Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47484
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張芳嘉
dc.contributor.authorYing-Ju Chenen
dc.contributor.author陳盈如zh_TW
dc.date.accessioned2021-06-15T06:02:09Z-
dc.date.available2012-08-20
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-16
dc.identifier.citation1. Proposal for revised clinical and electroencephalographic classification of epileptic seizures. From the Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 22: 489-501, 1981.
2. Agostino PV, Ferreyra GA, Murad AD, Watanabe Y, and Golombek DA. Diurnal, circadian and photic regulation of calcium/calmodulin-dependent kinase II and neuronal nitric oxide synthase in the hamster suprachiasmatic nuclei. Neurochem Int 44: 617-625, 2004.
3. Ahmed I and Thorpy M. Clinical features, diagnosis and treatment of narcolepsy. Clin Chest Med 31: 371-381.
4. Aldrich MS. Diagnostic aspects of narcolepsy. Neurology 50: S2-7, 1998.
5. Antoch MP, Song EJ, Chang AM, Vitaterna MH, Zhao Y, Wilsbacher LD, Sangoram AM, King DP, Pinto LH, and Takahashi JS. Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 89: 655-667, 1997.
6. Basheer R, Strecker RE, Thakkar MM, and McCarley RW. Adenosine and sleep-wake regulation. Prog Neurobiol 73: 379-396, 2004.
7. Bassetti C and Aldrich MS. Narcolepsy. Neurol Clin 14: 545-571, 1996.
8. Baulac S, Huberfeld G, Gourfinkel-An I, Mitropoulou G, Beranger A, Prud'homme JF, Baulac M, Brice A, Bruzzone R, and LeGuern E. First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Nat Genet 28: 46-48, 2001.
9. Becker DA, Fennell EB, and Carney PR. Daytime behavior and sleep disturbance in childhood epilepsy. Epilepsy Behav 5: 708-715, 2004.
10. Berendt M, Gullov CH, Christensen SL, Gudmundsdottir H, Gredal H, Fredholm M, and Alban L. Prevalence and characteristics of epilepsy in the Belgian shepherd variants Groenendael and Tervueren born in Denmark 1995-2004. Acta Vet Scand 50: 51, 2008.
11. Berkovic SF, Howell RA, Hay DA, and Hopper JL. Epilepsies in twins: genetics of the major epilepsy syndromes. Ann Neurol 43: 435-445, 1998.
12. Berson DM. Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci 26: 314-320, 2003.
13. Bourgin P, Huitron-Resendiz S, Spier AD, Fabre V, Morte B, Criado JR, Sutcliffe JG, Henriksen SJ, and de Lecea L. Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons. J Neurosci 20: 7760-7765, 2000.
14. Brown TM, Coogan AN, Cutler DJ, Hughes AT, and Piggins HD. Electrophysiological actions of orexins on rat suprachiasmatic neurons in vitro. Neurosci Lett 448: 273-278, 2008.
15. Burlet S, Tyler CJ, and Leonard CS. Direct and indirect excitation of laterodorsal tegmental neurons by Hypocretin/Orexin peptides: implications for wakefulness and narcolepsy. J Neurosci 22: 2862-2872, 2002.
16. Cai XJ, Evans ML, Lister CA, Leslie RA, Arch JR, Wilson S, and Williams G. Hypoglycemia activates orexin neurons and selectively increases hypothalamic orexin-B levels: responses inhibited by feeding and possibly mediated by the nucleus of the solitary tract. Diabetes 50: 105-112, 2001.
17. Canal MM and Piggins HD. Resetting of the hamster circadian system by dark pulses. Am J Physiol Regul Integr Comp Physiol 290: R785-792, 2006.
18. Challet E. Minireview: Entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148: 5648-5655, 2007.
19. Charlier C, Singh NA, Ryan SG, Lewis TB, Reus BE, Leach RJ, and Leppert M. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet 18: 53-55, 1998.
20. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, and Yanagisawa M. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98: 437-451, 1999.
21. Chen CC, Chen TF, Hwang YC, Wen YR, Chiu YH, Wu CY, Chen RC, Chen TH, and Liou HH. Population-based survey on prevalence of adult patients with epilepsy in Taiwan (Keelung community-based integrated screening no. 12). Epilepsy Res 72: 67-74, 2006.
22. Chen CT, Dun SL, Kwok EH, Dun NJ, and Chang JK. Orexin A-like immunoreactivity in the rat brain. Neurosci Lett 260: 161-164, 1999.
23. Chen D, Buchanan GF, Ding JM, Hannibal J, and Gillette MU. Pituitary adenylyl cyclase-activating peptide: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc Natl Acad Sci U S A 96: 13468-13473, 1999.
24. Chen RC, Chang YC, Chen TH, Wu HM, and Liou HH. Mortality in adult patients with epilepsy in Taiwan. Epileptic Disord 7: 213-219, 2005.
25. Cheng HY, Obrietan K, Cain SW, Lee BY, Agostino PV, Joza NA, Harrington ME, Ralph MR, and Penninger JM. Dexras1 potentiates photic and suppresses nonphotic responses of the circadian clock. Neuron 43: 715-728, 2004.
26. Coogan AN and Piggins HD. Circadian and photic regulation of phosphorylation of ERK1/2 and Elk-1 in the suprachiasmatic nuclei of the Syrian hamster. J Neurosci 23: 3085-3093, 2003.
27. Cutler DJ, Morris R, Sheridhar V, Wattam TA, Holmes S, Patel S, Arch JR, Wilson S, Buckingham RE, Evans ML, Leslie RA, and Williams G. Differential distribution of orexin-A and orexin-B immunoreactivity in the rat brain and spinal cord. Peptides 20: 1455-1470, 1999.
28. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS, 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, and Sutcliffe JG. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95: 322-327, 1998.
29. Deboer T, Detari L, and Meijer JH. Long term effects of sleep deprivation on the mammalian circadian pacemaker. Sleep 30: 257-262, 2007.
30. Ding JM, Chen D, Weber ET, Faiman LE, Rea MA, and Gillette MU. Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266: 1713-1717, 1994.
31. Dunlap JC. Molecular bases for circadian clocks. Cell 96: 271-290, 1999.
32. Ebling FJ. The role of glutamate in the photic regulation of the suprachiasmatic nucleus. Prog Neurobiol 50: 109-132, 1996.
33. Engel J, Jr. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia 42: 796-803, 2001.
34. Fadel J and Deutch AY. Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience 111: 379-387, 2002.
35. Forsgren L, Beghi E, Oun A, and Sillanpaa M. The epidemiology of epilepsy in Europe - a systematic review. Eur J Neurol 12: 245-253, 2005.
36. Frost JD, Jr., Hrachovy RA, Glaze DG, and McCully MI. Sleep modulation of interictal spike configuration in untreated children with partial seizures. Epilepsia 32: 341-346, 1991.
37. Fujiki N, Yoshida Y, Ripley B, Mignot E, and Nishino S. Effects of IV and ICV hypocretin-1 (orexin A) in hypocretin receptor-2 gene mutated narcoleptic dogs and IV hypocretin-1 replacement therapy in a hypocretin-ligand-deficient narcoleptic dog. Sleep 26: 953-959, 2003.
38. Gibson JR, Bartley AF, Hays SA, and Huber KM. Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome. J Neurophysiol 100: 2615-2626, 2008.
39. Gigli GL and Gotman J. Effects of seizures, kindling, and carbamazepine on sleep organization in cats. Epilepsia 33: 14-22, 1992.
40. Goddard GV. Development of epileptic seizures through brain stimulation at low intensity. Nature 214: 1020-1021, 1967.
41. Goddard GV, McIntyre DC, and Leech CK. A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25: 295-330, 1969.
42. Greco MA and Shiromani PJ. Hypocretin receptor protein and mRNA expression in the dorsolateral pons of rats. Brain Res Mol Brain Res 88: 176-182, 2001.
43. Han F, Chen E, Wei H, Dong X, He Q, Ding D, and Strohl KP. Childhood narcolepsy in North China. Sleep 24: 321-324, 2001.
44. Hannibal J, Ding JM, Chen D, Fahrenkrug J, Larsen PJ, Gillette MU, and Mikkelsen JD. Pituitary adenylate cyclase-activating peptide (PACAP) in the retinohypothalamic tract: a potential daytime regulator of the biological clock. J Neurosci 17: 2637-2644, 1997.
45. Hannibal J and Fahrenkrug J. Neuronal input pathways to the brain's biological clock and their functional significance. New York: Springer, 2006.
46. Hannibal J, Hindersson P, Ostergaard J, Georg B, Heegaard S, Larsen PJ, and Fahrenkrug J. Melanopsin is expressed in PACAP-containing retinal ganglion cells of the human retinohypothalamic tract. Invest Ophthalmol Vis Sci 45: 4202-4209, 2004.
47. Haug K, Warnstedt M, Alekov AK, Sander T, Ramirez A, Poser B, Maljevic S, Hebeisen S, Kubisch C, Rebstock J, Horvath S, Hallmann K, Dullinger JS, Rau B, Haverkamp F, Beyenburg S, Schulz H, Janz D, Giese B, Muller-Newen G, Propping P, Elger CE, Fahlke C, and Lerche H. Retraction: Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat Genet 41: 1043, 2009.
48. Henny P, Brischoux F, Mainville L, Stroh T, and Jones BE. Immunohistochemical evidence for synaptic release of glutamate from orexin terminals in the locus coeruleus. Neuroscience.
49. Hirota T and Fukada Y. Resetting mechanism of central and peripheral circadian clocks in mammals. Zoolog Sci 21: 359-368, 2004.
50. Hofstra WA and de Weerd AW. The circadian rhythm and its interaction with human epilepsy: a review of literature. Sleep Med Rev 13: 413-420, 2009.
51. Holliday TA. Seizure disorders. Vet Clin North Am Small Anim Pract 10: 3-29, 1980.
52. Huang ZL, Qu WM, Li WD, Mochizuki T, Eguchi N, Watanabe T, Urade Y, and Hayaishi O. Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci U S A 98: 9965-9970, 2001.
53. Inouye ST and Kawamura H. Persistence of circadian rhythmicity in a mammalian hypothalamic 'island' containing the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 76: 5962-5966, 1979.
54. Janz D. The grand mal epilepsies and the sleeping-waking cycle. Epilepsia 3: 69-109, 1962.
55. Kalamatianos T, Kallo I, Piggins HD, and Coen CW. Expression of VIP and/or PACAP receptor mRNA in peptide synthesizing cells within the suprachiasmatic nucleus of the rat and in its efferent target sites. J Comp Neurol 475: 19-35, 2004.
56. King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna MH, Kornhauser JM, Lowrey PL, Turek FW, and Takahashi JS. Positional cloning of the mouse circadian clock gene. Cell 89: 641-653, 1997.
57. Kirchgessner AL and Liu M. Orexin synthesis and response in the gut. Neuron 24: 941-951, 1999.
58. Kjeldsen MJ, Corey LA, Christensen K, and Friis ML. Epileptic seizures and syndromes in twins: the importance of genetic factors. Epilepsy Res 55: 137-146, 2003.
59. Kobau R, Zahran H, Thurman DJ, Zack MM, Henry TR, Schachter SC, and Price PH. Epilepsy surveillance among adults--19 States, Behavioral Risk Factor Surveillance System, 2005. MMWR Surveill Summ 57: 1-20, 2008.
60. Korotkova TM, Sergeeva OA, Eriksson KS, Haas HL, and Brown RE. Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J Neurosci 23: 7-11, 2003.
61. Kukkonen JP, Holmqvist T, Ammoun S, and Akerman KE. Functions of the orexinergic/hypocretinergic system. Am J Physiol Cell Physiol 283: C1567-1591, 2002.
62. Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, Qiu X, de Jong PJ, Nishino S, and Mignot E. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98: 365-376, 1999.
63. Liu C and Reppert SM. GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron 25: 123-128, 2000.
64. Lothman EW, Hatlelid JM, Zorumski CF, Conry JA, Moon PF, and Perlin JB. Kindling with rapidly recurring hippocampal seizures. Brain Res 360: 83-91, 1985.
65. Lowrey PL and Takahashi JS. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 5: 407-441, 2004.
66. Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, and Elmquist JK. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435: 6-25, 2001.
67. Marston OJ, Williams RH, Canal MM, Samuels RE, Upton N, and Piggins HD. Circadian and dark-pulse activation of orexin/hypocretin neurons. Mol Brain 1: 19, 2008.
68. Mendez M and Radtke RA. Interactions between sleep and epilepsy. J Clin Neurophysiol 18: 106-127, 2001.
69. Mieda M, Willie JT, Hara J, Sinton CM, Sakurai T, and Yanagisawa M. Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Proc Natl Acad Sci U S A 101: 4649-4654, 2004.
