Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47385
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張富雄
dc.contributor.authorJo-Chieh Tungen
dc.contributor.author董若傑zh_TW
dc.date.accessioned2021-06-15T05:57:31Z-
dc.date.available2012-09-09
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-08-17
dc.identifier.citationAkhtar, S. (1998). Antisense technology: selection and delivery of optimally acting antisense oligonucleotides. J Drug Target 5, 225-234.
Akinc, A., and Langer, R. (2002). Measuring the pH environment of DNA delivered using nonviral vectors: implications for lysosomal trafficking. Biotechnol Bioeng 78, 503-508.
Alvarez, D., Harder, G., Fattouh, R., Sun, J., Goncharova, S., Stampfli, M.R., Coyle, A.J., Bramson, J.L., and Jordana, M. (2005). Cutaneous antigen priming via gene gun leads to skin-selective Th2 immune-inflammatory responses. J Immunol 174, 1664-1674.
Arora, V., Knapp, D.C., Smith, B.L., Statdfield, M.L., Stein, D.A., Reddy, M.T., Weller, D.D., and Iversen, P.L. (2000). c-Myc antisense limits rat liver regeneration and indicates role for c-Myc in regulating cytochrome P-450 3A activity. J Pharmacol Exp Ther 292, 921-928.
Bao, S., Thrall, B.D., and Miller, D.L. (1997). Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol 23, 953-959.
Biroccio, A., Leonetti, C., and Zupi, G. (2003). The future of antisense therapy: combination with anticancer treatments. Oncogene 22, 6579-6588.
Brandwijk, R.J., Griffioen, A.W., and Thijssen, V.L. (2007). Targeted gene-delivery strategies for angiostatic cancer treatment. Trends Mol Med 13, 200-209.
Brenner, B.M., Deen, W.M., and Robertson, C.R. (1976). Determinants of glomerular filtration rate. Annu Rev Physiol 38, 11-19.
Check, E. (2003). Harmful potential of viral vectors fuels doubts over gene therapy. Nature 423, 573-574.
Ciani, L., Ristori, S., Salvati, A., Calamai, L., and Martini, G. (2004). DOTAP/DOPE and DC-Chol/DOPE lipoplexes for gene delivery: zeta potential measurements and electron spin resonance spectra. Biochim Biophys Acta 1664, 70-79.
Cole-Strauss, A., Gamper, H., Holloman, W.K., Munoz, M., Cheng, N., and Kmiec, E.B. (1999). Targeted gene repair directed by the chimeric RNA/DNA oligonucleotide in a mammalian cell-free extract. Nucleic Acids Res 27, 1323-1330.
Crooke, S.T. (1993). Progress toward oligonucleotide therapeutics: pharmacodynamic properties. FASEB J 7, 533-539.
Crooke, S.T. (1999). Molecular mechanisms of action of antisense drugs. Biochim Biophys Acta 1489, 31-44.
Dean, N.M., and Bennett, C.F. (2003). Antisense oligonucleotide-based therapeutics for cancer. Oncogene 22, 9087-9096.
Drury, M.D., and Kmiec, E.B. (2003). DNA pairing is an important step in the process of targeted nucleotide exchange. Nucleic Acids Res 31, 899-910.
Drury, M.D., and Kmiec, E.B. (2004). Double displacement loops (double d-loops) are templates for oligonucleotide-directed mutagenesis and gene repair.
Oligonucleotides 14, 274-286.
Drury, M.D., Skogen, M.J., and Kmiec, E.B. (2005). A tolerance of DNA heterology in the mammalian targeted gene repair reaction. Oligonucleotides 15, 155-171.
Ellis, H.M., Yu, D., DiTizio, T., and Court, D.L. (2001). High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci U S A 98, 6742-6746.
Engstrom, J.U., Suzuki, T., and Kmiec, E.B. (2009). Regulation of targeted gene repair by intrinsic cellular processes. Bioessays 31, 159-168.
Farhood, H., Bottega, R., Epand, R.M., and Huang, L. (1992). Effect of cationic cholesterol derivatives on gene transfer and protein kinase C activity. Biochim Biophys Acta 1111, 239-246.
Felgner, P.L., Gadek, T.R., Holm, M., Roman, R., Chan, H.W., Wenz, M., Northrop, J.P., Ringold, G.M., and Danielsen, M. (1987). Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84, 7413-7417.
Florea, B.I., Meaney, C., Junginger, H.E., and Borchard, G. (2002). Transfection efficiency and toxicity of polyethylenimine in differentiated Calu-3 and nondifferentiated COS-1 cell cultures. AAPS PharmSci 4, E12.
Friend, D.S., Papahadjopoulos, D., and Debs, R.J. (1996). Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochim Biophys Acta 1278, 41-50.
Gao, H., and Hui, K.M. (2001). Synthesis of a novel series of cationic lipids that can act as efficient gene delivery vehicles through systematic heterocyclic substitution of cholesterol derivatives. Gene Ther 8, 855-863.
Greish, K. (2007). Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target 15, 457-464.
Griesenbach, U., Scheid, P., Hillery, E., de Martin, R., Huang, L., Geddes, D.M., and Alton, E.W. (2000). Anti-inflammatory gene therapy directed at the airway epithelium. Gene Ther 7, 306-313.
Hannon, G.J. (2002). RNA interference. Nature 418, 244-251.
Higuchi, Y., Kawakami, S., Oka, M., Yamashita, F., and Hashida, M. (2006). Suppression of TNFalpha production in LPS induced liver failure in mice after intravenous injection of cationic liposomes/NFkappaB decoy complex. Pharmazie 61, 144-147.
Hu, Y., Parekh-Olmedo, H., Drury, M., Skogen, M., and Kmiec, E.B. (2005). Reaction parameters of targeted gene repair in mammalian cells. Mol Biotechnol 29, 197-210.
Hughes, M.D., Hussain, M., Nawaz, Q., Sayyed, P., and Akhtar, S. (2001). The cellular delivery of antisense oligonucleotides and ribozymes. Drug Discov Today 6, 303-315.
Igoucheva, O., Alexeev, V., and Yoon, K. (2004). Oligonucleotide-directed mutagenesis and targeted gene correction: a mechanistic point of view. Curr Mol Med 4, 445-463.
Kamiya, H., Tsuchiya, H., Yamazaki, J., and Harashima, H. (2001). Intracellular trafficking and transgene expression of viral and non-viral gene vectors. Adv Drug Deliv Rev 52, 153-164.
Kashihara, N., Maeshima, Y., and Makino, H. (1998). Antisense oligonucleotides. Exp Nephrol 6, 84-88.
Kawakami, S., Higuchi, Y., and Hashida, M. (2008). Nonviral approaches for targeted delivery of plasmid DNA and oligonucleotide. J Pharm Sci 97, 726-745.
Khatsenko, O., Morgan, R., Truong, L., York-Defalco, C., Sasmor, H., Conklin, B., and Geary, R.S. (2000). Absorption of antisense oligonucleotides in rat intestine: effect of chemistry and length. Antisense Nucleic Acid Drug Dev 10, 35-44.
Kim, S.T., Lee, K.M., Park, H.J., Jin, S.E., Ahn, W.S., and Kim, C.K. (2009). Topical delivery of interleukin-13 antisense oligonucleotides with cationic elastic liposome for the treatment of atopic dermatitis. J Gene Med 11, 26-37.
Kmiec, E.B. (2003). Targeted gene repair -- in the arena. J Clin Invest 112, 632-636.
Koh, C.G., Zhang, X., Liu, S., Golan, S., Yu, B., Yang, X., Guan, J., Jin, Y., Talmon, Y., Muthusamy, N., et al. Delivery of antisense oligodeoxyribonucleotide lipopolyplex nanoparticles assembled by microfluidic hydrodynamic focusing. J Control Release 141, 62-69.
Koping-Hoggard, M., Tubulekas, I., Guan, H., Edwards, K., Nilsson, M., Varum, K.M., and Artursson, P. (2001). Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther 8, 1108-1121.
Kurata, S., Tsukakoshi, M., Kasuya, T., and Ikawa, Y. (1986). The laser method for efficient introduction of foreign DNA into cultured cells. Exp Cell Res 162, 372-378.
Lee, C.C., MacKay, J.A., Frechet, J.M., and Szoka, F.C. (2005). Designing dendrimers for biological applications. Nat Biotechnol 23, 1517-1526.
Lehrman, S. (1999). Virus treatment questioned after gene therapy death. Nature 401, 517-518.
Leonetti, C., Biroccio, A., D'Angelo, C., Semple, S.C., Scarsella, M., and Zupi, G. (2007). Therapeutic integration of c-myc and bcl-2 antisense molecules with docetaxel in a preclinical model of hormone-refractory prostate cancer. Prostate 67, 1475-1485.
Liu, L., Rice, M.C., Drury, M., Cheng, S., Gamper, H., and Kmiec, E.B. (2002). Strand bias in targeted gene repair is influenced by transcriptional activity. Mol Cell Biol 22, 3852-3863.
Liu, L., Rice, M.C., and Kmiec, E.B. (2001). In vivo gene repair of point and frameshift mutations directed by chimeric RNA/DNA oligonucleotides and modified single-stranded oligonucleotides. Nucleic Acids Res 29, 4238-4250.
Luo, D., and Saltzman, W.M. (2000). Synthetic DNA delivery systems. Nat Biotechnol 18, 33-37.
Lv, H., Zhang, S., Wang, B., Cui, S., and Yan, J. (2006). Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 114, 100-109.
Matthews, K.E., Mills, G.B., Horsfall, W., Hack, N., Skorecki, K., and Keating, A. (1993). Bead transfection: rapid and efficient gene transfer into marrow stromal and other adherent mammalian cells. Exp Hematol 21, 697-702.
Merdan, T., Kopecek, J., and Kissel, T. (2002). Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev 54, 715-758.
Miller, M.W. (2000). Gene transfection and drug delivery. Ultrasound Med Biol 26 Suppl 1, S59-62.
Mir, L.M., Moller, P.H., Andre, F., and Gehl, J. (2005). Electric pulse-mediated gene delivery to various animal tissues. Adv Genet 54, 83-114.
Moreira, J.N., Santos, A., and Simoes, S. (2006). Bcl-2-targeted antisense therapy (Oblimersen sodium): towards clinical reality. Rev Recent Clin Trials 1, 217-235.
Moulder, S.L., Symmans, W.F., Booser, D.J., Madden, T.L., Lipsanen, C., Yuan, L., Brewster, A.M., Cristofanilli, M., Hunt, K.K., Buchholz, T.A., et al. (2008). Phase I/II study of G3139 (Bcl-2 antisense oligonucleotide) in combination with doxorubicin and docetaxel in breast cancer. Clin Cancer Res 14, 7909-7916.
Nahta, R., and Esteva, F.J. (2003). Bcl-2 antisense oligonucleotides: a potential novel strategy for the treatment of breast cancer. Semin Oncol 30, 143-149.
Nelson, C.M., and Bissell, M.J. (2006). Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 22, 287-309.
Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P.H. (1982). Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1, 841-845.
Owens, R.A. (2002). Second generation adeno-associated virus type 2-based gene therapy systems with the potential for preferential integration into AAVS1. Curr Gene Ther 2, 145-159.
Paddison, P.J., and Hannon, G.J. (2002). RNA interference: the new somatic cell genetics Cancer Cell 2, 17-23.
Panyam, J., Zhou, W.Z., Prabha, S., Sahoo, S.K., and Labhasetwar, V. (2002). Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J 16, 1217-1226.
Parekh-Olmedo, H., Drury, M., and Kmiec, E.B. (2002). Targeted nucleotide exchange in Saccharomyces cerevisiae directed by short oligonucleotides containing locked nucleic acids. Chem Biol 9, 1073-1084.
Puerta-Fernandez, E., Romero-Lopez, C., Barroso-delJesus, A., and Berzal-Herranz, A. (2003). Ribozymes: recent advances in the development of RNA tools. FEMS Microbiol Rev 27, 75-97.
Russ, V., and Wagner, E. (2007). Cell and tissue targeting of nucleic acids for cancer gene therapy. Pharm Res 24, 1047-1057.
Shirahata, Y., Ohkohchi, N., Itagak, H., and Satomi, S. (2001). New technique for gene transfection using laser irradiation. J Investig Med 49, 184-190.
Singla, A.K., and Chawla, M. (2001). Chitosan: some pharmaceutical and biological aspects--an update. J Pharm Pharmacol 53, 1047-1067.
Smith, L., Andersen, K.B., Hovgaard, L., and Jaroszewski, J.W. (2000). Rational selection of antisense oligonucleotide sequences. Eur J Pharm Sci 11, 191-198.
Stein, C.A., and Cheng, Y.C. (1993). Antisense oligonucleotides as therapeutic agents--is the bullet really magical Science 261, 1004-1012.
Stein, C.A., Subasinghe, C., Shinozuka, K., and Cohen, J.S. (1988). Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 16, 3209-3221.
Symons, R.H. (1992). Small catalytic RNAs. Annu Rev Biochem 61, 641-671.
Tata, D.B., Dunn, F., and Tindall, D.J. (1997). Selective clinical ultrasound signals mediate differential gene transfer and expression in two human prostate cancer cell lines: LnCap and PC-3. Biochem Biophys Res Commun 234, 64-67.
Tong, A.W., Jay, C.M., Senzer, N., Maples, P.B., and Nemunaitis, J. (2009). Systemic therapeutic gene delivery for cancer: crafting Paris' arrow. Curr Gene Ther 9, 45-60.
Valencia-Sanchez, M.A., Liu, J., Hannon, G.J., and Parker, R. (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20, 515-524.
van Vlerken, L.E., Vyas, T.K., and Amiji, M.M. (2007). Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res 24, 1405-1414.
Vinogradov, S.V., Bronich, T.K., and Kabanov, A.V. (2002). Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 54, 135-147.
Weisman, S., Hirsch-Lerner, D., Barenholz, Y., and Talmon, Y. (2004). Nanostructure of cationic lipid-oligonucleotide complexes. Biophys J 87, 609-614.
Wiedenmann, N., Koto, M., Raju, U., Milas, L., and Mason, K.A. (2007). Modulation of tumor radiation response with G3139, a bcl-2 antisense oligonucleotide. Invest New Drugs 25, 411-416.
Yang, J.P., and Huang, L. (1997). Overcoming the inhibitory effect of serum on lipofection by increasing the charge ratio of cationic liposome to DNA. Gene Ther 4, 950-960.
Yin, W.X., Wu, X.S., Liu, G., Li, Z.H., Watt, R.M., Huang, J.D., Liu, D.P., and Liang, C.C. (2005). Targeted correction of a chromosomal point mutation by modified single-stranded oligonucleotides in a GFP recovery system. Biochem Biophys Res Commun 334, 1032-1041.
Zamecnik, P.C., and Stephenson, M.L. (1978). Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A 75, 280-284.
Zelphati, O., and Szoka, F.C., Jr. (1996). Intracellular distribution and mechanism of delivery of oligonucleotides mediated by cationic lipids. Pharm Res 13, 1367-1372.
Zupi, G., Scarsella, M., Semple, S.C., Mottolese, M., Natali, P.G., and Leonetti, C. (2005). Antitumor efficacy of bcl-2 and c-myc antisense oligonucleotides in combination with cisplatin in human melanoma xenografts: relevance of the administration sequence. Clin Cancer Res 11, 1990-1998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47385-
dc.description.abstract基因治療是指利用適當的方法將基因送入細胞中,繼而穩定的表達其未能正常表現的蛋白質,而當疾病是由於蛋白質表現過量所造成的,就必須抑制其基因的表現。目前用來抑制表現的核酸物質有反意股核苷酸 (antisense deoxynucleotides)以及干擾型核醣核酸 (RNAi),都可以使轉譯過程被停止而抑制不正常的蛋白質表現,而另外一種基因治療為基因修正,即改變基因上錯誤的鹼基而使基因表現正常。過去用來遞送核酸物質的載體主要可以分為兩種,病毒性載體以及非病毒性載體。由於病毒性載體的不穩定性,目前的遞送方式大多以非病毒性載體為主。
3β-[N-(2-guanidinoethyl)carbamoyl]cholesterol (GEC-Chol)為一以膽固醇為基礎的正價脂質,我們以莫耳數1:1的方式將GEC-Chol與膽固醇(Cholesterol)混合後,再以此GEC-Chol/Chol正價奈米微胞攜帶短鏈核苷酸並觀察其在基因治療上的應用。首先研究的是GEC-Chol/Chol正價奈米微胞攜帶短鏈核苷酸的最適條件,我們分別在不同的氮磷比 (N/P ratio)的情況下測量其大小、表面電荷、包覆率以及遞送效率等等,由實驗結果可以發現當氮磷比為3時可以有極高的遞送效率和包覆率。而在毒性測試中GEC-Chol/Chol正價奈米微胞也展現了低細胞毒性,而低細胞毒性即表示能以其遞送較大量的短鏈核苷酸以達到治療的目的。另外,以細胞存活率以及蛋白表現來觀察GEC-Chol/Chol正價奈米微胞遞送c-myc及bcl-2之反意股核苷酸的應用,也發現其為遞送反意股核苷酸的良好載體。在修正綠色螢光蛋白的實驗中,相較於市售正價微脂體Lipofectamine2000,我們發現使用GEC-Chol/Chol正價奈米微胞有2-3倍的修正機率。總結以上的實驗,GEC-Chol/Chol正價奈米微胞可以在活體外的實驗中有效的遞送短鏈核苷酸,並達到基因治療的目的。
本論文提出GEC-Chol/Chol正價奈米微胞具有高度短鏈核苷酸遞送性以及低細胞毒性,相當適合當作一基因治療的載體,此正價奈米微胞未來也可以同時加入其他藥物或是專一性遞送的導向性分子增加其治療能力。而目前正著手進行初步的活體內實驗,以GEC-Chol/Chol正價奈米微胞攜帶反意股核苷酸直接打入皮下腫瘤中,觀察腫瘤的生長情形,然而此正價奈米微胞若要在活體內應用,其最適化條件可能需要微調才能有效應用在活體治療中,這也是未來可以努力的方向。
zh_TW
dc.description.abstractGene therapy is the procedure that a gene is delivered into cells, and subsequently expresses appropriately to compensate for the dysfunctional gene. And a gene needs to be repressed when its abnormal overexpression has resulted in a disease. Presently, the nucleic acids used to inhibit protein expression are antisense oligodeoxynucleotides (ODN) and RNAi, both of which could block translation to suppress abnormal gene-expression. Another type of gene therapy is gene correction which revises the wrong nucleotides to recover the coding sequence of the targeted protein. Viral and non-viral vector have been used to deliver nucleic acid materials. Considering to stability, the non-viral vectors is more prevalent.
3β-[N-(2-guanidinoethyl)carbamoyl]cholesterol (GEC-Chol) is a cationic lipid based on cholesterol (Chol). We mixed GEC-Chol and Chol with molar ratio 1:1 and investigated the applications of the GEC-Chol/Chol cationic nanomicelles carrying ODN in gene therapy. To obtain the most appropriate condition, we measured the size, zeta potential, encapsulation and delivery efficiency of GEC-Chol/Chol cationic nanomicelles with different N/P ratio. We found that the delivery efficiency and encapsulation of oligonucleotides was highest when the N/P ratio was 3. In addition, the cytotoxicity of GEC-Chol/Chol cationic nanomicelles was low which suggested that GEC-Chol/Chol cationic nanomicelles could be used to carry more oligonucleotides in gene therapy. Moreover, we found that GEC-Chol/Chol cationic nanomicelles are fine vectors for antisense ODN delivery by observing the cell viability and protein level in the cancer cells which antisense oligodeoxynucleotides of c-myc and bcl-2 were delivered to. Comparing to the commercial transfection reagent Lipofectamine2000, GEC-Chol/Chol cationic nanomicelles also showed higher efficiency to correct aberrant sequence of enhanced green fluorescent protein (EGFP). In summary, GEC-Chol/Chol cationic nanomicelle is a potential tool for gene therapy owing to its high efficiency of ODN delivery and low toxicity to cells in vitro. Drugs and specific targeting molecules can be capsulated or embedded into this vector to execute their therapeutic functions. However, the in vivo test of intratumor injection of antisense oligodeoxynucleotides carried by the GEC-Chol/Chol cationic nanomicelles is still at the initiation stage. In vivo applications of such nanomicelle needs further study.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:57:31Z (GMT). No. of bitstreams: 1
ntu-99-R97442026-1.pdf: 3849871 bytes, checksum: 885d0b05ec6143ef79fcfcdf2c3d1532 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目錄
中文摘要 I
英文摘要 III
第一章 緒論 1
1.1 基因遞送 2
1.1.1病毒性載體 2
1.1.2非病毒性載體 3
1.2 基因遞送的核酸材料 7
1.3 以正價微脂體遞送反意股核苷酸之應用性 9
1.4 目標基因修正 9
1.5 活體內以正價微脂體遞送短鏈核苷酸之應用性 11
1.6 研究動機與目的 12
第二章 材料與方法 13
2.1實驗材料 14
2.1.1 藥品 14
2.1.2 細胞株 14
2.1.3 短鏈核苷酸 15
2.1.4 脂質 15
2.1.5 質體 15
2.1.6 儀器 15
2.1.7 實驗動物 16
2.2實驗方法 16
2.2.1 GEC-Chol之製作 16
2.2.2 正價奈米微胞製備 18
2.2.3 短鏈核苷酸之遞送 18
2.2.4 短鏈核苷酸之遞送效率分析 19
2.2.5 正價奈米微胞粒徑大小、表面電位分析 19
2.2.6 正價奈米微胞包覆短鏈核苷酸之包覆率分析 20
2.2.7 正價奈米微胞遞送短鏈核苷酸之毒性分析 21
2.2.8 正價奈米微胞遞送反意股核苷酸之毒殺效率分析 22
2.2.9 以西方墨點法進行細胞內蛋白質表現量之分析 23
2.2.10 利用定點突變使EGFP質體喪失螢光能力 25
2.2.11 以電子顯微鏡觀察正價奈米微胞與短鏈核苷酸形成之微胞粒徑大小、形狀 26
2.2.12 正價奈米微胞遞送反意股核苷酸在活體內之應用 26
第三章 實驗結果 28
3.1 正價奈米微胞之大小、表面電位分析 29
3.2 正價奈米微胞包覆短鏈核苷酸的效率分析 29

3.3 正價奈米微胞保護其包覆之短鏈核苷酸之情形 30
3.4 正價奈米微胞遞送短鏈核苷酸的效率分析 30
3.5 正價奈米微胞與市售正價微脂體遞送短鏈核苷酸的效率比較 31
3.6 正價奈米微胞遞送短鏈核苷酸之耐受性分析 31
3.7 正價奈米微胞遞送反意股核苷酸的效率分析 32
3.8 以正價奈米微胞遞送反意股核苷酸 32
3.9 正價奈米微胞遞送短鏈核苷酸在目標基因修正中的應用 33
3.10 正價奈米微胞遞送短鏈核苷酸在活體內的應用 34
第四章 討論 35
4.1 正價奈米微胞遞送短鏈核苷酸的特性、包覆率以及遞送 效率討論 36
4.2 正價奈米微胞遞送短鏈核苷酸的毒性分析以及遞送效率比較 37
4.3 以正價奈米微胞遞送反意股核苷酸的應用 38
4.4 正價奈米微胞遞送短鏈核苷酸在目標基因修正中的應用 39
4.5 正價奈米微胞遞送短鏈核苷酸在活體內的應用 39
第五章 圖表 41
參考文獻 59



圖表目錄
圖一:正價奈米微胞特性分析 42
圖二:正價奈米微胞包覆短鏈核苷酸的效率分析 44
圖三:以去氧核糖核酸水解酶保護試驗來分析正價奈米微胞保護其包覆的短鏈核苷酸之情形 45
圖四:正價奈米微胞遞送短鏈核苷酸的效率分析 46
圖五:正價奈米微胞遞送短鏈核苷酸的效率比較 47
圖六:正價奈米微胞遞送短鏈核苷酸之耐受性分析 48
圖七:正價奈米微胞遞送反意股核苷酸至細胞中之作用效率 50
圖八:以正價奈米微胞遞送反意股核苷酸 54
圖九:喪失螢光活性的綠色螢光蛋白之細胞穩定株之製作 55
圖十:以正價奈米微胞遞送EGFP 修正短鏈核苷酸對於目標基因修正的效率分析 56
圖十一:以正價奈米微胞遞送反意股核苷酸在活體內的應用 57
圖十二:正價奈米微胞遞送短鏈核苷酸在活體內的分佈 58
dc.language.isozh-TW
dc.subject基因治療zh_TW
dc.subject正價微脂體zh_TW
dc.subjectGEC-Cholzh_TW
dc.subject短鏈核&#33527zh_TW
dc.subject酸zh_TW
dc.subjectoligonucleotidesen
dc.subjectgene therapyen
dc.subjectCationic liposmoesen
dc.subjectEC-Cholen
dc.title正價脂質奈米微粒與短鏈核苷酸複合體
在基因治療上的應用
zh_TW
dc.titleApplication of positively-charged lipid nanoparticles complexed with oligonucleotides in gene therapyen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許金玉,丁詩同,陳敏慧
dc.subject.keyword正價微脂體,GEC-Chol,短鏈核&#33527,酸,基因治療,zh_TW
dc.subject.keywordCationic liposmoes,EC-Chol,oligonucleotides,gene therapy,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2010-08-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
3.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved