請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4738完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周祖述 | |
| dc.contributor.author | Hooi Cheng. Lim | en |
| dc.contributor.author | 林慧真 | zh_TW |
| dc.date.accessioned | 2021-05-14T17:46:12Z | - |
| dc.date.available | 2020-09-25 | |
| dc.date.available | 2021-05-14T17:46:12Z | - |
| dc.date.copyright | 2015-09-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-06-24 | |
| dc.identifier.citation | Anjum, R., and Blenis, J. (2008). The RSK family of kinases: emerging roles in cellular signalling. Nature reviews Molecular cell biology 9, 747-758.
Bakiri, L., Reschke, M.O., Gefroh, H.A., Idarraga, M.H., Polzer, K., Zenz, R., Schett, G., and Wagner, E.F. (2011). Functions of Fos phosphorylation in bone homeostasis, cytokine response and tumourigenesis. Oncogene 30, 1506-1517. Bonni, A., Brunet, A., West, A.E., Datta, S.R., Takasu, M.A., and Greenberg, M.E. (1999). Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358-1362. Boratko, A., Gergely, P., and Csortos, C. (2012). Cell cycle dependent association of EBP50 with protein phosphatase 2A in endothelial cells. PloS one 7, e35595. Brennan, C.M., Gallouzi, I.E., and Steitz, J.A. (2000). Protein ligands to HuR modulate its interaction with target mRNAs in vivo. The Journal of cell biology 151, 1-14. Cavet, M.E., Lehoux, S., and Berk, B.C. (2003). 14-3-3beta is a p90 ribosomal S6 kinase (RSK) isoform 1-binding protein that negatively regulates RSK kinase activity. The Journal of biological chemistry 278, 18376-18383. Chen, J.Y., Lin, Y.Y., and Jou, T.S. (2012). Phosphorylation of EBP50 negatively regulates beta-PIX-dependent Rac1 activity in anoikis. Cell death and differentiation 19, 1027-1037. Chen, R.H., Abate, C., and Blenis, J. (1993). Phosphorylation of the c-Fos transrepression domain by mitogen-activated protein kinase and 90-kDa ribosomal S6 kinase. Proceedings of the National Academy of Sciences of the United States of America 90, 10952-10956. Chen, R.H., Sarnecki, C., and Blenis, J. (1992). Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Molecular and cellular biology 12, 915-927. Claperon, A., Guedj, N., Mergey, M., Vignjevic, D., Desbois-Mouthon, C., Boissan, M., Saubamea, B., Paradis, V., Housset, C., and Fouassier, L. (2012). Loss of EBP50 stimulates EGFR activity to induce EMT phenotypic features in biliary cancer cells. Oncogene 31, 1376-1388. Dehan, E., Bassermann, F., Guardavaccaro, D., Vasiliver-Shamis, G., Cohen, M., Lowes, K.N., Dustin, M., Huang, D.C., Taunton, J., and Pagano, M. (2009). betaTrCP- and Rsk1/2-mediated degradation of BimEL inhibits apoptosis. Molecular cell 33, 109-116. Doehn, U., Hauge, C., Frank, S.R., Jensen, C.J., Duda, K., Nielsen, J.V., Cohen, M.S., Johansen, J.V., Winther, B.R., Lund, L.R., et al. (2009). RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells. Molecular cell 35, 511-522. Drenan, R.M., Doupnik, C.A., Boyle, M.P., Muglia, L.J., Huettner, J.E., Linder, M.E., and Blumer, K.J. (2005). Palmitoylation regulates plasma membrane-nuclear shuttling of R7BP, a novel membrane anchor for the RGS7 family. The Journal of cell biology 169, 623-633. Esteller, M., Cordon-Cardo, C., Corn, P.G., Meltzer, S.J., Pohar, K.S., Watkins, D.N., Capella, G., Peinado, M.A., Matias-Guiu, X., Prat, J., et al. (2001). p14ARF silencing by promoter hypermethylation mediates abnormal intracellular localization of MDM2. Cancer research 61, 2816-2821. Fehon, R.G., McClatchey, A.I., and Bretscher, A. (2010). Organizing the cell cortex: the role of ERM proteins. Nature reviews Molecular cell biology 11, 276-287. Fouassier, L., Duan, C.Y., Feranchak, A.P., Yun, C.H., Sutherland, E., Simon, F., Fitz, J.G., and Doctor, R.B. (2001). Ezrin-radixin-moesin-binding phosphoprotein 50 is expressed at the apical membrane of rat liver epithelia. Hepatology 33, 166-176. Fouassier, L., Nichols, M.T., Gidey, E., McWilliams, R.R., Robin, H., Finnigan, C., Howell, K.E., Housset, C., and Doctor, R.B. (2005). Protein kinase C regulates the phosphorylation and oligomerization of ERM binding phosphoprotein 50. Experimental cell research 306, 264-273. Fouassier, L., Rosenberg, P., Mergey, M., Saubamea, B., Claperon, A., Kinnman, N., Chignard, N., Jacobsson-Ekman, G., Strandvik, B., Rey, C., et al. (2009). Ezrin-radixin-moesin-binding phosphoprotein (EBP50), an estrogen-inducible scaffold protein, contributes to biliary epithelial cell proliferation. The American journal of pathology 174, 869-880. Galan, J.A., Geraghty, K.M., Lavoie, G., Kanshin, E., Tcherkezian, J., Calabrese, V., Jeschke, G.R., Turk, B.E., Ballif, B.A., Blenis, J., et al. (2014). Phosphoproteomic analysis identifies the tumor suppressor PDCD4 as a RSK substrate negatively regulated by 14-3-3. Proceedings of the National Academy of Sciences of the United States of America 111, E2918-2927. Garbett, D., and Bretscher, A. (2012). PDZ interactions regulate rapid turnover of the scaffolding protein EBP50 in microvilli. The Journal of cell biology 198, 195-203. Garbett, D., LaLonde, D.P., and Bretscher, A. (2010). The scaffolding protein EBP50 regulates microvillar assembly in a phosphorylation-dependent manner. The Journal of cell biology 191, 397-413. Georgescu, M.M., Cote, G., Agarwal, N.K., and White, C.L., 3rd (2014). NHERF1/EBP50 controls morphogenesis of 3D colonic glands by stabilizing PTEN and ezrin-radixin-moesin proteins at the apical membrane. Neoplasia 16, 365-374 e361-362. Hall, R.A., Spurney, R.F., Premont, R.T., Rahman, N., Blitzer, J.T., Pitcher, J.A., and Lefkowitz, R.J. (1999). G protein-coupled receptor kinase 6A phosphorylates the Na(+)/H(+) exchanger regulatory factor via a PDZ domain-mediated interaction. J Biol Chem 274, 24328-24334. Hanono, A., Garbett, D., Reczek, D., Chambers, D.N., and Bretscher, A. (2006). EPI64 regulates microvillar subdomains and structure. The Journal of cell biology 175, 803-813. Harley, V.R., Layfield, S., Mitchell, C.L., Forwood, J.K., John, A.P., Briggs, L.J., McDowall, S.G., and Jans, D.A. (2003). Defective importin beta recognition and nuclear import of the sex-determining factor SRY are associated with XY sex-reversing mutations. Proceedings of the National Academy of Sciences of the United States of America 100, 7045-7050. Huang, L., Ren, J., Chen, D., Li, Y., Kharbanda, S., and Kufe, D. (2003). MUC1 cytoplasmic domain coactivates Wnt target gene transcription and confers transformation. Cancer biology therapy 2, 702-706. Jensen, C.J., Buch, M.B., Krag, T.O., Hemmings, B.A., Gammeltoft, S., and Frodin, M. (1999). 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1. The Journal of biological chemistry 274, 27168-27176. Jeong, W.J., Yoon, J., Park, J.C., Lee, S.H., Lee, S.H., Kaduwal, S., Kim, H., Yoon, J.B., and Choi, K.Y. (2012). Ras stabilization through aberrant activation of Wnt/beta-catenin signaling promotes intestinal tumorigenesis. Science signaling 5, ra30. Johnson, L.R., Robinson, J.D., Lester, K.N., and Pitcher, J.A. (2013). Distinct structural features of G protein-coupled receptor kinase 5 (GRK5) regulate its nuclear localization and DNA-binding ability. PloS one 8, e62508. Ki, H., Oh, M., Chung, S.W., and Kim, K. (2008). Beta-catenin can bind directly to CRM1 independently of adenomatous polyposis coli, which affects its nuclear localization and LEF-1/beta-catenin-dependent gene expression. Cell biology international 32, 394-400. Kim, J., Parrish, A.B., Kurokawa, M., Matsuura, K., Freel, C.D., Andersen, J.L., Johnson, C.E., and Kornbluth, S. (2012). Rsk-mediated phosphorylation and 14-3-3varepsilon binding of Apaf-1 suppresses cytochrome c-induced apoptosis. The EMBO journal 31, 1279-1292. Kreimann, E.L., Morales, F.C., de Orbeta-Cruz, J., Takahashi, Y., Adams, H., Liu, T.J., McCrea, P.D., and Georgescu, M.M. (2007). Cortical stabilization of beta-catenin contributes to NHERF1/EBP50 tumor suppressor function. Oncogene 26, 5290-5299. Kufe, D., Inghirami, G., Abe, M., Hayes, D., Justi-Wheeler, H., and Schlom, J. (1984). Differential reactivity of a novel monoclonal antibody (DF3) with human malignant versus benign breast tumors. Hybridoma 3, 223-232. la Cour, T., Gupta, R., Rapacki, K., Skriver, K., Poulsen, F.M., and Brunak, S. (2003). NESbase version 1.0: a database of nuclear export signals. Nucleic acids research 31, 393-396. Lara, R., Seckl, M.J., and Pardo, O.E. (2013). The p90 RSK family members: common functions and isoform specificity. Cancer research 73, 5301-5308. Lecce, L., Lindsay, L.A., and Murphy, C.R. (2011). Ezrin and EBP50 redistribute apically in rat uterine epithelial cells at the time of implantation and in response to cell contact. Cell and tissue research 343, 445-453. Leighton, I.A., Dalby, K.N., Caudwell, F.B., Cohen, P.T., and Cohen, P. (1995). Comparison of the specificities of p70 S6 kinase and MAPKAP kinase-1 identifies a relatively specific substrate for p70 S6 kinase: the N-terminal kinase domain of MAPKAP kinase-1 is essential for peptide phosphorylation. FEBS letters 375, 289-293. Lin, Y.Y., Hsu, Y.H., Huang, H.Y., Shann, Y.J., Huang, C.Y., Wei, S.C., Chen, C.L., and Jou, T.S. (2012). Aberrant nuclear localization of EBP50 promotes colorectal carcinogenesis in xenotransplanted mice by modulating TCF-1 and beta-catenin interactions. The Journal of clinical investigation 122, 1881-1894. Liu, J.L., Yang, H.W., Chen, Z.S., and Jiang, Y. (2011). [Abnormal expression of RSK-4 and its clinical significance in breast cancer]. Zhonghua zhong liu za zhi [Chinese journal of oncology] 33, 452-456. Lo, H.W., Ali-Seyed, M., Wu, Y., Bartholomeusz, G., Hsu, S.C., and Hung, M.C. (2006). Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin beta1 and CRM1. Journal of cellular biochemistry 98, 1570-1583. Lu, K.P., Hanes, S.D., and Hunter, T. (1996). A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380, 544-547. Malfettone, A., Silvestris, N., Paradiso, A., Mattioli, E., Simone, G., and Mangia, A. (2012). Overexpression of nuclear NHERF1 in advanced colorectal cancer: association with hypoxic microenvironment and tumor invasive phenotype. Experimental and molecular pathology 92, 296-303. Mangia, A., Saponaro, C., Malfettone, A., Bisceglie, D., Bellizzi, A., Asselti, M., Popescu, O., Reshkin, S.J., Paradiso, A., and Simone, G. (2012). Involvement of nuclear NHERF1 in colorectal cancer progression. Oncology reports 28, 889-894. Mohler, P.J., Kreda, S.M., Boucher, R.C., Sudol, M., Stutts, M.J., and Milgram, S.L. (1999). Yes-associated protein 65 localizes p62(c-Yes) to the apical compartment of airway epithelia by association with EBP50. The Journal of cell biology 147, 879-890. Molina, J.R., Agarwal, N.K., Morales, F.C., Hayashi, Y., Aldape, K.D., Cote, G., and Georgescu, M.M. (2012). PTEN, NHERF1 and PHLPP form a tumor suppressor network that is disabled in glioblastoma. Oncogene 31, 1264-1274. Ossareh-Nazari, B., Bachelerie, F., and Dargemont, C. (1997). Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 278, 141-144. Paoli, P., Giannoni, E., and Chiarugi, P. (2013). Anoikis molecular pathways and its role in cancer progression. Biochimica et biophysica acta 1833, 3481-3498. Paradiso, A., Scarpi, E., Malfettone, A., Addati, T., Giotta, F., Simone, G., Amadori, D., and Mangia, A. (2013). Nuclear NHERF1 expression as a prognostic marker in breast cancer. Cell death disease 4, e904. Pearson, H.B., Phesse, T.J., and Clarke, A.R. (2009). K-ras and Wnt signaling synergize to accelerate prostate tumorigenesis in the mouse. Cancer research 69, 94-101. Popa, I., Harris, M.E., Donello, J.E., and Hope, T.J. (2002). CRM1-dependent function of a cis-acting RNA export element. Molecular and cellular biology 22, 2057-2067. Raices, M., and D'Angelo, M.A. (2012). Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nature reviews Molecular cell biology 13, 687-699. Rapoport, T.A. (2007). Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450, 663-669. Reczek, D., Berryman, M., and Bretscher, A. (1997). Identification of EBP50: A PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family. The Journal of cell biology 139, 169-179. Reczek, D., and Bretscher, A. (1998). The carboxyl-terminal region of EBP50 binds to a site in the amino-terminal domain of ezrin that is masked in the dormant molecule. The Journal of biological chemistry 273, 18452-18458. Richards, S.A., Dreisbach, V.C., Murphy, L.O., and Blenis, J. (2001). Characterization of regulatory events associated with membrane targeting of p90 ribosomal S6 kinase 1. Molecular and cellular biology 21, 7470-7480. Rochdi, M.D., and Parent, J.L. (2003). Galphaq-coupled receptor internalization specifically induced by Galphaq signaling. Regulation by EBP50. The Journal of biological chemistry 278, 17827-17837. Romeo, Y., and Roux, P.P. (2011). Paving the way for targeting RSK in cancer. Expert opinion on therapeutic targets 15, 5-9. Romeo, Y., Zhang, X., and Roux, P.P. (2012). Regulation and function of the RSK family of protein kinases. The Biochemical journal 441, 553-569. Roux, P.P., Richards, S.A., and Blenis, J. (2003). Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity. Molecular and cellular biology 23, 4796-4804. Saha, M., Carriere, A., Cheerathodi, M., Zhang, X., Lavoie, G., Rush, J., Roux, P.P., and Ballif, B.A. (2012). RSK phosphorylates SOS1 creating 14-3-3-docking sites and negatively regulating MAPK activation. The Biochemical journal 447, 159-166. Schmidt, O., Pfanner, N., and Meisinger, C. (2010). Mitochondrial protein import: from proteomics to functional mechanisms. Nature reviews Molecular cell biology 11, 655-667. Scholz, R.P., Regner, J., Theil, A., Erlmann, P., Holeiter, G., Jahne, R., Schmid, S., Hausser, A., and Olayioye, M.A. (2009). DLC1 interacts with 14-3-3 proteins to inhibit RhoGAP activity and block nucleocytoplasmic shuttling. Journal of cell science 122, 92-102. Seimiya, H., Sawada, H., Muramatsu, Y., Shimizu, M., Ohko, K., Yamane, K., and Tsuruo, T. (2000). Involvement of 14-3-3 proteins in nuclear localization of telomerase. The EMBO journal 19, 2652-2661. Shenolikar, S., Voltz, J.W., Cunningham, R., and Weinman, E.J. (2004). Regulation of ion transport by the NHERF family of PDZ proteins. Physiology 19, 362-369. Shibata, T., Chuma, M., Kokubu, A., Sakamoto, M., and Hirohashi, S. (2003). EBP50, a beta-catenin-associating protein, enhances Wnt signaling and is over-expressed in hepatocellular carcinoma. Hepatology 38, 178-186. Sneddon, W.B., Syme, C.A., Bisello, A., Magyar, C.E., Rochdi, M.D., Parent, J.L., Weinman, E.J., Abou-Samra, A.B., and Friedman, P.A. (2003). Activation-independent parathyroid hormone receptor internalization is regulated by NHERF1 (EBP50). The Journal of biological chemistry 278, 43787-43796. Sun, C., Zheng, J., Cheng, S., Feng, D., and He, J. (2013). EBP50 phosphorylation by Cdc2/Cyclin B kinase affects actin cytoskeleton reorganization and regulates functions of human breast cancer cell line MDA-MB-231. Molecules and cells 36, 47-54. Takenaka, Y., Fukumori, T., Yoshii, T., Oka, N., Inohara, H., Kim, H.R., Bresalier, R.S., and Raz, A. (2004). Nuclear export of phosphorylated galectin-3 regulates its antiapoptotic activity in response to chemotherapeutic drugs. Molecular and cellular biology 24, 4395-4406. Terry, L.J., Shows, E.B., and Wente, S.R. (2007). Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318, 1412-1416. Turner, J.G., Dawson, J., and Sullivan, D.M. (2012). Nuclear export of proteins and drug resistance in cancer. Biochemical pharmacology 83, 1021-1032. Wang, C., Zhao, R., Huang, P., Yang, F., Quan, Z., Xu, N., and Xi, R. (2013). APC loss-induced intestinal tumorigenesis in Drosophila: Roles of Ras in Wnt signaling activation and tumor progression. Developmental biology 378, 122-140. Wang, S., Raab, R.W., Schatz, P.J., Guggino, W.B., and Li, M. (1998). Peptide binding consensus of the NHE-RF-PDZ1 domain matches the C-terminal sequence of cystic fibrosis transmembrane conductance regulator (CFTR). FEBS letters 427, 103-108. Weinman, E.J., Minkoff, C., and Shenolikar, S. (2000). Signal complex regulation of renal transport proteins: NHERF and regulation of NHE3 by PKA. American journal of physiology Renal physiology 279, F393-399. Weinman, E.J., Steplock, D., Wang, Y., and Shenolikar, S. (1995). Characterization of a protein cofactor that mediates protein kinase A regulation of the renal brush border membrane Na(+)-H+ exchanger. The Journal of clinical investigation 95, 2143-2149. Weinman, E.J., Wang, Y., Wang, F., Greer, C., Steplock, D., and Shenolikar, S. (2003). A C-terminal PDZ motif in NHE3 binds NHERF-1 and enhances cAMP inhibition of sodium-hydrogen exchange. Biochemistry 42, 12662-12668. Wen, Y., Caffrey, T.C., Wheelock, M.J., Johnson, K.R., and Hollingsworth, M.A. (2003). Nuclear association of the cytoplasmic tail of MUC1 and beta-catenin. The Journal of biological chemistry 278, 38029-38039. Wente, S.R., and Rout, M.P. (2010). The nuclear pore complex and nuclear transport. Cold Spring Harbor perspectives in biology 2, a000562. Wickner, W., and Schekman, R. (2005). Protein translocation across biological membranes. Science 310, 1452-1456. Wolff, B., Sanglier, J.J., and Wang, Y. (1997). Leptomycin B is an inhibitor of nuclear export: inhibition of nucleo-cytoplasmic translocation of the human immunodeficiency virus type 1 (HIV-1) Rev protein and Rev-dependent mRNA. Chemistry biology 4, 139-147. Wu, J., and Janknecht, R. (2002). Regulation of the ETS transcription factor ER81 by the 90-kDa ribosomal S6 kinase 1 and protein kinase A. The Journal of biological chemistry 277, 42669-42679. Xu, W., Wang, Z., Zhang, W., Qian, K., Li, H., Kong, D., Li, Y., and Tang, Y. (2015). Mutated K-ras activates CDK8 to stimulate the epithelial-to-mesenchymal transition in pancreatic cancer in part via the Wnt/beta-catenin signaling pathway. Cancer letters 356, 613-627. Yaffe, M.B., Rittinger, K., Volinia, S., Caron, P.R., Aitken, A., Leffers, H., Gamblin, S.J., Smerdon, S.J., and Cantley, L.C. (1997). The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91, 961-971. Yang, X., Lee, W.H., Sobott, F., Papagrigoriou, E., Robinson, C.V., Grossmann, J.G., Sundstrom, M., Doyle, D.A., and Elkins, J.M. (2006). Structural basis for protein-protein interactions in the 14-3-3 protein family. Proc Natl Acad Sci U S A 103, 17237-17242. Zhang, X., Lavoie, G., Fort, L., Huttlin, E.L., Tcherkezian, J., Galan, J.A., Gu, H., Gygi, S.P., Carreno, S., and Roux, P.P. (2013). Gab2 phosphorylation by RSK inhibits Shp2 recruitment and cell motility. Molecular and cellular biology 33, 1657-1670. Zhao, Y., Bjorbaek, C., and Moller, D.E. (1996). Regulation and interaction of pp90(rsk) isoforms with mitogen-activated protein kinases. The Journal of biological chemistry 271, 29773-29779. Zhu, J., Blenis, J., and Yuan, J. (2008). Activation of PI3K/Akt and MAPK pathways regulates Myc-mediated transcription by phosphorylating and promoting the degradation of Mad1. Proceedings of the National Academy of Sciences of the United States of America 105, 6584-6589. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4738 | - |
| dc.description.abstract | EBP50(ezrin-radixin-moesin (ERM)-binding phosphoprotein of 50 kDa)在癌症生物學具有爭議性的功能是和此蛋白在各種細胞器的定位息息相關的。位于細胞膜邊緣質體的EBP50是抑制癌症的分子,在細胞核内的EBP50卻是促進癌症的分子。目前的研究對於EBP50進入細胞核的機制並沒有明確的解説。藉由RNA干擾(RNA interference)技術,Ras-ERK訊息傳遞途徑下游的RSK1 (p90 ribosomal S6 kinase alpha 1)獲篩選爲可調控EBP50輸送至細胞核的關鍵分子。在EGF (epidermal growth factor) 的調控下,RSK1與EBP50結合並且磷酸化EBP50的酥胺酸156 (T156) 。氨基酸位點突變 (mutagenesis) 實驗進一步確定T156在EBP50被輸送至細胞核途徑里的關鍵角色。由RSK1調控並且會在分裂中的細胞被催化的EBP50磷酸化亦會促進EBP50和14-3-3蛋白的結合,增加細胞分裂和惡性轉化。因此,我們總結由Ras-RSK1所催化的T156位點磷酸化是EBP50被輸送至細胞核的機轉。 我們的研究有助於只針對EBP50在細胞核的異常表現而不影響此蛋白的正常生理功能在癌症治療策略的可能性。 | zh_TW |
| dc.description.abstract | Differential subcellular localization of Ezrin-radixin-moesin (ERM)-binding phosphoprotein of 50 kDa (EBP50) leads to its controversial role in cancer biology either as a tumor suppressor when it resides at the membrane periphery, or a tumor facilitator at the nucleus. However, the molecular mechanism that regulates nuclear localization of EBP50 remains unclear. A RNA interference screening identified the downstream effector of the Ras-extracellular signal-regulated kinase signaling pathway, p90 ribosomal S6 kinase alpha 1 (RSK1) as the molecule unique for nuclear transport of EBP50. RSK1 binds to EBP50 and phosphorylates it at a conserved threonine residue at position 156 (T156) under regulation of epidermal growth factor. Mutagenesis experiments confirmed the significance of T156 residue in nuclear localization of EBP50. EBP50 phosphorylation by RSK1, which is enhanced in mitotic cells, is also required for recruitment of 14-3-3, cellular proliferation, and oncogenic transformation. Collectively, we discovered the Ras-RSK1-mediated phosphorylation at T156 as the signal underlying nuclear transport of EBP50. Our study sheds light on a possible therapeutic strategy targeting at this aberrant nuclear expression of EBP50 without affecting the normal physiological function of EBP50 at other subcellular localization. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-14T17:46:12Z (GMT). No. of bitstreams: 1 ntu-104-D97448012-1.pdf: 6090264 bytes, checksum: be7879abe4f014292e96dee071bf63cc (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS
摘要 II Abstract III Table of Contents IV List of Abbreviations VII List of Figures X List of Tables XI Introduction 1 1.1 Background 1 1.2 Protein subcellular localization 1 1.2.1 Mechanisms of protein mislocalization from/to the nucleus 2 1.2.2 Protein mislocalization in cancer 3 1.3 The PDZ domain-containing protein EBP50 4 1.3.1 The scaffolding function of EBP50 at the plasma membrane periphery 4 1.3.2 Subcellular localization of EBP50 modulates its cellular functions 5 1.4 The RSK family of protein kinases 7 1.4.1 Subcellular localization of RSKs 7 1.4.2 Role of RSKs in cancer biology 8 1.5 Objectives 9 Materials and Methods 10 2.1 Materials 10 2.1.1 Plasmids 10 2.1.2 Chemicals 10 2.1.3 Antibodies 11 2.2 Methods 11 2.2.1 Cell culture and transfection 11 2.2.2 RNAi screening 12 2.2.3 Immunofluorescence staining and microscopy 12 2.2.4 Immunoprecipitation and Western blotting 13 2.2.5 GST pull-down and in vitro competition assays 14 2.2.6 In vitro kinase assay 14 2.2.7 In vitro dephosphorylation assay 15 2.2.8 FRAP experiment 15 2.2.9 Cell proliferation assay 16 2.2.10 Soft agar assay 16 2.2.11 In vivo tumorigenesis study 16 2.2.12 Data analysis 16 Results 17 3.1 Ras-RSK1 signaling promotes nuclear localization of EBP50 17 3.2 RSK1 binds to EBP50 through a PDZ domain interaction 18 3.3 RSK1 phosphorylates EBP50 at the RXRXXpS/T motif 19 3.4 EBP50 T156 phosphorylation is related to increased nuclear localization 20 3.5 Phosphorylation of EBP50 at T156 promotes its binding to 14-3-3β 21 3.6 Cell cycle-dependent phosphorylation of EBP50 is crucial for cell growth 23 Discussion and Perspectives 25 Figures 29 Tables 48 References 51 Appendix I | |
| dc.language.iso | en | |
| dc.subject | RSK1 | zh_TW |
| dc.subject | EBP50 | zh_TW |
| dc.subject | 細胞核定位 | zh_TW |
| dc.subject | 磷酸化 | zh_TW |
| dc.subject | RSK1 | en |
| dc.subject | EBP50 | en |
| dc.subject | nuclear localization | en |
| dc.subject | phosphorylation | en |
| dc.title | 探討EBP50藉由 Ras-RSK1訊息傳遞輸送至細胞核的機制與功能 | zh_TW |
| dc.title | Mechanistic and Functional Studies of the Ras-RSK1-regulated Nuclear Transport of EBP50 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李芳仁,施修明,吳君泰,李秀香 | |
| dc.subject.keyword | EBP50,細胞核定位,磷酸化,RSK1, | zh_TW |
| dc.subject.keyword | EBP50,nuclear localization,phosphorylation,RSK1, | en |
| dc.relation.page | 62 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2015-06-24 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf | 5.95 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
