請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47489
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃升龍(Sheng-Lung Huang) | |
dc.contributor.author | Yi-Han Liao | en |
dc.contributor.author | 廖奕涵 | zh_TW |
dc.date.accessioned | 2021-06-15T06:02:26Z | - |
dc.date.available | 2012-08-18 | |
dc.date.copyright | 2010-08-18 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-16 | |
dc.identifier.citation | [1] J. Schmitt, 'Optical coherence tomography (OCT): a review,' IEEE Journal of selected topics in quantum electronics, vol. 5, pp. 1205-1215, 1999.
[2] A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler and H. Sattmann, 'A thermal light source technique for optical coherence tomography,' Optics communi- cations, vol. 185, pp. 57-64, 2000. [3] J. Hartl, XD Li, C. Chudoba, RK Ghanta, TH Ko, JG Fujimoto, JK Ranka, and RS Windeler, 'Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,' Optics letters, vol. 26, pp. 608-610, 2001. [4] Jian-Cheng Chen, Yen-Sheng Lin, Cheng-Nan Tsai, Kuang-Yao Huang, Chien-Chih Lai, Wei-Zhi Su, Ren-Chin Shr, Fu-Jen Kao, and Tao-Yuan Chang, '400-nm-bandwidth emission from a Cr-doped glass fiber,' IEEE Photonics Technology Letters, vol. 19, pp. 595-597, 2007. [5] T. Maiman, 'Stimulated optical radiation in ruby, ' 1960. [6] A. Javan, W. R. Bennett, Jr., and D. R. Herriott, 'Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture,' Physical Review Letters, vol. 6, pp. 106-110, 1961. [7] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, 'Coherent light emission from GaAs junctions,' Physical Review Letters, vol. 9, pp. 366-368, 1962. [8] O. Svelto, 'Principles of lasers, 5th Edition, ' Springer, 2009. [9] K. Huang and A. Rhys, 'Theory of light absorption and non-radiative transitions in F-centres,' Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 204, pp. 406-423, 1950. [10] B. Henderson and G. Imbusch, 'Optical Spectroscopy of Inorganic Solids, Clarendon,' Oxford, 1989. [11] S. Shionoya and William M Yen, 'Phosphor handbook,' CRC press New York, 1999. [12] M. Kaviany, 'Ab initio photon-electron and electron-vibration coupling calculations related to laser cooling of ion-doped solids,' J. Comput. Theor. Nanosci, vol. 5, pp. 221-229, 2008. [13] G. Blasse and B. Grabmaier, 'Luminescent materials, ' Springer Berlin etc, 1994. [14] S. Kück, K. Petermann, U. Pohlmann, and G. Huber, 'Near-infrared emission of Cr4+-doped garnets: Lifetimes, quantum efficiencies, and emission cross sections,' Physical Review B, vol. 51, pp. 17323-17331, 1995. [15] S. Markgraf, M. F. Pangborn, R. Dieckmann, 'Influence of different divalent co-dopants on the Cr4+ content of Cr-doped Y3Al5O12,' Journal of Crystal Growth, vol. 180, pp. 81-84, 1997. [16] Cheng-Nan Tsai, 'Study of enhancement of Cr4+ concentration in Y3Al5O12 crystal fiber using pre-growth perimeter deposition,' Doctor’s thesis, 2008. [17] R. Feldman, Y. Shimony, and Z. Burshtein, 'Dynamics of chromium ion valence transformations in Cr, Ca: YAG crystals used as laser gain and passive Q-switching media,' Optical Materials, vol. 24, pp. 333-344, 2003. [18] A. Sennaroglu, 'Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible,' Progress in Quantum Electronics, vol. 26, pp. 287-352, 2002. [19] W. Eickhoff and E. Weidel, 'Measuring method for the refractive index profile of optical glass fibres,' Optical and Quantum Electronics, vol. 7, pp. 109-113, 1975. [20] K. Lee, 'Transmission and routing of optical signals in on-chip waveguides for silicon microphotonics,' 2001. [21] M. Digonnet, C. Gaeta, D. O'Meara, and H. Shaw, 'Clad Nd: YAG fibers for laser applications,' Lightwave Technology, Journal of, vol. 5, pp. 642-646, 1987. [22] R. Macfarlane, J. Wong, M. Sturge, 'Dynamic Jahn-Teller Effect in Octahedrally Coordinated d1 Impurity Systems,' Physical Review, vol. 166, pp. 250-258, 1968. [23] P. Moulton, 'Spectroscopic and laser characteristics of Ti:Al2O3,' Journal of the Optical Society of America B, vol. 3, pp. 125-133, 1986. [24] P. Roth, A. Maclean, D. Burns, and A. Kemp, 'Directly diode-laser-pumped Ti:sapphire laser,' Optics letters, vol. 34, pp. 3334-3336, 2009. [25] R. Aggarwal, A. Sanchez, M. Stuppi, R. Fahey, A. Strauss, W. Rapoport, and C. Khattak, 'Residual infrared absorption in as-grown and annealed crystals of Ti:Al2O3,' IEEE Journal of Quantum Electronics, vol. 24, pp. 1003-1008, 1988. [26] J. Pinto, L. Esterowitz, G. Rosenblatt, M. Kokta, and D. Peressini, 'Improved Ti:sapphire laser performance with new high figure of merit crystals,' IEEE Journal of Quantum Electronics, vol. 30, 1994. [27] P. Albers, E. Stark, and G. Huber, 'Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,' Journal of the Optical Society of America B, vol. 3, pp. 134-139, 1986. [28] 廖柏睿, '掺鉻釔鋁石榴石光源應用於光學低同調掃描中解析度與訊雜比之研究,' 國立台灣大學碩士論文 2008. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47489 | - |
dc.description.abstract | 我們過去已成功生長出摻鉻釔鋁石榴石雙纖衣晶體光纖,雖然可以成功的將纖心直徑縮小至10 μm,但因纖心與內纖衣折射率差為0.17,仍為多模輸出,為了降低折射率差,我們採用在晶纖上側鍍二氧化鈦與使用高折射率玻璃為纖衣材料兩種方式。
藉由濺鍍二氧化鈦於單晶晶纖上,再使用共抽絲雷射加熱基座長晶法,生長出雙纖衣晶體光纖,以提升內纖衣折射率。在二氧化鈦薄膜厚度1μm下,纖心與內纖衣折射率差由0.17降至0.09。 以高折射率玻璃SF57作為披覆摻鉻釔鋁石榴石晶體光纖的材料,我們先將SF57製作成毛細管,再利用共抽絲雷射加熱基座長晶法,成功生長出單纖衣結構晶體光纖。折射率差可以降為7x10-3,晶纖數值孔徑與傳統單模光纖接近,僅為0.16,在纖心直徑40 μm、波長1.4 μm下,V參數為14.35,晶纖傳輸模態數約為42個。 我們成功生長單纖衣摻鈦藍寶石晶體光纖,並藉由直接雷射退火法,解決鈦離子氧化的問題,提高Ti3+濃度,並以硼玻璃披覆藍寶石晶體纖心。以綠光雷射為幫浦光源,寬頻輸出功率為875 μW,使用藍光二極體直接幫浦,可以得到100 μW的寬頻光源輸出,其輸出光譜之半高寬為180 nm,應用在OCT系統寬頻光源,縱向解析度可達1.44 μm,又因波形相當接近完美的高斯分布,使得干涉訊號旁瓣極小,鄰近與第二鄰近縱向像素互擾指數僅為-26.1 dB與-43.4 dB。 | zh_TW |
dc.description.abstract | We successfully fabricated Cr4+:YAG double-clad crystal fibers with co-drawing laser heated pedestal growth method to achieve 10-um-core Cr4+:YAG double-clad crystal fiber. This is a multimode fiber due to the high refractive index difference between the core and the inner-clad. In this study, TiO2 side-deposition method and high-index-glass capillary were used to reduce the index difference.
Via the sputter method, the TiO2 thin film was coated on the Cr4+:YAG single crystal fiber. To observe double-clad crystal fiber, the refractive index of inner-clad near the interface between the core and the inner-clad was increased from 1.66 to 1.74. Utilizing the SF57 high-index-glass as the surrounding material to fabricate the Cr4+:YAG single-clad crystal fiber, the refractive index difference is about 0.007. The corresponding numerical aperture of the crystal fiber is 0.16, and it is very close to the conventional single-mode fiber. Furthermore, the V-value (normalized frequency) is 14.35 and the propagation mode number of SF57-clad Cr4+:YAG single-clad crystal fiber is 42 for the 40-μm-core diameter. Besides, we successfully fabricated the Ti:sapphire crystal fiber by means of laser heated pedestal growth method to generate broadband amplified spontaneous emission centered at 760 nm with 180 nm bandwidth and 875 μW power pumped by a 532-nm laser. On the other hand, 100 μW output power of this crystal fiber pumped by 446-nm diode laser was also demonstrated. Using this broadband fluorescence as the optical coherence tomography light source, -26.1 dB 1st and -43.4 dB 2nd cross talk factors with 1.44-um-axial resolution were calculated. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:02:26Z (GMT). No. of bitstreams: 1 ntu-99-R97941082-1.pdf: 2854964 bytes, checksum: 83392e9b652c6bd456b6de09e4945f69 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 目錄
誌謝 I 摘要 III ABSTRACT IV 圖目錄 VII 表目錄 XI 第一章 緒論與研究動機 1 第二章 摻雜過渡金屬離子之寬頻晶體光纖光源 4 2.1 過渡離子摻雜之寬頻光源概述 4 2.2 鉻離子光學與物理特性 14 2.3 雙纖衣摻鉻釔鋁石榴石晶體光纖特性模擬 22 2.4 雙纖衣摻鉻釔鋁石榴石晶體光纖之生長與製備 28 2.5 晶體光纖樣品製備 36 第三章 單模摻鉻釔鋁石榴石晶體光纖製作 40 3.1 雷射掃描折射率量測系統 40 3.2 摻鉻釔鋁石榴石雙纖衣晶體光纖模態分析 42 3.3 以側鍍二氧化鈦降低折射率差 45 3.4 以披覆高折射率玻璃材料降低折射率差 50 3.5 實驗結果與討論 59 第四章 摻鈦藍寶石光纖寬頻光源 60 4.1 摻鈦藍寶石物理與光學特性 60 4.1.1 晶體特性 60 4.1.2 能階系統 62 4.1.3 吸收光譜與螢光光譜 65 4.1.4 晶體品質 68 4.2 摻鈦藍寶石晶體光纖樣品製備 70 4.2.1 單晶光纖 70 4.2.2 雙纖衣光纖 71 4.2.3 單晶光纖退火 73 4.2.4 單纖衣光纖 75 4.3 雙纖衣與單纖衣晶纖量測 78 4.3.1 光纖損耗量測與放大自發輻射輸出功率 78 4.3.2 鈦離子摻雜濃度與螢光光譜 87 4.3.3 單模光纖輸出 92 第五章 結論與未來展望 96 參考文獻 99 附錄 102 | |
dc.language.iso | zh-TW | |
dc.title | 單模寬頻晶體光纖光源之製備與量測 | zh_TW |
dc.title | Fabrication and Measurement of Single-mode Crystal Fiber Broadband Light Sources | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林恭如,孔慶昌,廖顯奎 | |
dc.subject.keyword | 光學同調斷層掃描,晶體光纖,雷射加熱基座長晶,單模,側鍍,高折射率毛細管, | zh_TW |
dc.subject.keyword | OCT,crystal fiber,LHPG,single-mode,side-deposition,high-index-glass caplliary, | en |
dc.relation.page | 103 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-17 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 2.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。