifier.citation | [1]G. F. Svelto and R. Castello, “ A bond-wire inductor-MOS varactor VCO tunable from 1.8 GHz to 2.4 GHz,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, pp. 403-407, Jan. 2002.
[2]A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717-724, May 1999. [3]A. Hajimiri and T. H. Lee, “A general theory of the phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179-194, Feb. 1998. [4]A. Mazzanti1, P. Uggetti, R. Battaglia and F. Svelto, “Analysis and design of a dual band reconfigurable VCO,” IEEE Electronics, Circuits and Systems, pp.37-40, Dec. 2004. [5]Y. J. Moon, Y. S. Roh, C. Y. Jeong and C. Yoo, “A 4.39–5.26 GHz LC-tank CMOS voltage-controlled oscillator with small VCO-gain variation,” IEEE Microwave and Wireless Components Letters, pp. 524-526, Aug. 2009. [6]A. Kral, F. Behbahani and A. A. Abidi, “RF-CMOS oscillators with switched tuning,” IEEE Custom Integrated Circuits Conference, pp.555-558, May 1998. [7]C. H. Kim, S. H. Shin and H. J. Yoo, “A low phase noise and low power series coupled quadrature VCO using reconfigurable LC Tank,” IEEE Radio and Wireless Symposium, pp.395-398, Jan. 2008. [8]N. M. Nguyen and R G. Meyer, “Start up and frequency stability in high -frequency oscillators,” IEEE J. Solid-State Circuits, vol. 2, pp. 810-820, May 1992. [9]T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, UK: Cambridge University Press, 1998. [10]C. P. Yue and S. S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF IC’s,” IEEE J. Solid-State Circuits, vol. 33, pp. 743-752, May 1998. [11]T. S. D. Cheung and J. R. Long, “Shielded passive devices for silicon-based monolithic microwave and millimeter-wave integrated circuits,” IEEE J. Solid-State Circuits, vol. 41, pp. 1183-1200, May 2006. [12]B. Razavi, Designs of ICs for Optical Communications, McGraw Hill, 2002. [13]C. P. Yue and S. S. Wong, “Physical modeling of spiral inductors on silicon,” IEEE Transactions on Electron Devices, vol. 47, no 3, pp. 560-568, Mar. 2000. [14]H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids and Packaging, vol. PHP-10, pp. 101-109, Jun. 1974. [15]N. M. Nguten and R.G. Meyer, “Si IC-compatible inductors and LC passive filter,” IEEE J. Solid-State Circuits, vol. 25, pp. 1028-1031, Aug. 1990. [16]M. Park, S. Lee, C. S. Kim, H. K. Yu and K. S. Nam, “ The detailed analysis of high Q CMOS-compatible microwave spiral inductors in silicon technology,” IEEE Transactions on Electron Devices, vol. 45, no 9, pp. 1953-1959, Sep. 1998. [17]J. N. Burghartz, M. Soyuer and K. A. Jenkins, “Microwave inductors and capacitors in standard multilevel interconnect silicon technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 100-104, Jan. 1996. [18]劉深淵和楊清淵著, 鎖相迴路, 滄海書局第一版一刷, 2006. [19]R. L. Bunch and S. Raman, “Larger-signal analysis of MOS varactors in CMOS–Gm LC VCOs, ” IEEE J. Solid-State Circuits, vol.36, pp.1921-1930, Dec. 2001. [20]H. G. Booker, Energy in electromagnetism, London/New York:Peter Peregrinus (on behalf of the IEE), 1982. [21]B. Razavi, “A study if phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 31, pp.331-343, Mar. 1996. [22]A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179-194, Feb. 1998. [23]A. Hajimiri and T. H. Lee, Corrections to “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 928-928, Jun. 1998. [24]Q. Huang, “Phase noise to carrier ratio in LC oscillators,” IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, pp. 965-980, Jul. 2000. [25]D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp.329-330, Feb. 1966. [26]M. Tiebout, “A CMOS fully intergrated 1GHz and 2GHz dual band VCO with a voltage controlled inductor,” IEEE J. Solid-State Circuits Conference, pp.799-802, Sept. 2002. [27]H. Hashemi and Ali Hajimiri, “Concurrent dual-band CMOS low noise amplifiers and receiver architectures,” IEEE Symposium on VLSl Circuits Digest of Technical Papers, pp. 247-250, Jun. 2001. [28]E. Hegazi, H. Sjoland and A. A. Abidi, “A filtering technique to lower LC Oscillator phase noise,” IEEE J. Solid-State Circuits, vol. 36, pp. 1921-1930, Dec. 2001. [29]A. H.-T. Yu, S.-W. Tam, Y. Kim, E. Socher, W. Hant, M.-C. F. Chang and T. Itoh, “A dual band millimeter-wave CMOS oscillator with left-handed resonator,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 5, pp. 1401-1409, May 2010. [30]B. Razavi, Design of Analog CMOS Intergrated Circuits, McGraw Hill, 2001. [31]C.-H. Kim, S.-H. Shin and H.-J. Yoo, “A dual band CMOS quadrature VCO for low power and low phase noise application,” IEEE International Workshop on Radio-Frequency Intergration Technology, pp. 310-313, Dec. 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47503 | - |
| dc.description.abstract | 廣調諧範圍壓控振盪器的常見架構為:切換電感、切換電容和切換多個壓控振盪器等。但上述架構多半在壓控振盪器輸出路徑上使用金氧半導體場效電晶體做為開關。
然而,使用電晶體做為開關在高頻時的損耗相當可觀,另外對相位雜訊的影響亦需納入考慮。 基於上述理由,本論文提出了:一個利用交連耦合對產生 相位差、具雙頻模態、操作在14GHz和6GHz的壓控振盪器,以期能應用於現今多頻段、具GHz等級頻段切換上之無線通訊應用。 | zh_TW |
| dc.description.abstract | The common architectures of wide tuning range’s voltage controlled oscillators are inductor-switching, capacitor-switching and oscillator-switching. The above architectures use MOSFETs as switches on the signal path of oscillating nodes.
Nevertheless, using MOSFETs as switches has heavy loss when oscillators are in high frequency operation. Also, using MOSFETs as switches will cause serious degradation in phase noise. Base on these, we propose a dual-band voltage controlled oscillator which can operate at dual frequencies:14GHz and 6GHz for nowadays wireless communication applications. This dual-band voltage controlled oscillator uses cross-coupled pairs which can produce extra phase shift to switch to a different oscillating frequency. And oscillating signals will not go through these switches directly. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:03:13Z (GMT). No. of bitstreams: 1 ntu-99-R96943013-1.pdf: 2233290 bytes, checksum: bad1a4a5c5de12e26b499b9c433c8a4b (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 致謝.......................................................i
摘要......................................................ii Abstract.................................................iii 目錄.....................................................iv 圖目錄...................................................vi 表目錄...................................................ix 第1章 簡介...............................................1 1.1背景知識..............................................1 1.2研究動機..............................................2 1.3論文章節..............................................3 第2章 壓控振盪器的基本介紹...............................4 2.1 振盪器的基本概論.....................................4 2.2 振盪器的性能參數.....................................5 2.3 振盪器的類型.........................................7 2.3.1 環型振盪器.........................................8 2.3.2 LC振盪器...........................................9 2.3.2.1 電感.............................................11 2.3.2.2 變容器...........................................16 2.3.2.3 品質因子.........................................18 2.4 振盪器的相位雜訊.....................................20 2.4.1 相位雜訊概論.......................................20 2.4.2環型振盪器的相位雜訊................................23 2.4.3 LC振盪器的相位雜訊.................................28 第3章 雙頻壓控振盪器之設計與實現.........................34 3.1 廣調諧範圍振盪器的常見架構...........................34 3.2 LC元件的時域響應分析.................................38 3.3 雙頻壓控振盪器之高頻與低頻模式.......................46 3.3.1 雙頻壓控振盪器之高頻模式...........................46 3.3.2 雙頻壓控振盪器之低頻模式...........................51 3.3.3 雙頻壓控振盪器其他設計細項.........................55 第4章 雙頻壓控振盪器之模擬與量測結果.....................64 4.1 雙頻壓控振盪器之Postsim模擬結果......................64 4.2 雙頻壓控振盪器之量測結果.............................73 4.3 結論.................................................83 References...............................................85 | |
| dc.language.iso | zh-TW | |
| dc.subject | 調諧範圍 | zh_TW |
| dc.subject | 壓控振盪器 | zh_TW |
| dc.subject | 相位雜訊 | zh_TW |
| dc.subject | VCO | en |
| dc.subject | Phase Noise | en |
| dc.subject | Tuning Range | en |
| dc.title | 一個使用相位切換之CMOS雙頻段壓控振盪器 | zh_TW |
| dc.title | A Dual-band CMOS Voltage Controlled Oscillator Using Phase Shift Technology | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 呂良鴻(Liang-Hung Lu),陳怡然(Yi-Jan Chen),林坤佑(Kun-You Lin) | |
| dc.subject.keyword | 壓控振盪器,調諧範圍,相位雜訊, | zh_TW |
| dc.subject.keyword | VCO,Tuning Range,Phase Noise, | en |
| dc.relation.page | 87 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
