請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47478
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 謝學真 | |
dc.contributor.author | Yen-Po Tseng | en |
dc.contributor.author | 曾彥博 | zh_TW |
dc.date.accessioned | 2021-06-15T06:01:50Z | - |
dc.date.available | 2020-12-31 | |
dc.date.copyright | 2010-08-18 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-16 | |
dc.identifier.citation | 1. Langer R and Tirrell D A, Designing materials for biology and medicine. Nature, 2004. 428: 487-492.
2. Khor E and Lim L Y, Implantable applications of chitin and chitosan. Biomaterials, 2003. 24: 2339-2349. 3. Chen H and Langer R, Oral particulate delivery: status and future trends. Advanced Drug Delivery Reviews, 1998. 34: 339-350. 4. 陳播暉, 幾丁聚醣/果膠複合材料之製備與特性探討. 2004, 國立台灣大學化學工程學研究所碩士論文. 5. 陳播暉, 以各種有機酸、酸性多醣、及非水溶性塑化劑提昇幾丁聚醣材料的多樣性. 2009, 國立台灣大學化學工程學研究所博士論文. 6. Peppas N and Langer R, New challenges in biomaterials. Science, 1994. 263: 1715-1720. 7. Muzzarelli R A A, Chitin. 1977, New York: Pergamon Press. 8. Roberts G A F, Chitin Chemistry. 1992: Mac Millian Press. 9. 蔡睿逸, 以醣類分子修飾幾丁聚醣生醫材料對其細胞相容性之影響. 2005, 國立台灣大學化學工程學研究所碩士論文. 10. Ruardy T G, Schakenraad J M, van der Mei H C, and Busscher H J, Preparation and characterization of chemical gradient surfaces and their application for the study of cellular interaction phenomena. Surface Science Reports, 1997. 29: 3-30. 11. Amiji M M, Surface modification of chitosan membranes by complexation-interpenetration of anionic polysaccharides for improved blood compatibility in hemodialysis. Journal of Biomaterials Science, 1996. 8: 281-298. 12. Tangpasuthadol V, Pongchaisirikul N, and Hoven V P, Surface modification of chitosan films.: Effects of hydrophobicity on protein adsorption. Carbohydrate Research, 2003. 338: 937-942. 13. Jeon C and Höll W H, Chemical modification of chitosan and equilibrium study for mercury ion removal. Water Research, 2003. 37: 4770-4780. 14. Kratz G, Arnander C, Swedenborg J, Back M, Falk C, Gouda I, and Larm O, Heparin-Chitosan Complexes Stimulate Wound Healing in Human Skin. Journal of Plastic and Reconstructive Surgery and Hand Surgery, 1997. 31: 119 - 123. 15. Ueno H, Mori T, and Fujinaga T, Topical formulations and wound healing applications of chitosan. Advanced Drug Delivery Reviews, 2001. 52: 105-115. 16. Di Martino A, Sittinger M, and Risbud M V, Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials, 2005. 26: 5983-5990. 17. Francis Suh J K and Matthew H W T, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials, 2000. 21: 2589-2598. 18. Madihally S V and Matthew H W T, Porous chitosan scaffolds for tissue engineering. Biomaterials, 1999. 20: 1133-1142. 19. Polk A, Amsden B, Yao K D, Peng T, and Goosen M F A, Controlled release of albumin from chitosan - alginate microcapsules. Journal of Pharmaceutical Sciences, 1994. 83: 178-185. 20. Thanoo B C, Sunny M C, and Jayakrishnan A, Cross-linked chitosan microspheres : preparation and evaluation as a matrix for the controlled release of pharmaceuticals. Journal of pharmacy and pharmacology, 1992. 44: 283-286. 21. Miyazaki S, Ishii K, and Nadai T, The use of chitin and chitosan as drug carriers. Chemical & Pharmaceutical Bulletin, 1981. 29: 3067-3069. 22. Chen X G, Liu C S, Liu C G, Meng X H, Lee C M, and Park H J, Preparation and biocompatibility of chitosan microcarriers as biomaterial. Biochemical Engineering Journal, 2006. 27: 269-274. 23. Rao P S, Sridhar S, Wey M Y, and Krishnaiah A, Pervaporative separation of ethylene glycol/water mixtures by using cross-linked chitosan membranes. Industrial & Engineering Chemistry Research, 2007. 46: 2155-2163. 24. Yong Nam S and Moo Lee Y, Pervaporation of ethylene glycol-water mixtures: I. Pervaporation performance of surface crosslinked chitosan membranes. Journal of Membrane Science, 1999. 153: 155-162. 25. Yong Nam S and Moo Lee Y, Pervaporation separation of methanol/methyl t-butyl ether through chitosan composite membrane modified with surfactants. Journal of Membrane Science, 1999. 157: 63-71. 26. Anjali Devi D, Smitha B, Sridhar S, and Aminabhavi T M, Pervaporation separation of isopropanol/water mixtures through crosslinked chitosan membranes. Journal of Membrane Science, 2005. 262: 91-99. 27. Talmadge K W, Keegstra K, Bauer W D, and Albersheim P, The structure of plant cell walls: I. The macromolecular components of the walls of suspension-cultured sycamore cells with a detailed analysis of the pectic polysaccharides. Plant Physiol., 1973. 51: 158-173. 28. Walter R H, The chemistry and technology of pectin, ed. Taylor S L. 1991: Academic press, inc. 29. Powell D A, Morris E R, Gidley M J, and Rees D A, Conformations and interactions of pectins : II. Influence of residue sequence on chain association in calcium pectate gels. Journal of Molecular Biology, 1982. 155: 517-531. 30. Grant G T, Morris E R, Rees D A, Smith P J C, and Thom D, Biological interactions between polysaccharides and divalent cations: The egg-box model. FEBS Letters, 1973. 32: 195-198. 31. Sriamornsak. P, Chemistry of pectin and its pharmaceutical uses: A review. Silpakorn Univ Int J, 2003. 3: 206-228. 32. Anderson J W, Baird P, Jr R H D, Ferreri S, Knudtson M, Koraym A, Waters V, and Williams C L, Health benefits of dietary fiber. Nutrition Reviews, 2009. 67: 188-205. 33. Min B, Bae I Y, Lee H G, Yoo S-H, and Lee S, Utilization of pectin-enriched materials from apple pomace as a fat replacer in a model food system. Bioresource Technology, 2010. 101: 5414-5418. 34. Candogan K and Kolsarici N, Storage stability of low-fat beef frankfurters formulated with carrageenan or carrageenan with pectin. Meat Science, 2003. 64: 207-214. 35. Mata Y N, Blázquez M L, Ballester A, González F, and Muñoz J A, Studies on sorption, desorption, regeneration and reuse of sugar-beet pectin gels for heavy metal removal. Journal of Hazardous Materials, 2010. 178: 243-248. 36. Harel P, Mignot L, Sauvage J P, and Junter G A, Cadmium removal from dilute aqueous solution by gel beads of sugar beet pectin. Industrial Crops and Products, 1998. 7: 239-247. 37. Kohn R, Binding of toxic cations to pectin, its oligomeric fragments and plant tissues. Carbohydrate Polymers, 1982. 2: 273-275. 38. Weickert M O and Pfeiffer A F H, Metabolic effects of dietary fiber consumption and prevention of diabetes. Journal of Nutrition, 2008. 138: 439-442. 39. Hatschek, Foundations of colloid chemistry. 1925: OUP Oxford. 40. Laidler K J, Meiser J H, and Sanctuary B C, Physical chemistry. 2003: Houghton Mifflin company. 41. 張有義,郭蘭生, 膠體及界面化學入門. 1992, 台北: 高立圖書有限公司. 42. Aulton M E, Aulton's Pharmaceutics: The design and manufacture of medicines. 2007. 43. Nakashima T, Shimizu M, and Kukizaki M, Particle control of emulsion by membrane emulsification and its applications. Advanced Drug Delivery Reviews, 2000. 45: 47-56. 44. Becher P, Principles of emulsion technology. 1995: Reinhold Publishing Corp. 45. Lu F, Liu S, Liu J, Li G, and Zheng L, Research progress of microemulsion-based drug delivery systems. 化學通報, 2004. 67: 1-8. 46. 陳崇賢, 乳液概論. 界面科學會誌, 1996. 19: 1-12. 47. 洪偉翔, 多孔性幾丁聚醣微粒製備、分析及應用. 2007, 國立台灣大學化學工程學研究所碩士論文. 48. 王清標, 界面活性劑在銅晶片表面潤濕行為之研究. 2006, 國立中央大學化學工程與材料工程研究所碩士論文. 49. 謝承軒, 以乳化/冷凍凝膠法製備幾丁聚醣微粒及其特性分析與應用. 2006, 國立台灣大學化學工程學研究所碩士論文. 50. Lu FF, Liu SJ, Liu J, Li GZ, and LQ Z, Research progress of microemulsion-based drug delivery systems. 化學通報, 2004. 67: 1-8. 51. 林鈺霖, 新型多孔性幾丁聚醣微粒製備法. 2008, 國立台灣大學化學工程學研究所碩士論文. 52. Huang Y C, Chiang C H, and Yeh M K, Optimizing formulation factors in preparing chitosan microparticles by spray-drying method. Journal of Microencapsul, 2003. 20: 247-260. 53. Lim L Y, Wan L S C, and Thai P Y, Chitosan Microspheres prepared by emulsification and ionotropic gelation. Drug Development and Industrial Pharmacy, 1997. 23: 981-985. 54. Chien Y W, Novel drug delivery systems. 1992. 55. Prabaharan M and Mano J F, Chitosan-based particles as controlled drug delivery systems. Drug Delivery, 2004. 12: 41 - 57. 56. Jing Z, Guizhen Z, and Jidong D, Advances in drug controlled release. 化學通報, 2006. 69: 1-5. 57. Uhrich K E, Cannizzaro S M, Langer R S, and Shakesheff K M, Polymeric systems for controlled drug release. Chemical Reviews, 1999. 99: 3181-3198. 58. Kockisch S, Rees G D, Young S A, Tsibouklis J, and Smart J D, Polymeric microspheres for drug delivery to the oral cavity: An in vitro evaluation of mucoadhesive potential. Journal of Pharmaceutical Sciences, 2003. 92: 1614-1623. 59. Kumar M N R, Nano and microparticles as controlled drug delivery devices. Journal of Pharmaceutical Sciences, 2000. 3: 234-258. 60. Agnihotri S A, Mallikarjuna N N, and Aminabhavi T M, Recent advances on chitosan-based micro- and nanoparticles in drug delivery. Journal of Controlled Release, 2004. 100: 5-28. 61. 苑乃義, 幾丁聚醣、硫酸軟骨素與麩胺酸複合生醫基材之製程探討、性質改良與應用. 2009, 國立台灣大學化學工程學研究所博士論文. 62. Langer R, Invited review polymeric delivery systems for controlled drug release. Chemical Engineering Communications, 1980. 6: 1 - 48. 63. Burkersroda F v, Schedl L, and Göpferich A, Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials, 2002. 23: 4221-4231. 64. Fan L T and Singh S K, Controlled release. 1989: Springer-Verlag. 65. Theeuwes F, Elementary osmotic pump. Journal of Pharmaceutical Sciences, 1975. 64: 1987-1991. 66. Van der Velden-de Groot C A M, Microcarrier technology, present status and perspective. Cytotechnology, 1995. 18: 51-56. 67. Li K, Wang, Y., Miao, Z., Xu, D., Tang, Y., and Feng, M., Chitosan/gelatin composite microcarrier for hepatocyte culture. Biotechnology Letters, 2004. 26: 879-883. 68. Chen X-G, Liu C-S, Liu C-G, Meng X-H, Lee C M, and Park H-J, Preparation and biocompatibility of chitosan microcarriers as biomaterial. Biochemical Engineering Journal, 2006. 27: 269-274. 69. Ngomsik A-F, Bee A, Draye M, Cote G, and Cabuil V, Magnetic nano- and microparticles for metal removal and environmental applications: a review. Comptes Rendus Chimie, 2005. 8: 963-970. 70. Zhou H, Li B, and Huang G, Sound absorption characteristics of polymer microparticles. Journal of Applied Polymer Science, 2006. 101: 2675-2679. 71. Kristmundsdottir T, Ingvarsdóttir K, and Sémundsdóttir G, Chitosan matrix tablets: The influence of excipients on drug release. Drug Development and Industrial Pharmacy, 1995. 21: 1591 - 1598. 72. Shimoda J, Onishi H, and Machida Y, Bioadhesive characteristics of chitosan microspheres to the mucosa of rat small intestine. Drug Development and Industrial Pharmacy, 2001. 27: 567-576. 73. Lisbeth Illum N F F, Stanley S. Davis, Chitosan as a novel nasal delivery system for peptide drugs. Pharmaceutical Research, 1994. 11: 1186-1189. 74. Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher A N, and Davis S S, Chitosan as a novel nasal delivery system for vaccines. Advanced Drug Delivery Reviews, 2001. 51: 81-96. 75. Patil S B, Preparation and in vitro evaluation of mucoadhesive chitosan microspheres of amlodipine besylate for nasal administration. Indian Journal of Pharmaceutical Sciences, 2010. 68: 64. 76. Murata Y, Miyashita M, Kofuji K, Miyamoto E, and Kawashima S, Drug release properties of a gel bead prepared with pectin and hydrolysate. Journal of Controlled Release, 2004. 95: 61-66. 77. Jaya S, Durance T D, and Wang R, Effect of alginate-pectin composition on drug release characteristics of microcapsules. Journal of Microencapsulation, 2009. 26: 143-153. 78. Baur J A and Sinclair D A, Therapeutic potential of resveratrol: the in vivo evidence. Nature Reviews Drug Discovery, 2006. 5: 493-506. 79. Das S and Ng K Y, Resveratrol-loaded calcium-pectinate beads: effects of formulation parameters on drug release and bead characteristics. Journal of Pharmaceutical Sciences, 2010. 99: 840-860. 80. 謝玠揚, 膠原蛋白薄膜之材料及質傳特性探討. 1999, 國立台灣大學化學工程學研究所碩士論文. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47478 | - |
dc.description.abstract | 本研究嘗試將兩種天然多醣類高分子幾丁聚醣 (chitosan) 與果膠 (pectin) 進行結合形成複合材料,並將其製備成微粒,以探討此種複合材料微粒在藥物控制釋放上對於負載大分子藥物的應用潛力。
在以乳化法進行幾丁聚醣-果膠複合材料微粒的製程中發現,Tween 81製備出的複合材料微粒有餃小的粒徑和較集中的分布,適合用於做為此系統的界面活性劑。而在固定複合材料微粒時,以 NaOH/乙醇水溶液處理 1 小時即可以達到有效的固定。另外分散相的濃度越大產量會越大。而複合材料微粒的粒徑隨著混合的重量比越接近粒徑也越大。 在成功製備出幾丁聚醣-果膠複合材料微粒後,利用 FTIR 和 DSC 檢測其分子間的作用力,證實幾丁聚醣-果膠兩者之間作用力的存在。接著以 SHED 細胞的培養來測試複合材微粒的細胞毒性,結果顯示沒有明顯的毒性。在複合材料微粒之吸水能力實驗中,發現複合材料微粒的吸水能力隨果膠比例越高而越好。而在溶蝕特性實驗中,發現複合材料微粒隨組成比例的不同在不同酸鹼性環境下的溶蝕表現也會不同。之後以 BSA 進行模擬大分子藥物承載及釋放實驗,結果發現幾丁聚醣-果膠複合材料微粒可以有效的控制 BSA 在不同 pH 值環境下的釋放效果,其結果也呼應著複合材料微粒的溶蝕特性結果。此外,BSA 的承載率也因為複合材料微粒的使用而增加。 本研究以幾丁聚醣-果膠複合材料進行微粒製備並探討其在藥物控制釋放上的應用。成功的增加了 BSA 的承載率並藉由控制複合材料的組成比例以調控 BSA 在酸性環境及弱鹼性環境的釋放速率,顯示複合材料微粒具有在藥物控制釋放上的應用潛力。 | zh_TW |
dc.description.abstract | In this study, chitosan and pectin, two kinds of natural polysaccharide were combined to fabricate chitosan-pectin composite microparticles by emulsion method. The characteristics and potential applications of the composite
microprticles as drug delivery carriers were also investigated. First, the effects of various operating parameters for emulsion were studied. The results of size analysis showed that the microparticles prepared using surfactant Tween 81 had smaller size. To fix the microparticles, 1 hour of NaOH treatment time was sufficient without changing the size distributions of microparticles. As the total concentration of disperse phase (chitosan-pectin mixture solutions) increased, the yield of microparticles increased. The properties were further characterized of chitosan-pectin composite microparticles. The DSC results suggested that the interaction between chitosan and pectin did exist. The results of FTIR implied the presence of the interaction between amino groups of chitosan and carboxyl groups of pectin. Besides, according to the results of cell culture and MTT assay, the composite microparticles showed almost no cytotoxicity. The water-uptake capacity of composite microparticles increased as the ratio of chitosan to pectin increased. The erosion test showed that the erosion properties of composite mircroparticles were adjustable by altering the composition of microparticles. Finally, using BSA as a model drug, the encapsulation efficiency and release profile of BSA in the microparticles were measured. The results showed that enhanced encapsulation efficiency was achieved by using the composite microparticles. We also found that the more chitosn present in the microparticles, the faster the BSA released under acidic conditions. In contrast, the more pectin present in the microparticles, the faster the BSA released under basic conditions. In brief, the chitosan-pectin composite microparticles were prepared by emulsion method. The composite microparticles showed better encapsulation property, and adjustable BSA release profiles. The chitosan-pectin composite microparticles therefore have application potential in controlled release of drugs. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:01:50Z (GMT). No. of bitstreams: 1 ntu-99-R97524041-1.pdf: 46688893 bytes, checksum: 3e78f6f9a66a688faaf6228a8f6c9a20 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 誌謝 I
摘要 III 英文摘要 V 目錄 VII 圖目錄 XIII 表目錄 XXI 縮寫與符號說明 XXIII 中英對照表 XXVII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究架構 4 第二章 文獻回顧 7 2.1 生醫材料 7 2.1.1 生醫材料的分類 7 2.1.2 多醣類的分類 8 2.1.3 複合材料 9 2.2 幾丁聚醣 10 2.2.1 幾丁聚醣之結構與性質 11 2.2.2 幾丁聚醣之應用 12 2.2.2.1 幾丁聚醣在生醫材料上的應用 13 2.2.2.2 幾丁聚醣在工業上的應用 13 2.3 果膠 14 2.3.1 果膠之結構 14 2.3.2 果膠之性質 15 2.3.3 果膠之應用 18 2.3.3.1 果膠在食品、保健上的應用 18 2.3.3.2 果膠在環境工程上的應用 19 2.3.3.3 果膠在醫藥材料上的應用 19 2.4 微粒 20 2.4.1 乳化法及相關微粒製備方法 20 2.4.1.1 乳化之介紹 20 2.4.1.2 乳化系統的穩定性 21 2.4.1.3 界面活性劑之介紹 23 2.4.1.4 界面活性劑之分類 24 2.4.1.5 乳化法及相關衍生製備微粒方法介紹 26 2.4.2 其它微粒製備方法 28 2.4.2.1 噴霧法 28 2.4.2.2 離子凝膠法 28 2.4.2.3 其它方法 28 2.4.3 微粒之應用 30 2.4.3.1 藥物控制釋放 30 2.4.3.2 微載體 36 2.4.3.3 其他應用 37 2.5 幾丁聚醣及果膠在藥物控制釋放上之相關研究 37 第三章 實驗藥品、儀器與方法 39 3.1 實驗藥品 39 3.1.1 混合溶液配製 39 3.1.2 以乳化法製備複合材料微粒 39 3.1.3 複合材料之特性探討 40 3.1.3.1 複合材料微粒之細胞毒性 40 3.1.3.2 複合材料微粒之溶蝕特性測定 40 3.1.3.3 複合材料之通透能力及微粒之藥物釋放 40 3.2 實驗儀器 41 3.2.1 一般儀器 41 3.2.2 混合溶液配製 42 3.2.2.1 混合溶液配製儀器 42 3.2.2.2 混合溶液之pH值測定 42 3.2.2.3 混合溶液之黏度測定 42 3.2.3 以乾燥法製備複合材料薄膜 42 3.2.3.1 乾燥法製備複合材料薄膜儀器 42 3.2.3.1 複合材料之通透能力測定 42 3.2.4 以乳化法製備複合材料微粒 43 3.2.4.1 乳化法製備複合材料微粒儀器 43 3.2.4.2 複合材料微粒之粒徑分析 43 3.2.4.3 複合材料微粒之觀察 43 3.2.5 複合材料微粒之特性測定 43 3.2.5.1 複合材料微粒之熱性質分析 43 3.2.5.2 複合材料微粒之溶蝕特性與吸水能力測定 44 3.2.5.3 複合材料微粒之表面電位 44 3.2.5.4 複合材料微粒之傅立葉紅外線光譜測定 44 3.2.5.5 複合材料微粒之細胞毒性測定 44 3.2.5.6 複合材料微粒之藥物釋放特性 45 3.3 實驗方法 46 3.3.1 混合溶液配製 46 3.3.3.1 混合溶液製備 46 3.3.3.2 混合溶液之pH值測定 47 3.3.3.3 混合溶液之黏度測定 48 3.3.2 以塗布乾燥製備複合材料薄膜 48 3.3.2.1 複合材料之通透能力 48 3.3.3 以乳化法製備複合材料微粒 50 3.3.3.1 複合材料微粒之製備分析 50 3.3.3.1.1 界面活性劑種類與混合比例的影響 50 3.3.3.1.2 NaOH/乙醇水溶液處理時間的影響 51 3.3.3.1.3 混合溶液濃度的影響 52 3.3.3.2 複合材料微粒之粒徑分析 53 3.3.3.3 複合材料微粒之產率 54 3.3.3.4 複合材料微粒之觀察 54 3.3.4 複合材料微粒之特性測定 55 3.3.4.1 複合材料微粒之熱性質分析 55 3.3.4.2 複合材料微粒之吸水能力測定 55 3.3.4.3 複合材料微粒之溶蝕特性 56 3.3.4.4 複合材料微粒之表面電位 57 3.3.4.5 複合材料微粒之傅立葉紅外線外譜測定 57 3.3.4.6 複合材料微粒之細胞毒性測定 58 3.3.4.6.1 複合材料微粒釋放、溶蝕後之培養基預備 58 3.3.4.6.2 細胞形態觀察 58 3.3.4.6.3 細胞活性測定 59 3.3.4.7 複合材料微粒之藥物釋放特性 59 3.3.4.7.1 藥物承載率之測定 59 3.3.4.7.2 藥物釋放測試 60 第四章 實驗結果與討論 63 4.1 混合溶液配製及特性測定 63 4.2 以乳化法製備複合材料微粒 66 4.2.1 界面活性劑種類與混合比例的影響 66 4.2.2 NaOH/乙醇水溶液處理時間的影響 73 4.2.3 混合溶液濃度的影響 79 4.3 複合材料之性質測定 85 4.3.1 複合材料之通透能力 85 4.3.2 複合材料微粒之熱性質分析 88 4.3.3 複合材料微粒之傅立葉紅外線外譜測定 91 4.3.4 複合材料微粒之細胞毒性測定 94 4.3.5 複合材料微粒之溶蝕特性 103 4.3.6 複合材料微粒之吸水能力 106 4.3.7 複合材料微粒之表面電位 108 4.4 複合材料微粒之藥物釋放應用 110 4.4.1 複合材料微粒之藥物承載率 110 4.4.2 複合材料微粒之藥物釋放特性 111 第五章 結論與未來研究方向 117 5.1 結論 117 5.2 未來研究方向 120 參考文獻 121 | |
dc.language.iso | zh-TW | |
dc.title | 幾丁聚醣-果膠複合材料微粒之製備、特性分析及應用探討 | zh_TW |
dc.title | Preparation, Characterization and Application of
Chitosan-Pectin Composite Microparticles | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王大銘,謝子陽 | |
dc.subject.keyword | 幾丁聚醣,果膠,複合材料,微粒,乳化法,控制釋放, | zh_TW |
dc.subject.keyword | Chitosan,Pectin,Composite materials,Microparticles,Emulsion,Controlled release, | en |
dc.relation.page | 129 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-17 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 45.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。