70. Mignot E. Genetic and familial aspects of narcolepsy. Neurology 50: S16-22, 1998.
71. Mignot E, Lammers GJ, Ripley B, Okun M, Nevsimalova S, Overeem S, Vankova J, Black J, Harsh J, Bassetti C, Schrader H, and Nishino S. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol 59: 1553-1562, 2002.
72. Naslund E, Ehrstrom M, Ma J, Hellstrom PM, and Kirchgessner AL. Localization and effects of orexin on fasting motility in the rat duodenum. Am J Physiol Gastrointest Liver Physiol 282: G470-479, 2002.
73. Okamura H, Yamaguchi S, and Yagita K. Molecular machinery of the circadian clock in mammals. Cell Tissue Res 309: 47-56, 2002.
74. Overeem S, Mignot E, van Dijk JG, and Lammers GJ. Narcolepsy: clinical features, new pathophysiologic insights, and future perspectives. J Clin Neurophysiol 18: 78-105, 2001.
75. Preux PM and Druet-Cabanac M. Epidemiology and aetiology of epilepsy in sub-Saharan Africa. Lancet Neurol 4: 21-31, 2005.
76. Pung T and Schmitz B. Circadian rhythm and personality profile in juvenile myoclonic epilepsy. Epilepsia 47 Suppl 2: 111-114, 2006.
77. Quigg M. Circadian rhythms: interactions with seizures and epilepsy. Epilepsy Res 42: 43-55, 2000.
78. Quigg M, Clayburn H, Straume M, Menaker M, and Bertram EH, 3rd. Hypothalamic neuronal loss and altered circadian rhythm of temperature in a rat model of mesial temporal lobe epilepsy. Epilepsia 40: 1688-1696, 1999.
79. Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32: 281-294, 1972.
80. Raol YH and Meti BL. Sleep-wakefulness alterations in amygdala-kindled rats. Epilepsia 39: 1133-1137, 1998.
81. Reppert SM and Weaver DR. Coordination of circadian timing in mammals. Nature 418: 935-941, 2002.
82. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, and Yanagisawa M. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92: 573-585, 1998.
83. Sanabria ER, Scorza FA, Bortolotto ZA, Calderazzo-Filho LS, and Cavalheiro EA. Disruption of light-induced c-Fos immunoreactivity in the suprachiasmatic nuclei of chronic epileptic rats. Neurosci Lett 216: 105-108, 1996.
84. Scammell TE. The neurobiology, diagnosis, and treatment of narcolepsy. Ann Neurol 53: 154-166, 2003.
85. Schmitz D, Frerking M, and Nicoll RA. Synaptic activation of presynaptic kainate receptors on hippocampal mossy fiber synapses. Neuron 27: 327-338, 2000.
86. Sheward WJ, Lutz EM, and Harmar AJ. The distribution of vasoactive intestinal peptide2 receptor messenger RNA in the rat brain and pituitary gland as assessed by in situ hybridization. Neuroscience 67: 409-418, 1995.
87. Shouse MN, Farber PR, and Staba RJ. Physiological basis: how NREM sleep components can promote and REM sleep components can suppress seizure discharge propagation. Clin Neurophysiol 111 Suppl 2: S9-S18, 2000.
88. Smart D, Jerman JC, Brough SJ, Rushton SL, Murdock PR, Jewitt F, Elshourbagy NA, Ellis CE, Middlemiss DN, and Brown F. Characterization of recombinant human orexin receptor pharmacology in a Chinese hamster ovary cell-line using FLIPR. Br J Pharmacol 128: 1-3, 1999.
89. Sollars PJ and Pickard GE. Vasoactive intestinal peptide efferent projections of the suprachiasmatic nucleus in anterior hypothalamic transplants: correlation with functional restoration of circadian behavior. Exp Neurol 136: 1-11, 1995.
90. Spiegelman BM and Flier JS. Obesity and the regulation of energy balance. Cell 104: 531-543, 2001.
91. Su CL, Chang, S.F., Chen, Z.Y., Lee, C.S., Chen, R.C. . Neuroepidemiological survey in Ilan, Taiwan (NESIT) (4): prevalence of epilepsy. . Acta Neurolgica Taiwanica 7: 75-84, 1998.
92. Taheri S, Zeitzer JM, and Mignot E. The role of hypocretins (orexins) in sleep regulation and narcolepsy. Annu Rev Neurosci 25: 283-313, 2002.
93. Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, Cornford M, and Siegel JM. Reduced number of hypocretin neurons in human narcolepsy. Neuron 27: 469-474, 2000.
94. Thresher RJ, Vitaterna MH, Miyamoto Y, Kazantsev A, Hsu DS, Petit C, Selby CP, Dawut L, Smithies O, Takahashi JS, and Sancar A. Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Science 282: 1490-1494, 1998.
95. Turek FW and Gillette MU. Melatonin, sleep, and circadian rhythms: rationale for development of specific melatonin agonists. Sleep Med 5: 523-532, 2004.
96. Vassalli A and Dijk DJ. Sleep function: current questions and new approaches. Eur J Neurosci 29: 1830-1841, 2009.
97. Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C, Fruechte EM, Hitomi K, Thresher RJ, Ishikawa T, Miyazaki J, Takahashi JS, and Sancar A. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci U S A 96: 12114-12119, 1999.
98. Warren EJ, Allen CN, Brown RL, and Robinson DW. Intrinsic light responses of retinal ganglion cells projecting to the circadian system. Eur J Neurosci 17: 1727-1735, 2003.
99. Yamanaka A, Beuckmann CT, Willie JT, Hara J, Tsujino N, Mieda M, Tominaga M, Yagami K, Sugiyama F, Goto K, Yanagisawa M, and Sakurai T. Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38: 701-713, 2003.
100. Yamanaka A, Sakurai T, Katsumoto T, Yanagisawa M, and Goto K. Chronic intracerebroventricular administration of orexin-A to rats increases food intake in daytime, but has no effect on body weight. Brain Res 849: 248-252, 1999.
101. Yi PL, Tsai CH, Lin JG, Lee CC, and Chang FC. Kindling stimuli delivered at different times in the sleep-wake cycle. Sleep 27: 203-212, 2004.
102. Zhang J and Luo P. Orexin B immunoreactive fibers and terminals innervate the sensory and motor neurons of jaw-elevator muscles in the rat. Synapse 44: 106-110, 2002.
103. Zheng B, Albrecht U, Kaasik K, Sage M, Lu W, Vaishnav S, Li Q, Sun ZS, Eichele G, Bradley A, and Lee CC. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105: 683-694, 2001.
 
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47484-
dc.description.abstract癲癇是一種復發性痙攣的慢性異常病症,原因為腦部神經細胞,突然且短暫地過度放電所導致。臨床與實驗結果顯示,睡眠與癲癇的關係相當複雜且交互影響。事實上,癲癇患者常有夜間失眠、睡眠片段化及白天嗜睡之症狀,而導致如此的機制可能與睡眠恆定及日夜節律有關係。我們於大鼠之杏仁核給予電刺激,誘導顳葉癲癇,模擬顳葉癲癇患者睡眠-清醒週期改變的情形。管理生物體生理及行為之生物時鐘座落於下視丘之上視核 (suprachiasmatic nucleus;SCN)。構成哺乳類節律時鐘的成因為SCN細胞內節律基因之負回饋調節,其中,per1基因於subjective day表現最高,而bmal1相對於subjective night表現較高。這些節律基因在睡眠-清醒週期的節律上扮演著重要的角色。Orexin/hypocretin為一新興之激素,中樞神經系統內分泌orexin/hypocretin的神經細胞主要位於側下視丘,該部位亦受到杏仁核中心核之投射。近期有報告證實SCN上有orexin/hypocretin receptors,並在體外實驗發現orexin/hypocretin可改變SCN之放電活性。故我們將藉由阻斷orexin receptor 1 / hypocretin receptor 1,了解在TLE實驗模式下,orexin/hypocretin是否扮演了癲癇與睡眠-清醒週期改變的中介因子。並比較正常大鼠與顳葉癲癇大鼠SCN內節律蛋白PER1的表現。
適應12:12小時亮暗週期之Sprague-Dawley公鼠在亮期中點circadian time 6 (CT 6)接受杏仁核電刺激,誘導full-blown epilepsy;電刺激前於SCN內微量注射orexin receptor 1 / hypocretin receptor 1拮抗劑—SB334867。以腦電波記錄及影像記錄分析其睡眠-清醒變化。另外,以免疫組織化學染色呈現正常大鼠與顳葉癲癇大鼠在CT 6接受電刺激後之SCN內PER1節律蛋白的變化。
顳葉癲癇大鼠與先前對照處置相比較:於CT 23 – 24,非動眼睡眠量由9.56 ± 3.37 %顯著上升至27.36 ± 4.71 %,清醒量則有相對顯著下降;而於接下來的亮期最末兩小時內CT 11 - 12,非動眼睡眠量由42.81 ± 4.16 %顯著下降到18.97 ± 3.15 %,清醒量亦有相對顯著上升。而這些變化,在電刺激之前於SCN微量注射SB334867,會被反轉回到正常數值。SB334867單獨施打於SCN則對睡眠-清醒週期未產生影響。在節律蛋白PER1的表現量,顳葉癲癇大鼠與對照組SCN內PER1蛋白質之表現高峰分別出現在CT 6以及CT 12。於CT 6時間點,兩組之表現量分別為358 ± 64個與147 ± 14個,有顯著差異。
結果顯示,於CT 6以杏仁核電刺激誘導full-blown seizures,會造成日夜節律的改變,而有兩小時之前移。而此一效應藉由於SCN內注射orexin receptor 1 / hypocretin receptor 1拮抗劑被阻斷,因此此日夜節律之改變,orexin/hypocretin的確涉及其中。
zh_TW
dc.description.abstractEpilepsy is a chronic disorder characterized by recurrent seizures, which may vary from a brief lapse of attention or muscle jerks to severe and prolonged convulsions. It was caused by sudden, brief, excessive electrical discharges in a group of brain cells. Clinical and experimental observations suggest that the relationship between sleep and epilepsy is reciprocal. Excessive daytime sleepiness and sleep complaints are common among epilepsy patients, which implies the influence of epilepsy on circadian rhythm. However, little is known about this interaction. Amygdala kindling-induced temporal lobe epilepsy (TLE) in rats was used in current study to mimic the patients with epilepsy. Suprachiasmatic nucleus (SCN) of anterior hypothalamus is the pacemaker controlling circadian rhythm. The circadian oscillation is driven by clock genes in the SCN, including per1, per2, per3, cry1, cry2, CLOCK, and bmal1. Circadian oscillation of per1 peaks at subjective day and in antiphase to bmal1 expression, which peaks at subjective night. In addition, the lateral hypothalamic area (LHA), which received afferents from the central nucleus of amygdala (CeA), involves in the homeostatic regulation of sleep-wake rhythmicity. The neuropeptide secreted form LHA is orexin/hypocretin, which is as a waking promoter. Moreover, orexinergic/hypocretinergic fibers and receptor expressions are detected in the SCN region. Therefore, we investigated the role of hypocretin in TLE-induced sleep alternations by pharmacological blockade of hypocretin receptor 1 and determined the expressions of PER1 in SCN between the normal and TLE rats.
Male Sprague-Dawley rats were housed in a 12:12-hour light:dark cycle. Kindling stimuli delivered via a bipolar electrode, placing in the right central nucleus of the amygdala, at circadian time 6 (CT 6). We injected orexin receptor 1 / hypocretin receptor 1 antagonist, SB334867, into the SCN of the TLE rats. Electroencephalogram (EEG) and movement-defined sleep-wake activity were collected. The other group, rats received a single stimulus at CT6. At the following circadian time points, CT18 and the next CT0, CT3, CT6, CT9 and CT12, normal and TLE rats were sacrificed and their brains were processed for immunohistochemical detection of PER1.
The amount of non-rapid eye movement sleep (NREMS) after CT 6 amygdala-kindling was increased from 9.56 ± 3.37 % after vehicle to 27.36 ± 4.71 % during the CT23-24. There was a mirrored reduction in the amount of wakefulness. The amount of NREMS during the subsequent CT11-12 was decreased from 42.81 ± 4.16 % after vehicle to 18.97 ± 3.15 % after CT6 amygdala-kindling. There was also a mirrored increase in the amount of wakefulness. The alterations of NREMS after CT 6 amygdala-kindling were blocked when orexin receptor 1 / hypocretin receptor 1 antagonist, SB334867, was administered. Besides, SB334867 administration at CT 6 in normal rats didn’t have effect on spontaneous NREMS. In addition, the control group exhibited maximal values for PER1 at CT 12, and the CT 6 kindling group peaked at CT 6. PER1-positive cells in the CT 6 kindling group increased from 358 ± 64 to 147 ± 14 compared to the control group at CT 6.
The CT 6 amygdala kindling results in the circadian phase shifts with a 2-hour advance. However, the circadian alteration was blocked by microinjection of hypocretin receptor1 antagonist into SCN. This result suggests that circadian phase shift induced by CT 6 amygdala kindling is mediated by orexin/hypocretin.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:02:09Z (GMT). No. of bitstreams: 1
ntu-99-R97629020-1.pdf: 1570771 bytes, checksum: ff4eec9412d5c986646ccae0ee5cd1da (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目 錄
中文摘要 VII
Abstract IX
壹. 研究背景及目的 1
1.1 癲癇Epilepsy 1
1.1.1 病因 1
1.1.2 分類與臨床症狀 2
1.1.3 與睡眠-清醒週期 (sleep-wake cycle) 之關係 3
1.1.4 顳葉型癲癇症與動物模式 3
1.2 日夜節律circadian rhythm 4
1.2.1 生物時鐘—視神經交叉上核 4
1.3 Orexin/hypocretin 6
1.3.1 簡介 6
1.3.2 生理功能 7
1.3.3 猝睡症Narcolepsy 8
1.4 癲癇、日夜節律與orexin/hypocretin 9
1.5 實驗目的 9
貳. 材料與方法………………………………………………………...10
2.1 實驗材料 10
2.1.1 實驗動物 10
2.1.2 實驗用藥 10
2.2 實驗方法-腦電波記錄組 11
2.2.1 手術 11
2.2.2 顳葉癲癇模式之建立-Rapid kindling procedure 11
2.2.3 腦電波記錄及分析 12
2.2.4 影像記錄及分析 13
2.2.5 實驗流程 13
2.3 實驗方法—PER1免疫化學組織染色組 14
2.3.1 手術 14
2.3.2 實驗流程 14
2.3.3 免疫組織化學染色 14
2.3.4 細胞計數 15
2.4 統計學分析 16
參. 實驗結果………………………………………………………......17
3.1 顳葉癲癇模式 (temporal lobe epilepsy; TLE model) – amygdala kindling 17
3.1.1 對大鼠正常睡眠之影響 17
3.1.2 對大鼠正常活動力之影響 17
3.2 Suprachiasmatic nucleus微量注射OX1R/HcrtR1拮抗劑 18
3.2.1 OX1R/HcrtR1拮抗劑對正常大鼠睡眠之影響 18
3.2.2 OX1R/HcrtR1拮抗劑對TLE rats睡眠之影響 .18
3.3 OX1R/HcrtR1拮抗劑對TLE rats活動力之影響 18
3.4 睡眠結構 19
3.4.1 Vehicle + Kindling於CT 23-24睡眠結構之作用 19
3.4.2 Vehicle + Kindling於下一個週期CT 11-12睡眠結構之作用 ………………………………………………………...19
3.5 PER1免疫組織化學染色 20
肆. 討論………………………………………………………...............21
伍. 結論…...………………………………………………………........26
陸. 參考文獻……………………………………………………….......44
柒. 附錄.……………………………………………………………......54
 
dc.language.isozh-TW
dc.subjectorexin/hypocretinzh_TW
dc.subject顳葉癲癇zh_TW
dc.subject睡眠zh_TW
dc.subject日夜節律zh_TW
dc.subject節律蛋白PER1zh_TW
dc.subjecttemporal lobe epilepsy (TLE)en
dc.subjectPER1en
dc.subjectcircadian rhythmen
dc.subjectsleepen
dc.subjectorexin/hypocretinen
dc.title以顳葉型癲癇動物模式探討orexin/hypocretin於睡眠日夜節律所扮演的角色zh_TW
dc.titleThe Role of Orexin/hypocretin on Circadian Rhythm in a Temporal Lobe Epilepsy (TLE) Raten
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee徐崇堯,詹東榮,羅孝穗,李立仁
dc.subject.keyword顳葉癲癇,睡眠,日夜節律,節律蛋白PER1,orexin/hypocretin,zh_TW
dc.subject.keywordtemporal lobe epilepsy (TLE),sleep,circadian rhythm,PER1,orexin/hypocretin,en
dc.relation.page58
dc.rights.note有償授權
dc.date.accepted2010-08-17
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved