Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47453
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊德良(Der-Liang Young)
dc.contributor.authorYi-Heng Huangen
dc.contributor.author黃翊恆zh_TW
dc.date.accessioned2021-06-15T06:00:32Z-
dc.date.available2011-09-21
dc.date.copyright2011-08-23
dc.date.issued2011
dc.date.submitted2011-08-18
dc.identifier.citationReferences
[1]. N.J. Wu, K.A. Chang (2010), Simulation of free-surface waves in liquid sloshing using a domain-type meshless method, Internat. J. Numer. Methods fluids.
[2]. G. Glauss (2002), Dramas of the sea: episodic waves and their impact on offshore structures, Applied Ocean Research. 24:147-161.
[3]. G.X. Wu, R.E. Taylor (1994), Finite element analysis of two-dimensional non-linear transient water waves, Applied Ocean Research. 16:363–372.
[4]. D.C. Lo, D.L. Young (2004), Arbitrary Lagrangian-Eulerian finite element analysis of free surface flow using a velocity-vorticity formulation, Journal of Computational Physics. 195:175-201.
[5]. T. Ohyama, K. Nadaoka (1991), Development of a numerical wave tank for analysis of nonlinear and irregular wave field, Fluid Dynamics Research. 8:231-251.
[6]. S.T. Gilli, J. Skourup, I.A. Sevendsen (1989), An efficient boundary element method for nonlinear water waves, Engineering Analysis with Boundary Elements. 6:97-107.
[7]. H.S. Longuet-Higgins, E.D. Cokelet (1976), The deformation of steep waves on water, I. a numerical method of compution, Proceeding of the Royal Society of London. A350:1-26.
[8]. D.G. Dommermuth, D.K.P. Yue (1987), Numerical simulations of nonlinear axisymmetric flows with a free surface, Journal of Fluid Mechanics. 178:195-219.
[9]. S.T. Gilli, P. Guyenne, F. Dias (2001), A fully nonlinear model for three-dimensional overturning waves over an arbitrary bottom, International Journal for Numerical Method in Fluids. 35:829-867.
[10]. M.J. Cooker, D.H. Peregrine, O. Skovggard (1990), The interaction between a solitary wave and a submerged semicircular cylinder, Journal of Fluid Mechanics. 215:1-22.
[11]. M. Issacson (1982), Nonlinear wave effects on fixed and floating bodies, Journal of Fluid Mechanics. 120:267-281.
[12]. S.T. Grilli, Y. Horrillo (1997), Numerical generation and absorption of fully nonlinear periodic waves, J. Eng. 176:1060-1069.
[13]. C.P. Liao, T.C Lu (1994), Numerical simulation of free surface, Proceedings of the 7th Hydraulic Engineering Conference. (in chinese)
[14]. C.P. Liao, M.S. Wu, J.H. Kuo (2001), Numerical simulation of long rectangular lake water wave sloshing, The 8th National Computational Fluid Dynamics Conference, Yilan. PP. 14. (in chinese)
[15]. H.H. Hsiao (1999), Numerical simulation of breaking solitary wave on slope, Department of Harbor and River Engineering College of National Taiwan Ocean University Master Thesis. (in chinese)
[16]. E. Kita, J. Katsuragawa, N. Kamiya (2004), Application of Trefftz-type boundary element method to simulation of two-dimensional sloshing phenomenon, Engineering Analysis with Boundary Elements. 28:667-683.
[17]. N.J. Wu (2008), Numerical simulation of fully nonlinear surface waves by methless method with Gaussian radial basis functions, Department of Civil Engineering College of Engineering National Taiwan University PH.D. Dissertation.
[18]. N.J. Wu, T.K. Tsay (2009), Applicability of the method of fundamental solution to 3-D wave-body interaction with fully nonlinear free surface, Journal of Engineering Mathematics. 63:61-78.
[19]. N.J. Wu, T.K. Tsay, D.L. Young (2006), Meshless numerical simulation for fully nonlinear water waves, Internat. J. Numer. Methods fluids. 50:219–234.
[20]. N.J. Wu, T.K. Tsay, D.L. Young (2008), Computation of nonlinear free-surface flows by a meshless numerical method, Journal of Waterway, Port, Coastal, and Ocean Engineering. 97-103.
[21]. S. Chantasiriwan (2009), Modal analysis of free vibration of liquid in rigid container by the method of fundamental solutions, Engineering Analysis with Boundary Elements. 33:726-730.
[22]. E.J. Kansa (1990), Multiquadrics: a scattered data approximation scheme with applications to computational fluid-dynamics. Comp. Math. Appl.. 19:147-161.
[23]. C. Franke, R. Schaback (1998), Solving partial differential equations by collocation using radial basis functions. Appl. Math. Comput.. 93(1):73–82.
[24]. C. Franke, R. Schaback (1998), Convergence order estimates of meshless collocation methods using radial basis functions, Adv. Comput. Math.. 8:381–399.
[25]. Y.L. Wu, C. Shu (2002), Development of RBF-DQ method for derivative approximation and its application to simulate natural convection in concentric annuli. Comput. Mech.. 29, o. 6: 477-485.
[26]. S.M. Wong, Y.C. Hon, T.S. Li (2002), A meshless multi-layer model for a coastal system by radial basis functions, Comput. Math. Appl. 43 (3–4):585–605.
[27]. C.H. Shu, K.S. Yeo (2003), Local radial basis differential quadrature method and its application to solve two-dimensional incompressible Navier-Strokes equations. Comput. Meth. Appl. Mech. Eng.; Vol. 192, o. 7-8, 941-954.
[28]. R. Franke (1982), Scattered data interpolation: test of some methods. Math. Comput.. 38:181-200.
[29]. R.L. Hardy (1971), Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 176:1905-1915.
[30]. W.R. Madych, S.A. Nelson (1990), Multiquadric interpolation and conditionally positive definite functions, . Math. Comput.. 54:211-230.
[31]. W.R. Madych, S.A. Nelson (1992), Miscellaneous error bounds for multiquadric and telated interpolations. Comput. Math. Applic.. 24:121-138.
[32]. R. Schaback (1995), Error estimates and condition numbers for radial basis functions. Adv. Comput. Math.. 3:251-264.
[33]. R.E. Carlson, T. Foley (1991), The parameter in multiquadric interpolation. Adv. Comput. Math. Appl.. 21:29-42.
[34]. O.M. Faltinsen (1978), A numerical nonlinear method of sloshing in tanks with two-dimensional flow, J. Ship Res. 22:193–202.
[35]. D. Liu, P. Lin (2008), A numerical study of three-dimensional liquid sloshing in tanks, Journal of Computational Physics. 227:3921–3939.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47453-
dc.description.abstract本研究應用一個改良的區域化之徑向基底函數微分積分法(local radial basis function differential quadrature, LRBF-DQ method),以求解二維非線性自由液面的問題。此處提出的區域化之徑向基底函數微分積分法是一個具有高階精確度,而此數值方法不需要建立網格,因此得以得到較佳之計算效率。此數值方法是利用所求點的附近點之線性加權函數值之總和來離散化,徑而去得到所求點之微分值。以往傳統的微分積分法較易受限於計算矩陣非常條件不良(ill-condition)以及對於計算網格型式過於限制等缺點,本方法在模擬求解控制方程式之近似解時可以比傳統的數值方法更加的穩定。在自由液面問題的數值模擬中,非線性項影響很大的情況下,往往隨著計算時間的變長,誤差就會跟著越來越大,因而最後容易導致結果的錯誤。本研究會先以一個非線性影響很小的自由震盪問題當作驗證,在自由液面的問題中若非線性的影響很小,那就可以把問題當作是一個類似線性的自由液面問題,因此就有解析解可以去比對其結果的對錯,得以確保數值模式的正確與否,再來就會利用此數值模式去模擬一些非線性項影響較大的自由震盪問題。藉由這些數值的試驗,證實本數值模式有能力並能夠精確的解決非線性項影響較大的自由液面問題。zh_TW
dc.description.abstractIn this study, a modified local radial basis function differential quadrature (LRBF-DQ) method is applied to solve the two-dimensional non-linear free surface problems. The LRBF-DQ method presented here has high order accuracy. This numerical scheme is a meshless approach, so that the better efficiency of calculation is obtained. It is discretized by a weighted linear sum of functional values at the points neighboring its desired knot so as to obtain the differential value of the desired point. The conventional DQ method is easier to subject to the ill-condition of the computed matrix and has a higher limit to the computing mesh. This method is more stable than the conventional numerical scheme when the approximate solution of the governing equation is solved by numerical simulation. In simulating the numerical value of the free surface, the error will become higher as the calculation time is longer in the case that the influence of the non-linear item is very high. Therefore, it is easy to result in wrong conclusions. A sloshing problem with a little influence on the non-linearity will be used for verification at first in this study. If the non-linearity has a little influence on the problem of the free surface, this problem can be considered as a pseudo-linear problem of the free surface. Therefore, the analytical solution can be used to compare its results so as to ensure the numerical model is correct. In addition, this numerical mode will be used to simulate the sloshing problems which are highly affected by some non-linear items. With the experiment of these numerical values, it proves that the numerical model is capable of accurately solving the problems of the free surface which is highly affected by the non-linear items.en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:00:32Z (GMT). No. of bitstreams: 1
ntu-100-R97521314-1.pdf: 7533900 bytes, checksum: 73531a7a017db1553e965b5b5c5fd1b2 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsTable of contents
Abstract I
中文摘要 III
Table Caption VIII
Figure Caption IX
CHAPTER 1.
Introduction
1.1 Motivation 1
1.2 Purpose 3
1.3 Freesurface 4
1.4 Literature review of free surfaceproblems 7
1.5 Literature review of radial basis functions 9
1.6 Outline of the thesis 11
CHAPTER 2.
Problem physics
2.1 Governing equation 13
2.2 Initial conditions 16
2.3 Boundary conditions 17
2.3.1 Boundary conditions at free surface 17
2.3.2 Boundary conditions on a solid boundary 20
CHAPTER 3.
Numerical methods
3.1 Radial basis functions 22
3.2 Local RBF-DQ method 25
3.3 The method of least squares 32
3.4 Time marching scheme 34
3.4.1 Eulerian scheme 34
3.4.2 Lagrangian scheme 35
3.5 Choice of the local points 39

CHAPTER 4.
Numerical results
4.1 Linear forced liquid sloshing under horizontal excitation 42
4.2 The smallest non-linear effect in two-dimensional sloshing problem 44
4.2.1 Description of problem 44
4.2.2 Results of Eulerian scheme and Lagrangian scheme 47
4.3 The medium non-linear effect in two- dimensional sloshing problem 66
4.3.1 Description of problem 66
4.3.2 Results of Eulerian scheme 67
4.3.3 Results of Lagrangian scheme 75
4.4 The largest non-linear effect in two- dimensional sloshing problem 81
4.4.1 Description of problem 81
4.4.2 Results of Eulerian scheme 82
4.4.3 Results of Lagrangian scheme 86
CHAPTER 5.
Conclusions and suggestions
5.1 Conclusions 90
5.2 Suggestions for the further research 93

References 95
dc.language.isoen
dc.subject區域化之徑向基底函數微分積分法zh_TW
dc.subject自由震盪問題zh_TW
dc.subject自由液面zh_TW
dc.subject數值模式zh_TW
dc.subject無網格zh_TW
dc.subject非線性zh_TW
dc.subjectsloshing problemsen
dc.subjectmeshlessen
dc.subjectnumerical modelen
dc.subjectfree surfaceen
dc.subjectnon-linearen
dc.subjectlocal radial basis function differential quadrature (LRBF-DQ) methoden
dc.title以局部化徑向基底函數微分積分法求解二維自由液面問題zh_TW
dc.titleLocalized Radial Basis Function Differential Quadrature Method for Two-Dimensional Free Surface Problemsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳清祥(Ching-Shiang Chen),劉進賢(Chein-Shan Liu),范佳銘(Chia-ming Fan),沈立軒(Li-Hsuan Shen)
dc.subject.keyword區域化之徑向基底函數微分積分法,非線性,自由液面,數值模式,無網格,自由震盪問題,zh_TW
dc.subject.keywordlocal radial basis function differential quadrature (LRBF-DQ) method,non-linear,free surface,numerical model,meshless,sloshing problems,en
dc.relation.page116
dc.rights.note有償授權
dc.date.accepted2011-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
7.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved