Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47408
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱有田(Yu-Ten Ju)
dc.contributor.authorMeng-Wei Keen
dc.contributor.author柯孟韡zh_TW
dc.date.accessioned2021-06-15T05:58:30Z-
dc.date.available2012-08-26
dc.date.copyright2011-08-26
dc.date.issued2011
dc.date.submitted2011-08-18
dc.identifier.citationpart 1
Asselin-Labat, M. L., K. D. Sutherland, H. Barker, R. Thomas, M. Shackleton, N. C. Forrest, L. Hartley, L. Robb, F. G. Grosveld, and J. van der Wees. 2007. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat. Cell Biol. 9:201-209.
Bartek, J., J. Bartkova, N. Kyprianou, E. N. Lalani, Z. Staskova, M. Shearer, S. Chang, and J. Taylor-Papadimitriou. 1991. Efficient immortalization of luminal epithelial cells from human mammary gland by introduction of simian virus 40 large tumor antigen with a recombinant retrovirus. Proc. Natl. Acad. Sci. USA 88:3520-3524.
Biéche, I. and R. Lidereau. 1995. Genetic alterations in breast cancer. Genes Chromosomes Cancer 14:227-251.
Bocchinfuso, W. P., K. J. Lindzey, S. C. Hewitt, J. A. Clar, P. H. Myers, R. Cooper, and K. S. Korach. 2000. Induction of mammary gland development in estrogen receptor-α knockout mice. Endocrinology 141:2982-2994.
Bodnar, A. G., M. Ouellette, M. Frolkis, S. E. Holt, C. P. Chiu, G. B. Morin, C. B. Harley, J. W. Shay, S. Lichtsteiner, and W. E. Wright. 1998. Extension of life-span by introduction of telomerase into normal human cells. Science 279:349-352.
Boyer, S. N., D. E. Wazer, and V. Band. 1996. E7 protein of human papillomavirus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res. 56:4620-4624.
Brenner, A. J., M. R. Stampfer, and C. M. Aldaz. 1998. Increased p16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with p16 inactivation. Oncogene 17:199-205.
Brisken, C., S. Park, T. Vass, J. P. Lydon, B. W. O’Malley and R. A. Weinberg. 1998. A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc. Natl. Acad. Sci. USA 95:5076-5081.
Brisken, C. and R. D. Rajaram. 2006. Alveolar and lactogenic differentiation. J. Mammary Gland Biol. Neoplasia 11:239-248.
Chu, E. Y., J. Hens, T. Andl, A. Kairo, T. P. Yamaguchi, C. Brisken, A. Glick, J. J. Wysolmerski, and S. E. Millar. 2004. Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development 131:4819-4829.
Crawford, Y. G., M. L. Gauthier, A. Joubel, K. Mantei, K. Kozakiewicz, C. A. Afshari, and T. D. Tlsty. 2004. Histologically normal human mammary epithelia with silenced p16(INK4a) overexpress COX-2, promoting a premalignant program. Cancer Cell 5:263-273.
Debnath, J., S. K. Muthuswamy, and J. S. Brugge. 2003. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in thee-dimension basement membrane cultures. Methods 30:256-268.
Dimri, G., H. Band, and V. Band. 2005. Mammary epithelial cell transformation: insights from cell culture and mouse model. Breast Cancer Res. 7:171-179.
Düchler, M., F. Schmoll, F. Pfneisl, G. Brem, and K. Schellander. 1998. OMEC II: A new ovine mammary epithelial cell line. Biol. Cell 90:199-205.
Dundas, S. R., M. G. Ormerod, B. A. Gusterson, and M. J. O’Hare. 1991. Characterization of luminal and basal cells flow-sorted from the adult rat mammary parenchyma. J. Cell Sci. 100:459-471.
Forsyth, I. A. and A. Turvey. 1984. Fatty acid synthesis by explants cultures from the mammary glands of goats on days 60 and 120 of pregnancy. J. Endocrinol. 100:87-92.
Greider, C. W. 1994. Mammalian telomere dynamics: healing, fragmentation shortening and stabilization. Curr. Opin. Genet. Dev. 4:203-211.
Harris, J., P. M. Stanford, K. Sutherland, S. R. Oakes, M. J. Naylor, F. G. Robertson, K. D. Blazek, M. Kazlauskas, H. N. Hilton, and S. Wittlin. 2006. Socs2 and elf5 mediate prolactin-induced mammary gland development. Mol. Endocrinol. 20:1177-1187.
He, Y. L., Y. H. Wu, X. N. He, F. J. Liu, X. Y. He, and Y. Zhang. 2009. An immortalized goat mammary epithelial cell line induced with human telomerase reverse transcriptase (hTERT) gene transfer. Theriogenology 71:1417-1424.
Holst, C. R., G. J. Nuovo, M. Esteller, K. Chew, S. B. Baylin, J. G. Herman, and T. D. Tlsty. 2003. Methylation of p16INK4a promoters occurs in vivo in histologically normal human mammary epithelia. Cancer Res. 63:1596-1601.
Hong, H. X., Y. M. Zhang, H. Xu, Z. Y. Su, and P. Sun. 2007. Immortalization of swine umbilical vein endothelial cells with human telomerase reverse transcriptase. Mol. Cells 24:358-363.
Huang, J., J. D. Hardy, Y. Sun, and J. E. Shively. 1999. Essential role of biliary glycoprotein (CD66a) in morphogenesis of the human mammary epithelial cell line MCF10F. J. Cell Sci. 112:4193-4205.
Inoue, F., K. Takanashi, T. Noguchi, M. Hayashi, E. Sato and C. Tachi. 2002. Analysis of the telomere shortening in the cloned caprine cultured cell line, CPF-1, derived from placenta of Shiba goat (Capra hircus). J. Reprod. Dev. 48:469-476.
Kallioniemi, A., O. P. Kallioniemi, J. Piper, M. Tanner, T. Stokke, L. Chen, H. S. Smith, D. Pinkel, J. W. Gray, and F. M. Waldman. 1994. Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc. Natl. Acad. Sci. USA 91:2156-2160.
Kass, L., J. T. Erler, M. I. Dembo, and V. M. Weaver. 2007. Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis. Int. J. Biochem. Cell Biol. 39:1987-1994.
Katz, E. and C. H. Streuli. 2007. The extracellular matrix as an adhesion checkpoint for mammary epithelial function. Int. J. Biochem. Cell Biol. 39:715-726.
Kouros-Mehr, H., E. M. Slorach, M. D. Sternlicht, and Z. Werb. 2006. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 127:1041-1055.
Lee, K. M., K. H. Choi, and M. M. Ouellette. 2004. Use of exogenous hTERT to immortalize primary human cells. Cytotechnology 45:33-38.
Li, P., C. J. Wilde, L. M. B. Finch, D. G. Fernig and P. S. Rudland. 1999. Identification of cell types in the developing goat mammary gland. Histochem. J. 31:379-393.
Mailleux, A. A., M. Overholtzer, and J. S. Brugge. 2008. Lumen formation during mammary epithelial morphogenesis. Cell Cycle 7:57-62.
Mallepell, S., A. Krust, P. Chambon, and C. Brisken. 2006. Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc. Natl. Acad. Sci. USA 103:2196-2201.
Muthuswamy, S. K., D. Li, S. Lelievre, M. J. Bissell, and J. S. Brugge. 2001. ErbB2, but not ErbB1, reinitiates proliferation and induces luminal population in epithelial acini. Nat. Cell Biol. 3:785-792.
Oakes, S. R., R. L. Rogers, M. J. Naylor, and C. J. Ormandy. 2008. Prolactin regulation of mammary gland development. J. Mammary Gland Biol. Neoplasia 13:13-28.
Ouellette, M. M., L. D. McDaniel, W. E. Wright, J. W. Shay, and R. A. Schultz. 2000. The establishment of telomerase-immortalized cell lines representing human chromosome instability syndromes. Hum. Mol. Genet. 9:403-411.
Pantschenko, A. G., J. Woodcock-Mitchell, S. L. Bushmich, and T. J. Yang. 2000. Establishment and characterization of caprine mammary epithelial cell line (CMEC). In Vitro Cell. Dev. Biol. Anim. 36:26-37.
Pitelka, D. R., S. T. Hamamoto, J. G. Duafala, and M. K. Nemanic. 2009. Cell contacts in the mouse mammary gland: I. Normal gland in postnatal development and the secretory cycle. J. Mammary Gland Biol. Neoplasia 14:295-316.
Radisky, D. C. and L. C. Hartmann. 2009. Mammary involution and breast cancer risk: transgenic models and clinical studies. J. Mammary Gland Biol. Neoplasia 14:181-191.
Ratsch, S. B., Q. Gao, S. Srinivasan, D. E. Wazer, and V. Band. 2001. Multiple genetic changes are required for efficient immortalization of different subtypes of normal human mammary epithelial cells. Radiat. Res. 155:143-150.
Reginato, M. J., K. R. Mills, E. B. Becker, D. K. Lynch, A. Bonni, S. K. Muthuswamy, and J. S. Brugge. 2005. Bim regulation of lumen formation in cultured mammary epithelial acini is targeted by oncogenes. Mol. Cell Biol. 25:4591-4601.
Robinson, G. W. 2007. Cooperation of signaling pathways in embryonic mammary gland development. Nat. Rev. Genet. 8:963-972.
Romanov, S. R., B. K. Kozakiewicz, C. R. Holst, M. R. Stampfer, L. M. Haupt, and T. D. Tlsty. 2001. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409:633-637.
Shay, J. W., B. A. van der Haegen, Y. Ying, and W. E. Wright. 1993. The frequency of immortalization of human fibroblasts and mammary epithelial cells transfected with SV40 large T-antigen. Exp. Cell Res. 209:45-52.
Stampfer, M. R. and J. C. Bartley. 1985. Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo [A]pyrene. Proc. Natl. Acad. Sci. USA 82:2394-2398.
Sun, Y. L., C. S. Lin, and Y. C. Chou. 2006. Establishment and characterization of a spontaneously immortalized porcine mammary epithelial cell line. Cell Biol. Int. 30:970-976.
Toouli, C. D., L. I. Huschtscha, A. A. Neumann, J. R. Noble, L. M. Colgin, B. Hukku, and R. R. Reddel. 2002. Comparison of human mammary epithelial cells immortalized by simian virus 40 T-antigen or by the telomerase catalytic subunit. Oncogene 21:128-139.
Veltmaat, J. M., W. van Veelen, J. P. Thiery, and S. Bellusci. 2004. Identification of the mammary line in mouse by Wnt10b expression. Dev. Dyn. 229:349-356.
Watson, C. J. and W. T. Khaled. 2008. Mammary development in the embryo and adult: a journey of morphogenesis and commitment. Development 135:995-1003.
Wazer, D. E., Q. Chu, X. L. Liu, Q. Gao, H. Safaii, and V. Band. 1994. Loss of p53 protein during radiation transformation of primary human mammary epithelial cells. Mol. Cell Biol. 14:2468-2478.
Wazer, D. E., X. L. Liu, Q. Chu, Q. Gao, and V. Band. 1995. Immortalization of distinct human mammary epithelial cell types by human papilloma virus 16 E6 or E7. Proc. Natl. Acad. Sci. USA 92:3687-3691.
Wu, H. T., C. S. Lin, and M. C. Huang. 2003. In vitro and ex vivo green fluorescent protein expression in alveolar mammary epithelial cells and mammary glands driven by the distal 5’-regulative sequence and intron 1 of the goat β-casein gene. Reprod. Fertil. Dev. 15:231-239.
Zhao, X. S., L. Lu, N. Pokhriyal, H. Ma, L. Duan, S. Lin, N. Jafari, H. Band, and V. Band. 2009. Overexpression of RhoA induces preneoplastic transformation of primary mammary epithelial cells. Cancer Res. 69:483-491.
part 2
Bagadi, S. A. R., C. P. Prasad, A. Srivastava, R. Prashad, S. D. Gupta, and R. Ralhan. 2007. Frequent loss of Dab2 protein and infrequent promoter hypermethylation in breast cancer. Breast Cancer Res. Treat. 104:277-286.
Brisken, C. and R. D. Rajaram. 2006. Alveolar and lactogenic differentiation. J. Mammary Gland Biol. Neoplasia 11:239-248.
Brown, M. D. and D. B. Sacks. 2009. Protein scaffolds in MAP kinase signaling. Cell. Signal 21:462-469.
Calderwood, D. A., Y. Fujioka, J. M. de Pereda, B. Garcia-Alvarez, T. Nakamoto, B. Margolis, C. J. McGlade, R. C. Liddington, and M. H. Ginsberg. 2003. Integrin β cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. Proc. Natl. Acad. Sci. USA 100:2272-2277.
Chetrit, D., N. Ziv, and M. Ehrlich. 2009. Dab2 regulates clathrin assembly and cell spreading. Biochem. J. 418:701-715.
Chetrit, D., L. Barzilay, G. Horn, T. Bielik, N. I. Smorodinsky, and M. Ehrlich. 2011. Negative regulation of the endocytic adaptor disabled-2 (Dab2) in mitosis. J. Biol. Chem. 286:5392-5403.
Chlon, T. M., D. A. Taffany, J. Welsh, and M. J. Rowling. 2008. Retinoids modulate expression of the endocytic partners megalin, cubilin, and disabled-2 and uptake of vitamin D-binding protein in human mammary cells. J. Nutr. 138:1323-1328.
Cho, S. Y., S. H. Lee, and S. S. Park. 1999. Differential expression of mouse Disabled 2 gene in retinoic acid-treated F9 embryonal carcinoma cells and early mouse embryos. Mol. Cells 9:179-184.
Choi, C. K., M. Vicente-Manzanares, J. Zareno, L. A. Whitmore, A. Mogilner, and A. R. Horwitz. 2008. Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat. Cell Biol. 10:1039-1050.
Dennler, S., M.-J. Goumans, and P. ten Dijke. 2002. Transforming growth factor β signal transduction. J. Leukoc. Biol. 71:731-740.
Diwakar, R., A. L. Pearson, P. Colville-Nash, D. L. Baines, and M. E. C. Dockrell. 2008. Role played by Disabled-2 in albumin induced MAP kinase signaling. Biochem. Biophys. Res. Commun. 366:675-680.
Fazili, Z., W. Sun, S. Mittelstaedt, C. Cohen, and X. X. Xu. 1999. Disabled-2 inactivation is an early step in ovarian tumorigenicity. Oncogene 18:3104-3113.
Friederich, E., K. Vancompernolle, C. Huet, M. Goethals, J. Finidori, and J. Vandekerckhove. 1992. An actin-binding site containing a conserved motif of charged amino acid residues is essential for the morphogenic effect of villin. Cell 70:81-92.
Fulop, V., C. V. Colitti, D. Genest, R. S. Berkowitz, G. K. Yiu, S.-W. Ng, J. Szepesi, and S. C. Mok. 1998. DOC-2/hDab2, a candidate tumor suppressor gene involved in the development of gestational trophoblastic diseases. Oncogene 17:419-424.
Hauck, C. R., D. A. Hsia, and D. D. Schlaepfer. 2002. The focal adhesion kinase--a regulator of cell migration and invasion. IUBMB Life 53:115-119.
He, J., J. Xu, X. X. Xu, and R. A. Hall. 2003. Cell cycle-depedent phosphorylation of Disabled-2 by cdc2. Oncogene 22:4524-4530.
Hocevar, B. A., A. Smine, X.-X. Xu, and P. H. Howe. 2001. The adaptor molecule Disabled-2 links the transforming growth factor β receptors to the Smad pathway. EMBO J. 20:2789-2801.
Hocevar, B. A., F. Mou, J. L. Rennolds, S. M. Morris, J. A. Cooper, and P. H. Howe. 2003. Regulation of the Wnt signaling pathway by disabled-2 (Dab2). EMBO J. 22:3084-3094.
Hocevar, B. A., C. Prunier, and P. H. Howe. 2005. Disabled-2 (Dab2) mediates transforming growth factor β (TGFβ)-stimulated fibronectin synthesis through TGFβ-activated kinase 1 and activation of the JNK pathway. J. Biol. Chem. 280:25920-25927.
Howell, B. W., F. B. Gertler, and J. A. Cooper. 1997. Mouse disabled (mDab21): a Src binding protein implicated in neurol development. EMBO J. 16:121-132.
Huang, C. L., J. C. Cheng, C. H. Liao, A. Stern, J. T. Hsieh, C. H. Wang, H. L. Hsu, and C. P. Tseng. 2004. Disabled-2 is a negative regulator of integrinα(IIb)β(3)-mediated fibrinogen adhesion and cell signaling. J. Biol. Chem. 279:42279-42289.
Jiang, Y., C. Prunier, and P. H. Howe. 2007. The inhibitory effects of Disabled-2 (Dab2) on Wnt signaling are mediated through axin. Oncogene 27:1865-1875.
Jiang, Y., W. Luo, and P. H. Howe. 2009. Dab2 stabilizes Axin and attenuates Wnt/β-catenin signaling by preventing protein phosphatase 1 (PP1)-Axin interactions. Oncogene 28:2999-3007.
Khavari, T. A. and J. Rinn. 2007. Ras/Erk MAPK signaling in epidermal homeostasis and neoplasia. Cell Cycle 6:2928-2931.
Maldonado-Báez, L. and B. Wendland. 2006. Endocytic adaptors: recruiters, coordinators and regulators. Trends Cell Biol. 16:505-513.
Maurer, N. E. and J. A. Cooper. 2006. The adaptor protein Dab2 sorts LDL receptors into coated pits independently of AP-2 and ARH. J. Cell Sci. 119:4235-4246.
Mishra, S. K., P. A. Keyel, M. J. Hawryluk, N. R. Agostinelli, S. C. Watkins, and L. M. Traub. 2002. Disabled-2 exhibits the properties of a cargo-selective endocytic clathrin adaptor. EMBO J. 21:4915-4926.
Mok, S. C., K.-K. Wong, R. K. W. Chan, C. C. Lau, S.-W. Tsao, R. C. Knapp, and R. S. Berkowitz. 1994. Molecular cloning of differentially expressed genes in human epithelial ovarian cancer. Genecol. Oncol. 52:247-252.
Morris, S. M. and J. A. Cooper. 2001. Disabled-2 colocalizes with the LDLR in clathrin-coated pits and interacts with AP-2. Traffic 2:111-123.
Morris, S. M., S. D. Arden, R. C. Roberts, J. Kendrick-Jones, J. A. Cooper, J. P. Luzio, and F. Buss. 2002. Myosin VI binds to and localises with Dab2, potentially linking receptor-mediated endocytosis and the actin cytoskeleton. Traffic 3:331-341.
Orlandini, M., S. Nucciotti, F. Galvagni, M. Bardelli, M. Rocchigiani, F. Petraglia, and S. Oliviero. 2008. Morphogenesis of human endothelial cells is inhibited by DAB2 via Src. FEBS Lett. 582:2542-2548.
Pardali, M. and A. Moustakas. 2007. Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer. Biochem. Biophys. Acta. 1775:21-62.
Ron, M., G. Israeli, E. Seroussi, J. I. Weller, J. P. Gregg, M. Shani, and J. F. Medrano. 2007. Combining mouse mammary gland gene expression and comparative mapping for the identification of candidate genes for QTL of milk production traits in cattle. BMC Genomics 8:183.
Rosenbauer, F., A. Kallies, M. Scheller, K.-P. Knobeloch, C. O. Rock, M. Schwieger, C. Stocking, and I. Horak. 2002. Disabled-2 is transcriptionally regulated by ICSBP and augments macrophage spreading and adhesion. EMBO J. 21:211-220.
Schwahn, D. J. and D. Medina. 1998. p96, a MAPK-related protein, is consistently downregulated during mouse mammary carcinogenesis. Oncogene 17:1173-1178.
Sheng, Z., W. Sun, E. Smith, C. Cohen, Z. Sheng, and X. X. Xu. 2000. Restoration of positioning control following Disabled-2 expression in ovarian and breast tumor cells. Oncogene 19:4847-4854.
Spudich, G., M. V. Chibalina, J. S.-Y. Au, S. D. Arden, F. Buss, and J. Kendrick-Jones. 2007. Myosin VI targeting to clathrin-coated structures and dimerization is mediated by binding to Disabled-2 and PtdIns(4,5)P2. Nat. Cell Biol. 9:176-183.
Takahashi-Yanaga, F. and T. Sasaguri. 2007. The Wnt/β-catenin signaling pathway as a target in drug discovery. J. Pharmacol. Sci. 104:293-302.
Uhlik, M. T., B. Temple, S. Bencharit, A. J. Kimple, D. P. Siderovski, and G. L. Johnson. 2005. Structural and evolutionary division of phosphotyrosine binding (PTB) domains. J. Mol. Biol. 345:1-20.
Verkaar, F. and G. J. R. Zaman. 2011. New avenues to target Wnt/β-catenin signaling. Drug Discov. Today 16:35-41.
Wolfe, B. L. and J. Trejo. 2007. Clathrin-dependent mechanisms of G protein-coupled receptor endocytosis. Traffic 8:462-470.
Xu, X. X., W. Yang, S. Jackowski, and C. O. Rock. 1995. Cloning of a novel phosphoprotein regulated by colony-stimulating factor 1 shares a domain with the Drosophila disabled gene product. J. Biol. Chem. 270:14184-14191.
Xu, X. X., T. Yi, B. Tang, and J. D. Lambeth. 1998. Disabled-2 (Dab2) is an SH3 domain-binding partner of Grb2. Oncogene 16:1561-1569.
Zaidel-Bar, R., C. Ballestrem, Z. Kam, and B. Geiger. 2003. Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J. Cell Sci. 116:4605-4613.
Zaidel-Bar, R., M. Cohen, L. Addadi, and B. Geiger. 2004. Hierarchical assembly of cell-matrix adhesion complexes. Biochem. Soc. Trans. 32:416-420.
Zhou, J. and J.-T. Hsieh. 2001. The inhibitory role of DOC-2/DAB2 in growth factor receptor-mediated signal cascade. J. Biol. Chem. 276:27793-27798.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47408-
dc.description.abstract初級培養之山羊乳腺上皮細胞 (CMECs)具有近似活體乳腺上皮之功能性,受到泌乳激素與胞外基質的刺激,可歷經形態及功能之分化,適合應用於乳腺發育、泌乳機制調節、乳癌發生等領域之研究,亦可做為測試重組基因表現效率之平台,提升產製轉基因動物之成功率。惟初級培養CMECs之應用受限於有限的繼代次數,主要肇因為染色體末端之端粒,逐漸耗損於每一回細胞分裂,終至喪失保護染色體的功用而引發細胞生長休止。據此,可長期繼代培養且保有乳腺上皮特性之不朽化山羊乳腺上皮細胞株 (CMCs),乃本研究之主要目標。
藉由表現外源性人類端粒酶基因 (hTERT),業已成功建立五株CMCs,以特定細胞系骨架蛋白 (cell lineage specific cytoskeleton)抗體,經西方印漬術 (western blotting)證實分別為二株肌上皮細胞 (myoepithelial cell lineage),與三株腔上皮細胞系 (luminal epithelial cell lineage)。Telomeric repeat amplification protocol (TRAP)顯示CMCs與初級培養CMECs相較,具有較高端粒酶活性。核型分析試驗發現二株肌上皮細胞與一株腔上皮細胞,保有完整染色體數目 (2n = 60)與結構,另二株腔上皮細胞之染色體數明顯缺失。染色體異常多與細胞癌化相關,檢測抑癌因子p53蛋白質於DNA受損狀態下的表現,顯示二株染色體缺失之腔上皮細胞,缺乏p53蛋白質表現,同時具有癌化細胞anchorage-independent之生長特性,說明其潛在性之癌化傾向。關於CMCs功能性分化之能力,三株腔上皮細胞皆可在Matrigel胞外基質形成類乳泡構造,受到泌乳激素誘導,其中一株腔上皮細胞更可測得乳蛋白基因 (αs1- and β-casein genes)之表現。此結果證實,表現外源性人類端粒酶基因可有效不朽化初級培養之山羊乳腺上皮細胞,惟具備正常染色體數目與結構,對於保有乳腺上皮細胞之重要分化特性甚為重要。
為探討乳腺上皮細胞分化過程之分子調節機制,研究中選定細胞溶質之承接蛋白質 (cytosolic adaptor protein) Dab2,進行其功能性探討。比較不同發展階段之山羊乳腺組織,顯示Dab2蛋白質含量在懷孕末期與離乳期較高於泌乳階段,且表現位置主要位在乳泡構造。將初級培養CMECs誘導生成類乳泡構造,模擬乳腺上皮細胞之分化,顯示Dab2蛋白質表現量隨類乳泡構造之形成而有增加的趨勢。據此,推測Dab2之功能與乳泡構造的形成有關。結構上,Dab2蛋白質具有二個功能領域 (functional domains),分別名為phosphotyrosine-binding domain (PTB)及proline-rich domain (PRD),主宰Dab2的功能。因此,進一步將PTB domain與PRD domain架接於慢病毒表現載體 (lentivector),並產製具感染能力之慢病毒粒子 (lentivirus particles)。經由慢病毒感染,選殖具穩定PTB domain或PRD domain表現之山羊乳腺上皮細胞株 (CMC-PTB or CMC-PRD)。已知Dab2會抑制Grb2/Sos/MAPK訊號途徑,血清饑餓試驗證實在CMC-PTB與CMC-PRD細胞內,Erk分子的磷酸化明顯受到干擾。因乳泡形成過程涉及細胞移動,以創傷癒合試驗得知CMC-PTB與CMC-PRD細胞之移動能力顯著高於未表現外源基因之控制組別。免疫細胞化學法顯示CMC-PTB與CMC-PRD細胞缺乏磷酸化focal adhesion kinase (FAK)分布於focal adhesion構造,推測此結果與其較高之細胞移動能力有關。比較PTB domain與PRD domain對山羊乳腺上皮細胞形成類乳泡構造的影響,不同於CMC-PTB細胞呈現具完整空腔之類乳泡構造,CMC-PRD細胞所形成之類乳泡構造周圍具有明顯凸起結構。此結果表明PTB domain與PRD domain對於乳腺上皮細胞之形態分化具有不同作用,異常表現PRD domain會影響類乳泡構造的完整性。
綜合上述研究結果,本論文主要利用人類端粒酶基因建構穩定且可完整定性之不朽化山羊乳腺上皮細胞株,可廣泛應用於乳腺發育、乳癌生成與產製重組蛋白質之體外測試平台等研究領域。另外,以不朽化山羊乳腺上皮細胞作為研究模式,發現Dab2蛋白質之PTB domain與PRD domain,對於乳腺上皮細胞形態分化成完整之乳泡構造,扮演重要的調節作用。
zh_TW
dc.description.abstractFinite lifespan limited the application of primary cultured mammary epithelial cells (MECs), whereas immortal cell lines retaining major characteristics of primary cultured MECs were more desirable. For the purpose of obtaining immortal caprine mammary epithelial cells (CMCs), human telomerase reverse transcriptase (hTERT) gene was introduced into primary cultured caprine-MECs (CMECs). Both luminal and myoepithelial cells were successfully immortalized and expressed their cell-lineage specific cytoskeleton markers. Activated telomerase in obtained immortal CMCs was confirmed by telomeric repeat amplification protocol (TRAP). The integrity of chromosomal structure and Capra hircus origin of CMCs was examined by karyotypic analysis. For morphologic differentiation, CMCs of luminal group, but not myoepithelial group, formed well-organized alveolar structures (acinus) when grown in Matrigel extracellular matrix (ECM). Furthermore, one luminal CMC clone expressed αs1- or β-casein gene in response to lactohormone stimulation. These results demonstrated that hTERT-immortalized CMCs do reserve important functional characteristics of primary cultured CMECs.
As well-organized acinus is essential to full differentiation of MECs, the function of a cytosolic adaptor protein disabled-2 (Dab2), which was measured with a moderate level in pregnancy, followed by evident decrease during lactation and peaked in wean of normal caprine mammary epithelium, was explored. Immunohistochemistry (IHC) further showed Dab2 majorly distributed in alveolar structures. Thus, Dab2 was hypothesized to engage in process of alveologenesis, which was supported by evidence of elevated level of Dab2 during in vitro acinus formation of primary cultured CMECs. Dab2 molecule hold two functional domains, the amino-terminus phosphotyrosine-binding domain (PTB) and the carboxyl-terminus proline-rich domain (PRD), CMC clones stably expressed each domain were established for exploring their contributions on alveologenesis. The effect of PTB or PRD domain in CMC clones was confirmed by significant reduction of Erk phosphorylation after growth factor stimulation. As alveologenesis was associated with cell migration, wound healing assay showed enhanced cell motility of both PTB and PRD CMC clones. To examine the effect of PTB or PRD domain on alveolar structure formation, in vitro acinus culture exhibited CMC clone bearing PRD domain, but not PTB domain, represented obvious protrusions of the acinus. These data indicated both PTB and PRD domains of Dab2 were involved in regulating alveologenesis of MECs, but different mechanisms might be employed by different domains.
In this study, the establishment and elaborate characterization of hTERT-immortalized CMC cell lines was demonstrated. These immortal CMC cell lines were valuable models for exploring the molecular mechanisms regulating the development of caprine mammary gland and provided a platform to examine the expression of recombined plasmids used to generate transgenic livestock. In addition, the findings of PTB and PRD domains in mediating alveologenesis of immortal CMC cells, which might claim the importance of Dab2 during the development of caprine mammary gland.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:58:30Z (GMT). No. of bitstreams: 1
ntu-100-D94626004-1.pdf: 6283614 bytes, checksum: e37ce2840df6b1ab95cbc9ccbf44c918 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents中文摘要 I
Abstract III
Chapter I 1
Characterization of hTERT-immortalized caprine Mammary Epithelial Cell Lines 1
Introduction 2
Literature review 4
I. The mammary gland 4
(I) Developmental stages 4
(II) Cell types of mammary epithelium 6
(III) Regulation of mammary gland development 7
II. Immortal mammary epithelial cells 10
(I) Growth character of primary cultured mammary epithelial cells 11
(II) Immortalization of primary cultured mammary epithelial cells 11
Materials and Methods 13
I. Culture of mammary epithelial cells and transfection of exogenous human telomerase reverse transcriptase gene (hTERT) 13
II. Western blotting for cell type analysis 14
III. Telomeric repeats amplification protocol (TRAP) 16
IV. Karyotypic analysis 17
V. DNA damage response 17
VI. Colony formation assay 18
VII. Acini formation assay 19
VIII. Reverse transcription and polymerase chain reaction (RT-PCR) of αs1- and β-casein gene transcripts 20
IX. Statistical analysis 21
Results 22
I. Human telomerase reverse transcriptase gene (hTERT) immortalized post-selection CMECs 22
II. Morphologic and lineage variances of immortal CMC lines 23
III. Telomerase activity and growth characteristics of immortal CMC lines 24
IV. Chromosomal stability of immortal CMC lines 24
V. Cell cycle checkpoint regulation and anchorage-dependent growth characteristics of immortal CMC lines 25
VI. Alveologenesis and lactogenesis of immortal CMC lines 26
Discussion 28
I. hTERT expression is sufficient for immortalization of post-selection CMECs, both luminal epithelial and basal/myoepithelial cells 28
II. Differences in telomerase activity might reflect differences in growth potential between immortal CMC lines 29
III. Immortal CMC lines showed different karyotypes, whereas CMC22-7 and CMC22-12 further exhibited several transformed characteristics 30
IV. All luminal-lineage CMC lines underwent morphological differentiation 31
V. Prolactin-induced αs1- and β-casein expression in CMC28 line 32
Conclusion 34
References 35
Figures 43
Figure 1. Growth characteristics of primary cultured CMECs. 44
Figure 2. Morphological observation of hTERT-immortalized CMCs. 45
Figure 3. Cell lineages were identified by protein expression of specific cytoskeleton in immortalized CMCs. 47
Figure 4. Telomerase activity and growth potential of CMC lines. 49
Figure 5. Karyotypic analysis of immortal CMC lines. 50
Figure 6. Western blotting analysis of DNA damage-induced p53 response in CMC lines. 51
Figure 7. The ability of anchorage-independent growth of CMC lines were examined by growth in soft agar. 52
Figure 8. Some CMC lines formed alveolar structure when cultured in Matrigel. 53
Figure 9. Induction of casein genes expression by lactohormones in CMC28. 54
Appendix 55
Supplemental 1. Analysis of senescence-associated β-Gal (SA β-Gal) activity in primary cultured CMECs. 55
Supplemental 2. Comparison of p16 expression pattern in primary cultured CMECs before and after selection. 56
Supplemental 3. Sequence analysis confirmed αs1-casein mRNA expression in lactohormone-induced CMC28. 57
Supplemental 4. Sequence analysis confirmed β-casein mRNA expression in lactohormone-induced CMC28. 58
Supplemental 5. Distribution of metaphase chromosomes of CMC cell lines. 59
Supplementary 6. Integration of egfp gene fragment into genomic DNA of immortal CMC lines. 60
Supplementary 7. Messenger RNA of exogenous genes from IRES2/EGFP/hTERT plasmid was expressed in immortal CMC lines. 61
Chapter II 63
Role of Functional Domains of caprine dab2 gene in Immortal caprine Mammary Epithelial Cells 63
Introduction 64
Literature review 66
The mammalian dab2 gene 66
I. Discovery 66
II. Protein structure information 67
III. Functional studies 68
(I) Gene expression regulation 68
(II) Tumor suppressor 69
(III) Endocytosis 69
(IV) Signal pathways regulation 71
(V) Cell adhesion and migration 74
Materials and Methods 76
I. Epithelium tissue specimen from goat mammary gland 76
II. Ribonucleic acid extraction 76
III. Cloning of goat dab2 gene 77
IV. Frozen tissue section 78
V. Immunohistochemistry 78
VI. Lentivirus-based cDNA construction 79
VII. Lentiviral transduction 80
VIII. Serum starvation 81
IX. Western blotting 81
X. Wound healing assay 82
XI. in vitro alveolar structure formation assay 83
Results 85
I. Expression of Dab2 protein during caprine mammary gland development 85
II. Prolactin/Jak2 pathway regulates dab2 gene expression 85
III. Variance of Dab2 protein and its localization during in vitro alveolar structure formation of primary cultured CMECs 86
IV. Inhibitory effect of growth factor-stimulated Erk phosphorylation in CMC clones of PTB domain or PRD domain, but not phosphorylation of Akt 87
V. Enhanced cell motility of CMC-PTB and CMC-PRD clones without obvious focal adhesion 88
VI. Irregular morphology observed in CMC clone of PRD domain 89
Discussion 90
I. Down-regulation of Dab2 protein during lactation stage of caprine mammary gland 90
II. Dab2 localized the region where caprine mammary epithelial cells interact with the extracellular matrix 90
III. dab2 gene was mediated by lactogenic hormone prolactin and engaged in alveologenesis of primary cultured CMECs 91
IV. Either PTB or PRD domain is essential to the inhibitory effect of Dab2 molecule on Erk phosphorylation 92
V. Both PTB domain and PRD domain affected the motility of immortal CMC cells, which might associate with the formation of focal adhesion 93
VI. PRD domain affects the integrity of alveolar structures 94
Conclusion 96
References 98
Figures 105
Figure 1. The level of endogenous Dab2 protein in various stages of caprine mammary gland. 105
Figure 2. In situ histochemical detection of Dab2 protein in caprine mammary gland. 106
Figure 3. Prolactin/Jak2 signaling mediates dab2 gene expression in CMECs. 107
Figure 4. Protein expression of endogenous Dab2 during in vitro alveolar structure formation of primary cultured CMECs. 108
Figure 5. Endogenous Dab2 exclusively localized at the region of cell-ECM contact. 109
Figure 6. Construction of Dab2 PTB or PRD domain into lentivirus-package plasmid. 111
Figure 7. The inhibitory effect of growth factor-mediated Erk phosphorylation in both CMC-PTB and CMC-PRD clones. 112
Figure 8. CMC-PTB and CMC-PRD clones showed enhanced migration in wound healing assay. 113
Figure 9. Immunocytochemistry showed impaired focal adhesion in CMC-PTB and CMC-PRD clones. 115
Figure 10. Morphological protrusions observed in CMC-PRD clone. 117
dc.language.isozh-TW
dc.title山羊disabled-2基因之功能性區域於不朽化山羊乳腺上皮細胞之功能性研究zh_TW
dc.titleRole of functional domains of disabled-2 gene in hTERT-immortalized caprine mammary epithelial cellsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.coadvisor姜延年(Yan-Nian Jiang)
dc.contributor.oralexamcommittee林志生(Chih-Sheng Lin),黃木秋,楊瀅臻
dc.subject.keyword端粒&#37238,山羊,乳腺上皮細胞,disabled-2,不朽化,zh_TW
dc.subject.keywordcaprine,mammary epithelial cells,telomerase,immortalization,Dab2,en
dc.relation.page117
dc.rights.note有償授權
dc.date.accepted2011-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
6.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved