Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47386
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor宋孔彬(Kung-Bin Sung)
dc.contributor.authorYi-Shan Lien
dc.contributor.author李儀珊zh_TW
dc.date.accessioned2021-06-15T05:57:33Z-
dc.date.available2013-08-23
dc.date.copyright2011-08-23
dc.date.issued2011
dc.date.submitted2011-08-18
dc.identifier.citation1. 張鎮西, 生物醫學光子學新技術及應用 (科學出版社, 2008).
2. 行政院衛生署, '98_死因統計統計表,' http://www.doh.gov.tw/.
3. D. C. G. De Veld, M. J. H. Witjes, H. J. C. M. Sterenborg, and J. L. N. Roodenburg, 'The status of in vivo autofluorescence spectroscopy and imaging for oral oncology,' Oral Oncology 41, 117-131 (2005).
4. N. Subhash, J. R. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, 'Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands,' Journal of Biomedical Optics 11, 014018-014016 (2006).
5. S. McGee, J. Mirkovic, V. Mardirossian, A. Elackattu, C.-C. Yu, S. Kabani, G. Gallagher, R. Pistey, L. Galindo, K. Badizadegan, Z. Wang, R. Dasari, M. S. Feld, and G. Grillone, 'Model-based spectroscopic analysis of the oral cavity: impact of anatomy,' Journal of Biomedical Optics 13, 064034 (2008).
6. R. Mallia, S. S. Thomas, A. Mathews, R. Kumar, P. Sebastian, J. Madhavan, and N. Subhash, 'Oxygenated hemoglobin diffuse reflectance ratio for in vivo detection of oral pre-cancer,' Journal of Biomedical Optics 13, 041306-041310 (2008).
7. D. C. Rizzo, ed. Delmar's Fundamentals of Anatomy & Physiology (2001).
8. I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, 'Microanatomical and Biochemical Origins of Normal and Precancerous Cervical Autofluorescence Using Laser-scanning Fluorescence Confocal Microscopy ¶,' Photochemistry and Photobiology 77, 550-555 (2003).
9. R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, 'Autofluorescence Microscopy of Fresh Cervical-Tissue Sections Reveals Alterations in Tissue Biochemistry with Dysplasia¶,' Photochemistry and Photobiology 73, 636-641 (2001).
10. I. Georgakoudi, E. E. Sheets, M. G. Müller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, and M. S. Feld, 'Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,' American Journal of Obstetrics and Gynecology 186, 374-382 (2002).
11. N. Salamat-Miller, M. Chittchang, and T. P. Johnston, 'The use of mucoadhesive polymers in buccal drug delivery,' Advanced Drug Delivery Reviews 57, 1666-1691 (2005).
12. R. Cotran, V. Kumar, and S. Robbins 'Pathologic basis of disease. 5th ed,' (W.B. Saunders Co, 1994).
13. L. T. Nieman, C.-W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, 'Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,' Journal of Biomedical Optics 13, 024011 (2008).
14. J. J. Sdubba, 'Oral Leukoplakia,' Critical Reviews in Oral Biology & Medicine 6, 147-160 (1995).
15. N. Rajaram, A. Gopal, X. Zhang, and J. W. Tunnell, 'Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,' Lasers in Surgery and Medicine 42, 680-688 (2010).
16. S. P. Crispian Scully, 'ABC of oral health: Swellings and red, white, and pigmented lesions,' Clinical review 321, 225-228 (2000).
17. M. K. Rollert, 'Sensitivity and specificity of orascan toluidine blue mouthrinse in the detection of oral cancer and precancer: Warnakaluriya KAAS, Johnson NW. J Oral Pathol Med 25:97, 1996,' Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons 55, 201 (1997).
18. T. Vo-Dinh, 'Biomedical Photonic Handbook,' (Baker & Taylor Books, 2003).
19. T. J. F. a. M. S. Patterson, 'A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,' Medical Physics 19, 879-888 (1992).
20. L. V. W. a. H.-i. Wu, ed. Biomedical Optics: Principles and Imaging (Wiley, 2007).
21. N. M. a. S. Ulam, 'The Monte Carlo Method,' Journal of the American Statistical Association 44, 335-341.
22. M. K. S. A. Prahl, S. L. Jacques∗, A. J. Welch, 'A Monte Carlo Model of Light Propagation in Tissue,' Dosimetry of Laser Radiation in Medicine and Biology 5, 102-111 (1989).
23. L. Wang, S. L. Jacques, and L. Zheng, 'MCML--Monte Carlo modeling of light transport in multi-layered tissues,' Computer Methods and Programs in Biomedicine 47, 131-146 (1995).
24. 鐘錫華, 光學 (儒林圖書有限公司, 1997).
25. R. B. Smith, 'Introduction to Hyperspectral Imaging,' (MicroImages, Inc., 2006).
26. P. S. Chang Vt Fau - Cartwright, S. M. Cartwright Ps Fau - Bean, G. M. Bean Sm Fau - Palmer, R. C. Palmer Gm Fau - Bentley, N. Bentley Rc Fau - Ramanujam, and N. Ramanujam, 'Quantitative physiology of the precancerous cervix in vivo through optical spectroscopy,' Neoplasia, 11, 325-332 (2009).
27. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, 'Diffuse Reflectance Spectroscopy of Human Adenomatous Colon Polyps In Vivo,' Appl. Opt. 38, 6628-6637 (1999).
28. S.-H. Tseng, A. Grant, and A. J. Durkin, In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy (SPIE, 2008).
29. R. A. Schwarz, W. Gao, D. Daye, M. D. Williams, R. Richards-Kortum, and A. M. Gillenwater, 'Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe,' Appl. Opt. 47, 825-834 (2008).
30. S. McGee, V. Mardirossian, A. Elackattu, J. Mirkovic, R. Pistey, G. Gallagher, S. Kabani, C. C. Yu, Z. Wang, K. Badizadegan, G. Grillone, and M. S. Feld, 'Anatomy-based algorithms for detecting oral cancer using reflectance and fluorescence spectroscopy,' Ann Otol Rhinol Laryngol 118, 817-826 (2009).
31. I. H. P. David A. Benaron, Wai-Fung Cheong,Shai Friedland,Boris E. Rubinsky ,David M. Otten,Frank W. H. Liu,Carl J. Levinson,Aileen L. Murphy, John W. Price,Yair Talmi,James P. Weersing, Joshua L. Duckworth, Uwe B. Hörchner, Eben L. Kermit, 'Design of a visible-light spectroscopy clinical tissue oximeter,' Journal of Biomedical Optics 10, 1-9 (2005).
32. J. C. F. a. T. H. Foster, 'Hemoglobin oxygen saturations in phantom and in vivo from measurements of steady-state diffuse reflectance at a single short source-detector seperation,' Medical Physics 31, 1949-1959 (2004).
33. H. Y. Quanzeng Wang , Anant Agrawal , Nam Sun Wang and T. Joshua Pfefer 'Measurement of internal tissue optical properties at ultraviolet and visible wavelengths: Development and implementation of a fiberoptic-based system,' OPTICS EXPRESS 16, 8685-8703 ( 2008).
34. A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagni?res, and H. van den Bergh, 'Noninvasive Determination of the Optical Properties of Two-Layered Turbid Media,' Appl. Opt. 37, 779-791 (1998).
35. H. Cen, and R. Lu, 'Quantification of the optical properties of two-layer turbid materials using a hyperspectral imaging-based spatially-resolved technique,' Appl. Opt. 48, 5612-5623 (2009).
36. J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, 'Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,' Journal of Applied Physics 105, 102028-102029 (2009).
37. Q. Liu, and N. Ramanujam, 'Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra,' Appl. Opt. 45, 4776-4790 (2006).
38. G. M. P. a. N. Ramanujam, 'Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,' APPLIED OPTICS 45, 1062-1071 (2006).
39. 陳俊宇, '利用高光譜影像系統量測仿體組織光學參數以及血紅素濃度,' (2010).
40. U. Utzinger, and R. R. Richards-Kortum, 'Fiber optic probes for biomedical optical spectroscopy,' Journal of Biomedical Optics 8, 121 (2003).
41. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, 'Double-integrating-sphere system for measuring the optical properties of tissue,' Appl. Opt. 32, 399-410 (1993).
42. 賴柏禎, '利用傅立葉轉換光譜影像技術快速測量金屬奈米粒子散射光譜,' (2008).
43. I. Pavlova, C. R. Weber, R. A. Schwarz, M. Williams, A. El-Naggar, A. Gillenwater, and R. Richards-Kortum, 'Monte Carlo model to describe depth selective fluorescence spectra of epithelial tissue: applications for diagnosis of oral precancer,' Journal of Biomedical Optics 13, 064012 (2008).
44. S. Andree, C. Reble, J. u. Helfmann, I. Gersonde, and G. Illing, 'Evaluation of a novel noncontact spectrally and spatially
resolved reflectance setup with continuously variable
source-detector separation using silicone phantoms,' Journal of Biomedical Optics 15 (2010).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47386-
dc.description.abstract本研究利用傅立葉轉換式高光譜影像顯微系統結合影像光纖,同時量測取得不同距離之漫反射光譜資訊,並且利用光譜擬合工具進行口腔黏膜組織光學參數的萃取以及血氧濃度和血紅素濃度的定量研究。
  本研究利用縮放式蒙地卡羅法做為順向模型,利用雙層組織模型建立口腔空間漫反射光譜,並利用Levenberg-Marquart演算法建立反向模型進行光譜擬合,希望同時萃取出口腔雙層組織光學參數以及厚度之資訊。並利用帶有雜訊之口腔模擬漫反射光譜進行擬合工具的驗證,結果顯示結合多光纖的漫反射資訊進行光譜擬合,可同時萃取出雙層之吸收係數及散射係數,並可同時得知上層組織厚度,且其方均根誤差皆在10%以下。
本研究利用仿體進行系統之驗證,利用polystyrene小球為散射子並以紅墨水為吸收子進行單層組織的光學模型模擬,並利用校正仿體消除系統響應,成功得到距離為0.4mm ~1.8 mm之光纖空間漫反射資訊。光譜擬合結果顯示本研究方法對於均值單層仿體的光學參數萃取準確率其小球濃度、小球直徑以及紅墨水濃度的平均百分誤差率分別為0.72%、-1.6%、3.5%,吸收係數與減少散射係數的方均根誤差分別為4.33%及2.5%。雙層組織模擬的量測驗證上,利用二氧化鈦當做散射子及紅墨水為吸收子並分別以PDMS及洋菜膠為基質進行量測找出最佳的製作與量測方法,實驗光譜擬合萃取出之輸入光學參數的誤差百分率皆在15%以下。
本研究實際量測口腔側面黏膜之漫反射光譜,並利用一標準仿體進行系統響應的修正,成功量測出口腔黏膜於450 nm至800 nm之空間漫反射光譜資訊,並將其以光學萃取工具進行光譜擬合成功萃取出雙層口腔黏膜組織的光學參數。
zh_TW
dc.description.abstractIn this thesis, we used a Fourier transfer hyperspectral image-based microscopy spectrometer combined with a imaging fiber-optic bundle to measure reflectance spectrum at different source-detector separation. We also used a fitting tool to extract the optical parameters and quantify the hemoglobin concentration and oxygen saturation.
 We used scaling Monte carlo as the forward model to construct a two-layer oral mucosa spatially-resolved reflectance spectrum. In inversed model, we used Levenberg-Marquart algorism to fitting reflectance spectrum, in order to extract the optical parameters and the thickness of epithelium. We used a oral simulated oral   spatially-resolved reflectance spectrum with random noise to validate fitting tool. The result indicate that combined with multi-fiber reflectance spectrum, we can extract the absorption and reduced scattering coefficients of oral double-layer tissue simultaneously and get the thickness of the epithelium. The root mean square error of optical parameters are all below 10%.
We used phantom to validate the study method. We choose polystyrene sphere as scatter, red ink as absorber and water as medium to simulate a single-layer tissue phantom, and used a standard phantom to calibration reflectance spectrum, and get spatially-resolved reflectance spectrum successfully by our optical system. The mean percent error of our measuring method to extract the optical parameters of homogeneous phantom is 0.72%、-1.6%、3.5% for polystyrene concentration, polystyrene diameter and red ink concentration, respectively. The root mean square error of absorption coefficients and reduced scattering coefficients is 4.33% and 2.5%. For two-layer tissue validation, we used TiO2 as scatter and red ink as absorber to fabricate two-layer phantom, and used PDMS and agar as medium to compare the measurement results and to find the best phantom fabrication and measurement protocol. The extracted optical parameters are all below 15%.
We used Fourier transfer hyperspectral image-based microscopy spectrometer to measure the reflectance spectrum of oral mucosa, and used a standard phantom to calibration the system response. Successfully get the reflectance of oral mucosa at wavelength range of 450 nm to 800 nm and using the optical parameter extracting tool to get the normal human oral mucosa optical parameters.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:57:33Z (GMT). No. of bitstreams: 1
ntu-100-R98945004-1.pdf: 7435289 bytes, checksum: 3f70acf97e918c724cbfb83b2257d2d5 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents致謝 i
中文摘要 ii
英文摘要 iii
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究架構 3
第二章 理論與文獻回顧 4
2.1 口腔組織結構與癌病變發展 4
2.2 口腔癌病變診斷技術 7
2.3 漫反射原理 9
2.4 蒙地卡羅演算法 13
2.5 傅立葉轉換光譜影像系統 16
2.6 文獻回顧 18
第三章 實驗設備與研究方法 20
3.1 實驗架構 20
3.2 光學系統 21
3.2.1 傅立葉光譜儀 21
3.2.2 光纖設計 24
3.2.3 雙積分球系統 25
3.3 光譜擬合工具 27
3.3.1 蒙地卡羅順向光譜 27
3.3.2 反向模型 29
3.4 仿體製作與量測 30
3.4.1 單層仿體製作量測 30
3.4.2 雙層仿體製作量測 32
3.5 正常人體口腔組織量測 35
3.5.1 光纖探頭設計最佳化 35
3.4.2 口腔組織量測標準流程 36
第四章 實驗結果與討論 37
4.1 雙層口腔組織光譜之模擬與擬合結果 37
4.2 光學系統分析與穩定性探討 47
4.2.1 系統偵測視野大小及像素尺寸大小計算 47
4.2.2 系統量測穩定度測試 49
4.3 仿體測量結果 51
4.3.1 單層仿體之量測 51
4.3.2 雙層仿體之量測 58
4.4 正常人體口腔組織光漫反射光譜量測 71
第五章 結論與未來展望 77
參考文獻 79
dc.language.isozh-TW
dc.title利用傅立葉轉換式高光譜顯微影像系統進行口腔黏膜光學參數量測zh_TW
dc.titleUsing a Fourier Hyperspectral microscopy image-based system to quantify the optical parameters of oral mucosaen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江惠華(Hui-hau Chiang),陳進庭(Chin-Tin Chen),曾盛豪(Sheng-Hao Tseng)
dc.subject.keyword口腔黏膜組織,空間漫反射光譜,光學組織參數,組織仿體,傅立葉轉換式高光譜顯微影像系統,zh_TW
dc.subject.keywordOral mucosa,spatially-resolved reflectance spectrum,optical parameter,tissue phantom,Fourier transfer hyperspectral image-based microscopy spectrometer,en
dc.relation.page84
dc.rights.note有償授權
dc.date.accepted2011-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
7.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved