請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47463完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊照彥(Jaw-Yen Yang) | |
| dc.contributor.author | Kuo-Hui Yang | en |
| dc.contributor.author | 楊國煇 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:00:59Z | - |
| dc.date.available | 2013-08-20 | |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-16 | |
| dc.identifier.citation | [1] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power,” Journal of Applied Physics, vol. 25, pp. 676–677, 1954.
[2] J. Mandelkorn and J. H. Lamneck, “Simplified Fabrication of Back Surface Electric Field Silicon Cells and Novel Characteristics of Such Cells,” 9-th Photovoltaic Specialists Conference, pp. 66–72, 1972. [3] J. Michel, A. Mircea, and E. Fabre, “Computer Analysis of Back‐surface Field Silicon Solar Cells,” Journal of Applied Physics, vol. 46, pp. 5043–5045, 1975. [4] F. W. Sexton, “Plasma Nitride AR Coatings for Silicon Solar Cells,” Solar Energy Material and Solar Cells, vol. 7, pp. 1–14, 1982. [5] R. Kishore, S. N. Siingh, and B. K. Das, ”PECVD Grown Silicon Nitride AR Coatings on Polycrystalline Silicon Solar Cells,” Solar Energy Material and Solar Cells, vol. 26, pp. 27–35, 1992. [6] Z. Chen, P. Sana, J. Salami, and A. Rohatgi, “A Novel and Effective PECVD SiO2/SiN Antireflection Coating for Silicon Solar Cells,” IEEE Transactions on Electron Devices, vol. 40, pp. 1161–1165, 1993. [7] K. Ram, S. N. Singh, and B. K. Das, “Screen Printed Titanium Oxide and PECVD Silicon Nitride as Antireflection Coating on Silicon Solar Cells,” Renewable Energy, vol. 12, pp. 131–135, 1997. [8] C. Battaglin, F. Caccavale, A. Menelle, M. Montecchi, E. Nichelatti, and F. Nicoletti, “Characterisation of Antireflective TiO2//SiO2 Coatings by Complementary Techniques,” Thin Solid Films, vol. 351, pp. 176–179, 1999. [9] U. Gangopadhyay, K. Kim, D. Mangalaraj, and J. Yi, “Chemical and Structural Modifications of Laser Treated Iron Surfaces: Investigation of Laser Processing Parameters,” Applied Surface Science, vol. 230, pp. 364–370, 2004. [10] D. N. Wright, E. S. Marstein, and A. Holt, ”Double Layer Anti-Reflection Coatings For Silicon Solar Cells,” Proceedings of the 31st IEEE Photovoltaic Specialists Conference, Orlando, Florida, USA, pp. 1237–1240, 2005. [11] S. Y. Lien, D. S. Wuu, W. C. Yeh, and J. C. Liuc, “Tri-layer Antireflection Coatings (SiO2/SiO2-TiO2/TiO2) for Silicon Solar Cells Using a Sol–gel Technique,” Solar Energy Material and Solar Cells, vol. 90, pp. 2710–2719, 2006. [12] J. Zhao, A. Wang, and M. A. Green, “24.5% Efficiency PERT Silicon Solar Cells on SEH MCZ Substrates and Cell Performance on Other SHE CZ and FZ Substrates,” Solar Energy Material and Solar Cells, vol. 66, pp. 27–36, 2001 [13] P. Campbell and M. A. Green ”Light Trapping Properties of Pyramidally Textured Surfaces,” Journal of Applied Physics, vol. 62 , pp. 243–249, 1987. [14] R. Brendel, “Simple Prism Pyramids: A New Light Trapping Texture For Silicon Solar Cells,” in Proc. 23rd IEEE Photovoltaic Specialists Conference, New York, pp. 252–255, 1993. [15] J. Zhao, A. Wang, and M. A. Green, ”Double Layer Antireflection Coating for High-Efficiency Passivated Emitter Silicon Solar Cells,” IEEE Transactions on Electron Devices, vol. ED-41, pp. 1592–1594, 1994. [16] Y. Bai, A. M. Barnett, J. A. Rand, and D. H. Ford, “Light-trapping and Back Surface Structures for Polycrystalline Silicon Solar Cells,” Progress in Photovoltaics: Research and Applications, vol. 7, pp. 353–361, 1999. [17] H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, ”Light Trapping Effect of Submicron Surface Textures in Crystalline Si Solar Cells,” Progress in Photovoltaics: Research and Applications, vol. 15, pp. 415–423, 2007. [18] M. A. Green, A. Wang, J. Zhao, S. Wenham, P. Campbell, and D. Thorp, “Enhanced Light-trapping in 21.5% Efficient Thin Silicon Solar Cells,” The 13th European Photovoltaic Solar Energy Conference, Nice, France, pp. 13–16, 1995. [19] R. Brendel, R. Auer, H. Artmann, “Textured Monocrystalline Thin-film Si Cells from the Porous Silicon (PSI) Process,” Progress in Photovoltaics: Research and Applications, vol. 9, pp. 217–221, 2001. [20] R. B. Bergmann, C. Berge, T. J. Rinke, J. Schmidt, and J. H. Werner, “Advances in Monocrystalline Si Thin Film Solar Cells by Layer Transfer,” Solar Energy Material and Solar Cells, vol. 74, pp. 213–218, 2002. [21] L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency Enhancement in Si Solar Cells by Textured Photonic Crystal Back Reflector,” Applied Physics Letters, vol. 89, pp. 111111-1–111111-3, 2006. [22] P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving Thin-film Crystalline Silicon Solar Cell Efficiencies with Photonic Crystals,” Optics Express, vol. 15, pp. 16986–17000, 2007. [23] N. N. Feng, J. Michel, L. Zeng, J. Liu, C. Y. Hong, L. C. Kimerling, and X. Duan, ”Sign of Highly Efficient Light-trapping Structures for Thin-film Crystalline Silicon Solar Cells,” IEEE Transactions on Electron Devices, vol. 54, pp. 1926–1933, 2007. [24] M. Sze, Physics of Semiconductor Devices (Wiley and Sons, New York, pp. 674–678, 1981). [25] S. Keller, M. Spiegel, P. Fath, G. Willeke, and E. Bucher, “A Critical Evaluation of the Effective Diffusion Length Determination in Crystalline Silicon Solar Cells from an Extended Spectral Analysis,” IEEE Transactions on Electron Devices, vol. 45, pp. 1569–1574, 1998. [26] R. Brendel, M. Hirsch, R. Plieninger, and J. H. Werner, “Quantum Efficiency Analysis of Thin-layer Silicon Solar Cells with Back Surface Fields and Optical Confinement,” IEEE Transactions on Electron Devices, vol. 43, pp. 1104–1113, 1996. [27] W. J. Yang, Z. Q. Ma, X. Tang, C. B. Feng, W. G. Zhao, and P. P. Shi, “Internal Quantum Efficiency for Solar Cells,” Solar Energy, vol. 82, pp. 106–110, 2008. [28] H. T. Gu, Introduction to Solar Cell Device (Chuan-Wei Publishing Co., Ltd., Taiwan, 2008.) [29] C. C. Chuang, Solar Energy Engineering: Photovoltaic (Chung-hwa Publishing Co., Ltd., Taiwan, 2008.) [30] M. Cid, N. Stem, C. Brunetti, A. F. Beloto, and C. A. S. Ramos, “Improvements in Anti-reflection Coatings for High-efficiency Silicon Solar Cells,” Surface and Coatings Technology, vol. 106, pp. 117–120, 1998. [31] R. Machorro, E. C. Samano, G. Soto, F. Villa, and L. Cota-Araiza, “Modification of Refractive Index in Silicon Oxynitride Films During Deposition,” Materials Letters, vol. 45, pp. 47–50, 2000. [32] I. Lee, D. G. Lim, S. H. Lee, and J. Yi, “The Effects of a Double Layer Anti-reflection Coating for a Buried Contact Solar Cell Application,” Surface and Coatings Technology, vol. 137, pp. 86–91, 2001. [33] V. M. Aroutiounian, K. H. Martirosyan, and P. Soukiassian, “Low Reflectance of Diamond-like Carbon/Porous Silicon Double Layer Antireflection Coating for Silicon Solar Cells,” Journal of Physics D: Applied Physics, vol. 37, pp. L25–L28, 2004. [34] Y. Wang, X. Cheng, Z. Lin, C. Zhang, and F. Zhang, “Optimization of PECVD Silicon Oxynitride Films for Anti-reflection Coating,” Vacuum, vol. 72, pp. 345–349, 2004. [35] R. A. Arndt, J. F. Allison, J. G. Haynos and A. Meulenberg, “Optical Properties of the COMSAT Non-Reflective Cell,” Proceedings of the 11th IEEE International Photovoltaic Specialists Conference, New York, pp. 40-43, 1975. [36] D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, and A. Leo, “Texturing Industrial Multicrystalline Silicon Solar Cells,” Solar Energy, vol. 76, pp. 277–283, 2004. [37] A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, “Angle-dependent Reflectance Measurements on Photovoltaic Materials and Solar Cells,” Optics Communications, vol. 172, pp. 139–151, 1999. [38] P. Verlinden, O. Evrard, E. Mazy, and A. Crahay, “The Surface Texturization of Solar Cells: A New Method Using V-grooves with Controllable Sidewall Angles,” Solar Energy Material and Solar Cells, vol. 26, pp. 71–78, 1992. [39] H. Bender, J. Szlufcik, H. Nussbaumer, G. Palmers, O. Evrard, J. Nijs, R. Mertens, E. Bucher, and G. Willeke, “Polycrystalline Silicon Solar Cells with Mechanically Formed Texturization,” Applied Physics Letters, vol. 62, pp. 2941–2943, 1993. [40] A. W. Smith and A. Rohatgi, “Ray Tracing Analysis of the Inverted Pyramid Texturing Geometry for High Efficiency,” Solar Energy Material and Solar Cells, vol. 29, pp. 37–49, 1993. [41] R. Chaoui, M. Lachab, F. Chiheub, and N. Seddiki, “Comparison of Texturing Methods for Monocrystalline Silicon Solar Cells Using KOH and Na2CO3,” Proceedings of the 14th European Photovoltaic Solar Energy Conference, Barcelona, pp. 812–814, 1997. [42] O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. W. Schock, “Texture Etched ZnO:Al Coated Glass Substrates for Silicon Based Thin Film Solar Cells,” Thin Solid Films, vol. 351, pp. 247–253, 1999. [43] A. K. Chu, J. S. Wang, Z. Y. Tsai, and C. K. Lee, “A Simple and Cost-effective Approach for Fabricating Pyramids on Crystalline Silicon Wafers,” Solar Energy Material and Solar Cells, vol. 93, pp. 1276–1280, 2009. [44] S. R. Chitre, “A High Volume Cost Efficient Production Micro Structuring Process,” Proceedings of the 13th IEEE International Photovoltaic Specialists Conference, Washington, D. C., pp. 152–154, 1978. [45] D. L. King and M. E. Buck, ”Experimental Optimization of an Anisotropic Etching Process for Random Texturization of Silicon Solar Cells,” Proceedings of the 22nd IEEE International Photovoltaic Specialists Conference, Las Vegas, pp. 303–308, 1991. [46] M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The Effect of Front ZnO:Al Surface Texture and Optical Transparency on Efficient Light Trapping in Silicon Thin-film Solar Cells,” Journal of Applied Physics, vol. 101, pp. 074903-1–074903-11, 2007. [47] E. Vazsonyi, K. D. Clercq, R. Einhaus, E. V. Kerschaver, K. Said, and J. Poortmans, “Improved Anisotropic Etching Process for Industrial Texturing of Silicon Solar Cells,” Solar Energy Material and Solar Cells, vol. 57, pp. 179–188, 1999. [48] Z. Xi, D. Yang, W. Dan, C. Jun, X. Li, and D. Que, “Investigation of Texturization for Monocrystalline Silicon Solar Cells with Different Kinds of Alkaline,” Renewable Energy, vol. 29, pp. 2101–2107, 2004. [49] C. T. Sah, “Reduction of Solar Cell Efficiency Across the Back Surface Field Junction,” Solid State Electronics, vol. 31, pp. 451–457, 1984. [50] J. Nelson, The Physics of Solar Cells ( Imperial College, London, 2003). [51] R. Brendel, Thin-Film Crystalline Silicon Solar Cells (Wiley-VCH, Weinheim, Germany, 2003). [52] M. Z. Shvarts, O. I. Chosta, I. V. Kochnev, V. M. Lantratov, and V. M. Andreev, “Radiation Resistante AlGaAs/GaAs Concentrator Solar Cells with Internal Bragg Reflector,” Solar Energy Material and Solar Cells, vol. 68, pp. 105–122, 2001. [53] D. C. Johnson, I. Ballard, K. W. J. Barnham, D. B. Bishnell, J. P. Connolly, M. C. Lynch, T. N. D. Tibbits, N. J. Ekins-Daukes, M. Mazzer, R. Airey, G. Hill, and J. S. Roberts, “Advances in Bragg Stack Quantum Well Solar Cells,” Solar Energy Material and Solar Cells, vol. 87, pp. 169–179, 2005. [54] T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace Simulation of Light Trapping in Silicon Solar Cell with Texture Structures,” Solar Energy Material and Solar Cells, vol. 90, pp. 2647–2656, 2006. [55] P. Campbell and M. A. Green, “High Performance Light Trapping Textures for Monocrystalline Silicon Solar Cells,” Solar Energy Material and Solar Cells, vol. 65, pp. 369–375, 2001. [56] W. F. Mohamad, “Calculations of Light Trapping, Responsivity, and Internal Quantum Efficiency of In-doped Silicon (n) Structure,” Renewable Energy, vol. 28, pp. 311–320, 2003. [57] J. Muller, B. Rech, J. Springer and M. Vanecek, “TCO and Light Trapping in Silicon Thin Film Solar Cells,” Solar Energy, vol. 77, pp. 917–930, 2004. [58] L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of Enhanced Absorption in Thin Film Si Solar Cells with Textured Photonic Crystal Back Reflector,” Applied Physics Letters, vol. 93, pp. 221105-1–221105-3, 2008. [59] R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light Trapping in Thin-film Silicon Solar Cells with Submicron Surface Texture,” Optics Express, vol. 17, pp. 23058–23065, 2009. [60] Y. Sobajima, A. S. Kato, A. T. Matsuura, A. T. Toyama, and A. H. Okamoto, “Study of the Light-trapping Effects of Textured ZnO:Al/glass Structure TCO for Improving Photocurrent of a-Si:H Solar Cells,” Material in Electronics, vol. 18, pp. 159–162, 2007. [61] C. Heine and R. H. Morf, “Submicrometer Gratings for Solar Energy Applications,” Applied Optics, vol. 34, pp. 2476–2482, 1995. [62] C. Eisele, C. E. Nebel, and M. Stutzmann, “Periodic Light Coupler Gratings in Amorphous Thin Film Solar Cells,” Journal of Applied Physics, vol. 89, pp. 7722–7726, 2001. [63] J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin Film Solar Cell Design Based on Photonic Crystal and Diffractive Grating Structures,” Optics Express, Vol. 16, pp. 15238–15248, 2008. [64] N. Senoussaoui, M. Krause, J. Müller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-film Solar Cells with Periodic Grating Coupler,” Thin Solid Films, vol. 451, pp. 397–401, 2004. [65] A. Lin and J. Phillips, “Optimization of Random Diffraction Gratings in Thin-film Solar Cells Using Genetic Algorithms,” Solar Energy Material and Solar Cells, vol. 92, pp. 1689–1696, 2008. [66] D. Zhou and R. Biswas, “Photonic Crystal Enhanced Light-trapping in Thin Film Solar Cells,” Journal of Applied Physics, vol. 103, pp. 093102-1–093102-5, 2008. [67] M. Berginski, J. Hupkes, A. Gordijn, W. Reetz, T. Watjen, B. Rech, and M. Wuttig, “Experimental Studies and Limitations of the Light Trapping and Optical Losses in Microcrystalline Silicon Solar Cells,” Solar Energy Material and Solar Cells, vol. 92, pp. 1037–1042, 2008. [68] A. Goetzberger, J. C. Goldschmidt, M. Peters, and P. Loper, ”Light Trapping, a New Approach to Spectrum Splitting,” Solar Energy Material and Solar Cells, vol. 92, pp. 1570–1578, 2008. [69] S. Fahr, C. Ulbrich, T. Kirchartz, U. Rau, C. Rockstuhl, and F. Lederer, “Rugate Filter for Light-trapping in Solar Cells,” Optics Express, vol. 16, pp. 9332–9343, 2008. [70] S. H. Zaidi, J. M. Gee, and D. S. Ruby, “Diffraction Grating Structures in Solar Cells,” in Twenty-Eighth IEEE Photovoltaic Special Conference, pp. 395–398, 2000. [71] S. H. Zaidi, R. Marquadt, B. Minhas, and J. Tringe, “Deeply Etched Grating Structures for Enhanced Absorption in Thin c-Si Solar Cells,” in Twenty-Ninth IEEE Photovoltaic Special Conference, pp. 1290–1293, 2002. [72] A. A. Abouelsaood, S. A. El-Naggar, and M. Y. Ghannam, “Shape and Size Dependence of the Anti-reflective and Light-trapping Action of Periodic Grooves,” Progress in Photovoltaics: Research and Applications, vol. 10, pp. 513–526, 2002. [73] A. Chutinan1, N. P. Kherani1, and S. Zukotynski, ”High-efficiency Photonic Crystal Solar Cell Architecture,” Optics Express, vol. 17, pp. 8871–8878, 2009. [74] H. Steibig, N. Senoussaoui, C. Zahren, C. Hesse, and J. Muller, ”Silicon Thin-film Solar Cells with Rectangular-shaped Grating Couplers,” Progress in Photovoltaics: Research and Applications, vol. 14, pp. 13–24, 2006. [75] A. Chutinan and S. John, “Light Trapping and Absorption Optimization in Certain Thin-film Photonic Crystal Architectures,” Physical Review A, vol. 78, pp. 023825-1–023825-15, 2008. [76] M. Y. Ghannam, A. A. Abouelsaood, A. S. Alomar, and J. Poortmans, ”Analysis of Thin-film Silicon Solar Cells with Plasma Textured Front Surface and Multi-layer Porous Silicon Back Reflector,” Solar Energy Material and Solar Cells, vol. 94, pp. 850–856, 2010. [77] A. Rohatgi, E. Weber, and L. C. Kimerling, “Opportunities in Silicon Photovoltaics and Defect Control in Photovoltaic Materials,” Journal of Electronic Materials, vol. 22, pp. 65–72, 1993. [78] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism Phenomena in Photonic Crystals,” Physical Review B, vol. 58, pp. R10096–R10099, 1998. [79] J. Gee, “Optically Enhanced Absorption in Thin Silicon Layers Using Photonic Crystals,” in Twenty-Ninth IEEE Photovoltaic Special Conference, pp. 150–153, 2002. [80] C. Haase, D. Knipp, and H. Stiebig, “Optics of Thin-film Silicon Solar Cells with Efficient Periodic Light Trapping Textures,” Proceedings of the SPIE, vol. 6645, pp. 66450W, 2007. [81] C. Haase and H. Stiebig, “Thin-film Silicon Solar Cells with Efficient Periodic Light Trapping Texture,” Applied Physics Letters, vol. 91, pp. 061116-1–061116-3, 2007. [82] M. Peters, J. C. Goldschmidt, T. Kirchartz, and B. Blasi, “The Photonic Light Trap-Improved Light Trapping in Solar Cells by Angularly Selective Filters,” Solar Energy Material and Solar Cells, vol. 93, pp. 1721–1727, 2009. [83] M. J. Kerr, J. Schmidt, A. Cuevas, and J. H. Bultman, “Surface Recombination Velocity of Phosphorus-diffused Silicon Solar Cell Emitters Passivated with Plasma Enhanced Chemical Vapor Deposited Silicon Nitride and Thermal Silicon Oxide,” Journal of Applied Physics, vol. 89, pp. 3821–3826, 2001. [84] A. W. Blakers and M. A. Green, “20% Efficiency Silicon Solar Cells,” Applied Physics Letters, vol. 48, pp. 215–217, 1986. [85] M. A. Green, “Crystalline Silicon Solar Cell,” In Clean Electricity from Photovoltaics; M. D. Archer, R. Hill, Eds.; Imperial College Press: London, Chapter 4, 2001. [86] M. A. Green, J. Zhao, A. Wang, C. M. Chong, S. Narayanan, A. W. Blakers, and S. R. Wenham, “Improvements in Silicon Solar Cell Efficiency,” The 8th European Communities Photovoltaic Solar Energy Conference, Florence, Italy, May, pp. 164–167, 1988. [87] J. Zhao, A. Wang, and M. A. Green, “24% Efficient PERL Structure Silicon Solar Cells,” IEEE Transactions on Electron Devices, vol. 91, pp. 333–335, 1990. [88] J. Zhao, A. Wang, and M. A. Green, “24.5% Efficiency PERT Silicon Solar Cells on SEH MCZ Substrates and Cell Performance on Other SEH CZ and FZ Substrates,” Solar Energy Material and Solar Cells, vol. 66, pp. 27–36, 2001. [89] J. Zhao, A.Wang, and M. A. Green, “High-efficiency PERL and PERT Silicon Solar Cells on FZ and MCZ Substrates,” Solar Energy Material and Solar Cells, vol. 65, pp. 429–435, 2001. [90] S. R. Wenham, C. B. Honsberg, and M. A. Green, “Buried Contact Silicon Solar Cells,” Solar Energy Materials and Solar Cells, pp. 101–110, 1994. [91] R. R. King, R. A. Sinton, and R. M. Swanson, “Front and Back Surface Fields for Point-contact Solar Cells,” IEEE Photovoltaic Specialists Conference, 20th, Las Vegas, NV; UNITED STATES, pp. 538–544, 1988. [92] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar Cell Efficiency Tables (version 35),” Progress in Photovoltaics: Research and Applications, vol. 18, pp. 144–150, 2010. [93] http://org.ntnu.no/solarcells/pics/chap2/Solar_Spectrum.png [94] P. Wurfel, Physics of solar cell (WILEY-VCH, 2005). [95] S. Kolodinski, J. H. Werner, and H. J. Queisser, “Quantum Efficency Exceeding Unity in Silicon Leading to Novel Selection Principles for Solar Cells Materials,” Solar Energy Materials and Solar Cells ,vol. 33, pp. 275–285, 1994. [96] M. J. Keevers and M. A. Green, “Efficiency Improvements of Silicon Solar Cells by the Impurity Photovoltaic Effect,” Proceedings of the 3rd IEEE Photovoltaic Specialists Conference, pp. 140–146, 1993. [97] M. A. Green, “Limits on the Open-circuit Voltage and Efficiency of Silicon Solar Cells Imposed by Intrinsic Auger Process,” IEEE Transactions on Electron Devices, vol. ED-31, pp.671–678, 1984. [98] W. Shockley and H. J. Queisser, “Detailed Balance Limit on Efficiency of p-n Junction Solar Cells,” Journal Applied Physics, vol.32, pp. 510–519, 1961. [99] P. Campbell and M. A. Green, “The Limiting Efficiency of Silicon Solar Cells Under Concentrated Sunlight,” IEEE Transactions on Electron Devices, vol. ED-33, pp. 234–239, 1986. [100] T. Tideje, E. Yablonovitch, G. Cody, and B. G. Brooks, “Limiting Efficiency of Silicon Solar Cells,” IEEE Transactions on Electron Devices, vol. ED-31, pp.711–716, 1984. [101] H. L. Hwang and B. H. Tseng, Solar cells (Wu-Nan Book Inc., Taiwan, 2008) [102] B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the Device Physics Principles of Planar and Radial p-n Junction Nanorod Solar Cells,” Journal of Applied Physics, vol. 97, pp. 114302-1–114302-11, 2005. [103] P. A. Basore, “Extended Spectral Analysis of Internal Quantum Efficiency,” Photovoltaic Specialists Conference, Conference Record of the Twenty-Third IEEE, pp.147–152, 1993. [104] R. Brendel and D. Scholten, “Modeling Light Trapping and Electronic Transport of Waffle-shaped Crystalline Thin-film Si Solar Cells,” Applied Physics A, vol. 69, pp. 201–213, 1999. [105] E. Yablonovitch and G. Cody, “Intensity Enhancement in Textured Optical Sheets for Solar Cells,” IEEE Transactions on Electron Devices, vol. ED-29, pp. 300–305, 1982. [106] http://en.wikipedia.org/wiki/Anti-reflective_coating [107] C. C. Lee, Thin Film Optics and Coating Technology (Yi Hsien Publishing Co., Ltd., Taiwan, 2009.) [108] W. M. Rohsenow and H. Choi, Heat, Mass, and Momentum Transfer (Prentice Hall, New York, 1961.) [109] K. H. Yang and J. Y. Yang, “The Analysis of Light Trapping and Internal Quantum Efficiency of a Solar Cell with DBR Back Reflector,” Solar Energy, vol. 83, pp. 2050–2058, 2009. [110] http://en.wikipedia.org/wiki/File:Lambert_Cosine_Law_1.svg [111] J. F. Liou, Modern optics (New Wen Ching Developmental Publishing co.,Ltd., Xian, 2006). [112] C. Palmer, Diffraction Grating Handbook (6th Edition, Newport Corporation, 2005). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47463 | - |
| dc.description.abstract | 本研究成功的建立了太陽能電池內部量子效率計算理論,以及模擬太陽能電池中基極區、射極區及空間電荷區對量子效率的貢獻,並分析了基極區厚度、射極區厚度、光線傳播數、光線傳播角度、載子擴散長度、載子表面復合速度、底部表面復合速度、電池表面抗反射率、電池底部反射率以及金字塔結構的使用等與量子效率之間的關係,並提供設計太陽能電池之理論參考。在電池表面抗反射部分,我們使用了氟化鎂(MgF)與硫化鋅(ZnS)的雙層抗反射結構以及金字塔結構太陽能電池,其較未使用抗反射膜的平板太陽能電池量子效率分別高約20%以及30%,而金字塔結構的角度若為54.75°時,其量子效率較角度為30°者高約21.7%。使用布拉格反射鏡為底部反射器結構時,當底部反射率達到100%時,光線在電池內的光線傳播數為l=2之量子效率則較光線傳播數為l=1時高約6.34%,以及具有光線傳播角度為θ=60°之量子效率較光線傳播角度為θ=0°時高約9.01%,若固定載子擴散長度,對整體量子效率影響較大的為基極區厚度。
另外在光線傳播數的影響上,根據理論,光線傳播數的極限值應為l=4n^2=51,其中n為矽的折射率約為3.5,光線若在電池中傳播51次後,其內部量子效率將較光線傳播數為l=1時高約26.98%,若具有光線傳播角度為 之量子效率值,當光線傳播數為l=25時,則量子效率值與光線傳播角度為 時相當,且研究中發現底部反射率的大小對量子效率的影響較表面穿透率的大小影響要大。另外若波長低於1000nm,具有光線傳播角度為θ=60°之量子效率值則較光線傳播角度為θ=0°時高約15%。我們也發現,載子擴散長度、光線傳播數以及光線傳播角度的增加可有效的使長波長光線(波長大於1000nm)提升位於電池內部的吸收率,但基極區的材料厚度加厚,隨著光線傳播數以及光線傳播角度的增加,內部量子效率則會隨之降低,因此若光線傳播數為l=51,載子的擴散長度為1000μm時,其內部量子效率較擴散長度為25μm者高約37%,且量子效率的峰值則出現在基極區厚度為50μm。相同的現象則出現於具光柵結構太陽能電池,由於光線的繞射角度為θm=0° 的條件下,光線傳播數若達l=51,則其量子效率峰值可達49%,並發生於基極區厚度為50μm。而其量子效率在基極區厚度wb小於150μm時,則較未具光柵太陽能電池高約9%,當基極區厚度大於150μm後,具有光柵結構者之內部量子效率則稍低於未具光柵結構者。上述提供了太陽能電池改變外部結構與內部結構所得到的內部量子效率與外部量子效率關係,因此當設計高效率太陽能電池時,可根據以上的物理現象與結果來提供足夠的元件設計方向與依據。 | zh_TW |
| dc.description.abstract | A theoretical analysis of the total internal quantum efficiency (IQE) of flat-band homo-junction silicon solar cell with back reflector using distributed Bragg reflectors and grating structure to improve the light trapping is presented and contributions of different regions of the structure to IQEs are simulated. An optical model for the determination of generation profile of the cell is adopted and multiple light passes are considered and compared to previous single light pass approach. It is found that the spatial widths of the cell, the surface recombination velocities, the front surface transmittance, the diffusion length, transmitted angle and the back reflector have significant impacts on the IQEs. With two light passes and normal incident light, the simulation result shows the IQEs can be increased over the one pass value by 6.34% and with a 60° light reflection angle, the IQEs can be further increased by 9.01% while assuming the reflectance at back structure closed to 100%. The effect on IQEs by back reflectance is more significant than that by front transmittance. Under multiple light passes simulation, up to l=4n^2=51 light trapping passes have been considered at wavelength range 900nm-1000nm, the cell can be enhanced by about 26.98%. With textured cell (facet angle α = 54.75°) and normal incident light, the simulation result shows the total IQE increases as the base thickness increases and is higher than that of the at band cell (α = 0°) by 21.7%. The total IQE becomes higher as the facet angle α varies from 0° to 54.75°. For α < 40°, the IQE of textured cell is similar to that of at band cell and for α > 40° the textured effect (increasing the number of light strikes) becomes more evident. Under fixed facet angle α = 54.75°, when the incident angle β is larger than 70°, the IQEs can be further increased by 8.9% as compared with that of normal incident case. As compared with at band cell with anti-reflection coating (which can reduce the Fresnel reflection loss), the total IQE of the textured cell is slightly lower for wavelength range 450nm-700nm and higher for wavelength range 700nm-1150nm.
With l=4n^2H light trapping paths, the simulation result shows the best IQEs (~IQEb) with transmitted angle can reach to 73% which is 14% more than that with the normal incident. For the case of normal transmitted angle, the IQEb with diffusion length 1000μm is about 81% and is 37% higher than that with diffusion length 25μm. Under l=51 light trapping paths, the best achievable IQEb with grating structure is 49% at cell thickness wb=50μm, and the IQEb with diffraction angle θm=60° is larger than that with transmitted angle θl=0° and without light trapping by 9% and 39%, respectively. For cell thickness (H~wb>150μm), the IQEb with diffraction angle θm=60° is slightly smaller than that with transmitted angle θl=0°. It is observed that in present cell model the IQEs are affected more significantly by cell thickness, diffusion length and diffraction angle. The obtained results can provide essential information for designing a high-efficiency solar cell. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:00:59Z (GMT). No. of bitstreams: 1 ntu-99-D94543018-1.pdf: 2783135 bytes, checksum: 44ca817af5c1966223b901198e07627e (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 目 錄
摘要 I Abstract III 誌謝 V 目 錄 VI 表目錄 IX 圖目錄 X 符號說明 XIV 第一章、緒論 1 1.1 引言 1 1.2 背景分析 1 1.3 文獻回顧 3 1.4 本文目的 4 1.5 本文內容 5 第二章、矽太陽能電池 7 2.1 太陽能電池種類 7 2.2 太陽能電池材料 8 2.3 太陽能電池元件種類 10 2.4 太陽能電池基本物理性質 11 2.5 太陽能電池發展世代 12 2.6 電池構造 13 2.7 電極構造 15 2.8 影響效率因素 17 2.9 太陽能電池的製作方式 19 2.10 矽太陽能電池的特徵 20 2.11 高效率矽太陽能電池結構 20 2.12 轉換效率表 29 第三章、太陽能電池元件物理 31 3.1 空氣質量 32 3.2 半導體元件理論 33 3.3 轉換效率與損失 38 3.4 載子傳輸控制方程式 40 3.5 電池功率與效率 43 3.6 邊界條件 45 3.7 內部量子效率 49 3.8 圓柱型太陽能電池 52 第四章、量子效率理論建立與結果探討 57 4.1 光線捕捉路徑 58 4.2 薄膜極限的光路徑長度與光線傳播數 61 4.3 表面抗反射膜分析 63 4.4 單層膜的反射與透射 70 4.5 表面抗反射膜之優化 75 4.6 多層膜的透射 78 4.7 多層膜的反射 79 4.8 新型多光線傳播數之內部量子效率理論推導與建立 80 4.9 具DBR結構太陽能電池之內部量子效率分析 88 第五章、金字塔結構太陽能電池 102 5.1 表面粗糙化特徵與優點 102 5.2 具金字塔結構太陽能電池內部量子效率理論建立 107 5.3 具金字塔結構太陽能電池分析結果 111 第六章、光柵型結構太陽能電池 118 6.1 光波的純量繞射理論 118 6.2 巴比涅原理 119 6.3 瑞利-索末菲繞射公式 120 6.4 繞射問題的頻率域分析 122 6.5 基爾霍夫繞射公式近似 123 6.6 新型光柵型(Grating)太陽能電池內部量子效率理論建立 128 6.7 反射式與穿透式光柵繞射角 131 6.8 具光柵結構太陽能電池之分析與結果 133 第七章、結論與展望 149 7.1 結論 149 7.2 未來展望 151 參考文獻 153 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光柵 | zh_TW |
| dc.subject | 金字塔結構 | zh_TW |
| dc.subject | 擴散長度 | zh_TW |
| dc.subject | 太陽能電池 | zh_TW |
| dc.subject | 內部量子效率 | zh_TW |
| dc.subject | 布拉格反射鏡 | zh_TW |
| dc.subject | 光線捕捉 | zh_TW |
| dc.subject | Diffusion length | en |
| dc.subject | Light trapping | en |
| dc.subject | Pyramid structure | en |
| dc.subject | Grating | en |
| dc.subject | Internal quantum efficiency | en |
| dc.subject | Solar cell | en |
| dc.title | 具光線捕捉路徑太陽能電池內部量子效率模擬與分析 | zh_TW |
| dc.title | Modeling and Analysis of Light Trapping and Internal Quantum Efficiency of Solar Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張家歐,陳希立,李三良,洪哲文,黃家健 | |
| dc.subject.keyword | 太陽能電池,內部量子效率,布拉格反射鏡,光線捕捉,光柵,擴散長度,金字塔結構, | zh_TW |
| dc.subject.keyword | Solar cell,Internal quantum efficiency,Light trapping,Grating,Diffusion length,Pyramid structure, | en |
| dc.relation.page | 161 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
