請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47371完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 童慶斌 | |
| dc.contributor.author | Tzu-Ming Liu | en |
| dc.contributor.author | 劉子明 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:56:55Z | - |
| dc.date.available | 2010-08-24 | |
| dc.date.copyright | 2010-08-24 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-17 | |
| dc.identifier.citation | 1.Bailey, R.G., “Delineation of Ecosystem Regions,” Environmental Management, 7(4), pp.365-373, 1983
2.Bailey, R.G., “Ecosystem Geography,” Springer-Verlag, pp.61-82, 1995 3.Bao, C and C.L. Fang, “Water Resources Constraint Force on Urbanization in Water Deficient Regions: A case Study of the Hexi Corridor, Arid Area of NW China,” Ecologicaleconomics, 62, pp.508-517, 2007 4.Barthel, R., S. Janisch, N. Schwarz, A. Trifkovic, D. Nickel, C. Schulz, and W. Mauser, “An Integrated Modeling Framework for Simulating Regional-Scale Actor Responses to Global Change in the Water Domain,” Environmental Modelling and Software, 23, pp.1095-1121,2008 5.Boonyatharokol, W., and W.R. Walker. “Evaporation under Depleting Soil Moisture,” Journal of Irrigation and Drainage Division, 105(IR4), pp.391-402, 1979 6.Chow, V.T., D.R. Maidment, and L.W. Mays. “Applied Hydrology,” McGraw-Hill,1988 7.Fan, Q.X, Y. Miao., D.C. Xu, and N.Q. Ren 'Computing analysis and evaluation of water environment carry capacity in Daqing area.' Journal of Harbn Nstitute of Technology 41(2), 2009. 8.Feng, L.H., C.F. Huang, “A Risk Assessment Model of Water Shortage Based on Information Diffusion Technology and its Application in Analyzing Carrying Capacity of Water Resources” Water Resources Management, 22, pp.621-633, 2008 9.Haith, D.A., R. Mandel, and R.S. Wu, “GWLF: Generalized Watershed Loading Functions User’s Manual, Vers. 2.0. (Computer program manual),” Cornell University, Ithaca, 1992 10.Hamon, W.R. “Estimation of Potential Evapotranspiration,” Journal of Hydraulics Division, 87(HY3), 1961. 11.Hsu, S. K. 'Shortage Index for Water-Resources Planning in Taiwan.' Water Resources Planning and Management, 121(2): 119-131, 1995. 12.IPCC DDC, The IPCC Data Distribution Centre, http://ipcc-ddc.cru.uea.ac.uk/ 13.IPCC, Working Group I : Climate change -The IPCC Scientific Basis: “Contribution of Working Group I, to the First Assessment Report of the Intergovernmental Panel on Climate Change “,Edited by J.T. Houghton, G.J. Jenkins and J.J. Ephraums, Cambridge University Press, 1992 14.IPCC, Working Group I : Climate change -The Scientific Assessment: “Contribution of Working Group I, to the third Assessment Report of the Intergovernmental Panel on Climate Change “,Edited by J.T. Houghton, Y. Ding ,D.J. Griggs, M. Noguer, P.J. van der, Cambridge University Press, 2001 15.IPCC, Working Group I, 'The Physical Science Basis,” Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2007a 16.IPCC, Working Group II, 'Climate Change 2007: Impacts, Adaptation and VulnerabilityWorking,' Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Edited by M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Cambridge University Press, 2007b 17.JalaSpandana, 'Water and Livelihoods, SRI in Large Irrigation Projects in Andhra Pradesh', http://www.wassan.org/sri/documents/JalaSpandana_Water%20and%20Livelihoods%20SRI%20black.pdf ,South India Farmers Organisation for Water Management, 2007 18.Li, H., J. Sheffield, and E.F. Wood, “Bias Correction of Monthly Precipitation and Temperature Fields from Intergovernmental Panel on Climate Change AR4 Models Using Equidistant Quantile Matching,” Journal OF Geophysical Research, 115, D10101, doi:10.1029/2009JD012882, 2010 19.Liu,T.M., C. P. Tung, K. Y. Ke, L. H. Chuang and C. Y. Lin. “Application and Development of a Decision-Support System for Assessing Water Shortage and Allocation with Climate Chang,” Paddy and Water Environment, 7(4), pp301-311, 2009 20.Meadows, Dl., Dn. Meadows, J. Randers, W. Behrens, “The Limits to Growth,” Universe Books, 1972. 21.Murphy, J. “An Evaluation of Statistical and Dynamical Techniques for Downscaling Local Climate,” Journal of Climate, Vol.12, 1999 22.Pickering, N. B., J. R. Stedinger, and D. A. Haith, “Weather Input for Nonpoint Source Pollution Models.” Journal of Irrigation Drainage, 114, pp.674 – 690, 1988 23.Sun, G., S. G. McNulty, J. M. Myers, and E.C. Cohen 'Impacts of Multiple Stresses on Water Demand and Supply across the Southeastern United States.' Journal of the American Water Resources Association, 44(6): pp.1441-1457, 2008 24.Takara, K., S. Kim, Y. Tachikawa, and E. Nakakita, “Assessing Climate Change Impact on Water Resources in the Tone River Basin, Japan, Using Super-High-Resolution Atmospheric Model Output,” Journal of Disaster Research, 4(1), 2009 25.Trewartha, G.T., “An Introduction to Climate,” McGraw-Hill, pp.237-251, 1968 26.Trewartha, G.T., “Physical Elements of Geography,” McGraw-Hill, pp.128-133, 1970 27.Tung, C. P. and D.A. Haith, 'Global Warming Effects on New York Streamflows.' Journal of Water Resources Planning and Management 121(2): 216-225, 1995. 28.VENSIM, Ventana Systems Inc., http://www.VENSIM.com/ 29.Yang, C.C., L.C. Chang, and C.C. Ho. 'Application of System Dynamics with Impact Analysis to Solve the Problem of Water Shortages in Taiwan.' Water Resources Management, 22: pp.1561-1577, 2008 30.王宗男,'水庫容量風險性設計準則比較探討',國立成功大學水利與海洋工程研究所碩士論文,2006。 31.甘俊二,“水稻深水灌溉與乾旱時期的用水管理”,農業氣象及農業水資源之應用與管理,行政院農委會農業試驗所,第106-113頁,2002 32.台灣省自來水公司, “台灣省自來水事業統計年報”,2002-2006 33.台灣自來水公司, “台灣自來水事業統計年報”,2007。 34.吳明進,陳幼麟, “臺灣的氣候分區”,大氣科學,21(1),55~66,1993 35.吳明進、陸雲、童慶斌、許少華,'區域氣候變遷模擬系統之整合與應用---子計畫VI:全球氣候變遷對台灣區域氣候與水資源衝擊之評析(I)',行政院國家科學委員會,2002 36.吳瑞賢、洪念民,“臺灣地區水文循環與水文環境研究?總計畫暨子計畫四:台灣地區水文環境研究(III)”,行政院國家科學委員會,2008 37.洪念民,'氣候變遷對大安溪水資源營運之影響',生物環境系統工程學研究所碩士論文,1997。 38.高國棟,陸渝蓉, “氣候學”,明文書局,P.369-375,1989 39.戚啟勳, “普通氣象學”,國立編譯館,p.320-330,1974 40.陳亭玉,'河川流域水土資源承載力與永續力評量模式之發展',國立中央大學環境工程研究所碩士論文,2000。 41.陳立偉,'氣候變遷對水資源之衝擊評估-以牡丹水庫集水區為例', 中原大學土木工程研究所碩士論文,2008 42.陳思瑋,'淡水河流域水資源永續性評估暨管理之研究',國立台灣大學生物環境系統工程學研究所碩士論文,2005。 43.陳鵬旭,'新竹地區供水系統動力模式與供水評量系統之建構',國立台灣海洋大學河海工程學系碩士論文,2002。 44.陳國彥, “鄉土地理調查與氣候值的利用”,人文及社會學科教育通訊,5(16),p.6-20,1995 45.陳國彥,“柯本與崔瓦沙的氣候分類”,人文及社會學科教育通訊,7(6),p.6-13,1997 46.童慶斌,'土地利用與氣候變遷對大甲溪上游流量之衝擊',行政院國家科學委員會,1997 47.溫漢章,'利用合成流量進行水資源系統分析',國立台灣大學土木工程研究所碩士論文,2001。 48.經濟部水利署, “多元化水資源經營管理方案總報告”,2005 49.經濟部水利署, “區域水資源經理策略擬定之研究”,2008 50.經濟部水利署水利規劃試驗所, “強化高屏溪流域水資源供水系統因應氣候變遷之調適能力”,2009。 51.萬寶康,“台灣分區氣候與天氣之研究(一)”,氣象學報,19(4),p.1-19,1973 52.蔡宏欣,'氣候變遷對石門水庫集水區的水文衝擊',國立成功大學水利及海洋工程學系碩士論文,2008 53.蔣丙然,“氣候學”, 國立編譯館,p.85-107,1967 54.蔣諾麗,“氣候變遷對聖文森蒙特利集水區流量之衝擊評估”,國立中央大學國際環境永續發展碩士在職專班國際專班碩士論文,2008 55.蕭政宗,'單一水庫系統缺水特性之探討',台灣水利,47(2),1999。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47371 | - |
| dc.description.abstract | 近年來,極端氣候頻率的增加與威脅,提高了人類對於氣候變遷的重視,並促進了氣候變遷衝擊評估等相關研究,雖然研究方法漸趨成熟,但卻缺少一整合評估系統。本研究建立氣候變遷對區域水資源衝擊評估整合系統,並以臺灣南部之高屏溪流域為研究區域,分析與探討供水系統容忍缺水範圍,進一步建立供水系統承載力分析流程與工具,探討現有水資源供水系統的供水承載力與供水能力,並建立氣候分區降尺度,評估氣候變遷對高屏溪流域水資源供水系統所帶來的衝擊,並評估氣候變遷下水資源供水系統缺水之風險性。
整合評估系統包括了氣候分區降尺度、氣象資料產生器、GWLF水文模式、水資源系統動力模式、層級分析等,藉由Visual Basic建立操作介面,完整提供在氣候變遷衝擊評估流程中所需要的工具,可作為國內外相關研究之氣候變遷評估工具。其中氣候分區降尺度乃利用主成分分析法配合群集分析法,將台灣氣候分成九個氣候分區,並針對各區挑選各大氣環流模式鄰近格點資料作為氣候變遷衝擊評估的氣候變化值,修正大氣模式資料與各區測站之間的誤差,以合理評估未來可能的降雨與氣溫變化。透過氣象資料產生器,合成出水文模式所需的日降雨資料以及氣溫資料,以進一步利用GWLF模式模擬水資源供水系統內之入流量,進而代入水資源系統動力模式,評估水資源供水承載力,最後可利用層級分析工具進行調適策略之優先順序分析。 本研究利用VENSIM系統動力學軟體,就現有之水資源設施,以及供需關係,建立高屏溪與曾文溪流域水資源系統動力模式,進而評估高屏溪流域之供水承載力。供水系統之承載力是考量可容忍缺水風險下之最大可供水量,本研究採用缺水百分日指標(%-day)(Deficit Percent Day Index, 簡稱DPD),並以DPD=1500%-day作為缺水容忍值,分析高屏溪供水承載力,並推求對應之缺水指數(Shortage Index, 簡稱SI)。 若以缺水容忍度作為供水承載力之設計標準,則必須加上缺水風險的門檻值,才能決定供水系統之供水承載力。當設計需水量為每日177.9萬立方公尺時,高屏溪供水系統能容忍DPD小於1500%-day之2年重現期距缺水事件,該設計需水量即為符合該缺水容忍度與風險之供水承載力。若以SI缺水指數作為供水承載力之評估指標, SI=1時,供水承載力為每日231.5萬立方公尺,而SI=0.5時,供水承載力為每日190.6萬立方公尺;SI=0.1所對應的供水承載力為每日143.5萬立方公尺。目前需水量為180萬立方公尺,SI為0.39。未來工業與生活需求成長下,原本高屏溪供水系統之SI逐漸增加,到民國120年時,SI到達1.03。以目前水資源設施而言,現況缺水風險52%,到民國120年時,將提高為74.1%。 未來高屏溪流域供水系統將面臨氣候變遷及需水量成長之雙重壓力,利用整合評估系統進行模擬,多數結果顯示氣候變遷與需水量增加的影響將使供水承載力下降,缺水風險將提高。針對未來供水系統之供水能力,除了考慮需水量的成長之外,對於氣候變遷造成供水能力下降與應該加以考慮,才能應付未來之供水。 | zh_TW |
| dc.description.abstract | In recent years, the threat and increasing frequency of extreme weather rised up human attention on climate change, and advanced the study on climate change impact. The research method is developed, but yet needs an integrated assessment system. This study established an integrated climate change impact assessment system on reginoal water resources. The study area of this study is the Gaoping river basin which is located in south area in Taiwan. The carrying capacity of the water supply system restricted by shortage tolerance was analyzed and approached. The process and simulation tools on analyzing carrying capacity of water supply system were built. The approach of downscaling with climate region classification was established to estimate the effect of climate change. The risk of water shortage was also adopted for climatic change conditions.
The integrated assessment system includes downscaling with climate region classification, weather generator, GWLF model, water resources system dynamics model and Analytic Hierarchy Process(AHP) tool, and was built with Visual Basic computer program. It provides the tools in the process of climate change impact assessment, and could be applied for the related research on climate change. The downscaling with climate region classification used principal component analysis with cluster analysis to classify Taiwan into 9 climate regions. The changing value of each general circulation model in the nearest point to each climate region was adopted and corrected bias to evaluate future precipitation and temperature reasonably. Using weather generator to generate daily precipitation and temperature data for hydrological model simulation, the inflow was simulated by GWLF model and put in water resources system dynamics model to estimate the carrying capacity of water supply system in water resources. Then the AHP tool can help to find the prior plan for the decision maker. This study used System Dynamics software- VENSIM to build the water resources system dynamics model of Goaping and Zenwun river basin with considering the water resources structures and water demands, and evaluate the carrying capacity of water supply system in Gaoping river basin. The carrying capacity of water supply system is the most available water supply under the tolerance of water shortage. The Deficit Percent Day Index (DPD Index) was used and the tolerance of water shortage,DPD=1500%-day, was adopted to analyze the carrying capacity of water supply system and related water shortage index of Gaoping river basin in this study. The carrying capacity of water supply system was adopted for different return period of DPD. The carrying capacity is 1.78 million CMD referring to return period of 2 years of water shortage risk which was defined as the probability of water shortage over the tolerance, DPD=1500%-day. The carrying capacity also adopted for different SI. It is 1.43 million CMD, 1.91 million CMD, and 2.32 million CMD for SI=0.1, SI=0.5 and SI=1, respectively. The SI is 0.39 for present which the domestic and industrial water demand is 1.8 million CMD, and the SI will rise up to 1.03 in year 2031 due to expanded water demand. The risk of water shortage will rise up from 52% to 74.1%. The water supply system in Gaoping river basin is under two threats in the future. One is the expanded water demand, and another is climatic change. Using integrated assessment system to simulate, most results indicated that under threast of climate change and expanding water demand, the carrying capacity will decrease down and the water shortage will rise up. To the capacity of water supply system for the future, the consideration is not only growing water demand but also the impact of climate change. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:56:55Z (GMT). No. of bitstreams: 1 ntu-99-D90622003-1.pdf: 3886292 bytes, checksum: c8a3efa3454e79145c86d01ab36214c5 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 摘要 I
Abstract III 目錄 V 圖目錄 VII 表目錄 IX 第一章 前言 1 第二章 文獻回顧 5 2-1 氣候變遷衝擊評估 5 2-2 供水承載力 7 第三章 基本資料蒐集與分析 11 3-1流域現況 11 3-2水資源系統 19 3-3生活、工業與農業用水 29 第四章 氣候變遷衝擊評估流程與工具之建立 49 4-1 氣候變遷情境與降尺度 51 4-1-1 氣候變遷情境 51 4-1-2 情境資料挑選 53 4-1-3 誤差修正及簡易降尺度 56 4-1-4 氣候分區降尺度 58 4-2 氣象資料產生器 67 4-3 GWLF模式 69 4-4 供水系統動力模式 73 4-4-1 系統動力模式 73 4-4-2 高屏溪流域供水系統動力模式 74 4-5 層級分析法 87 4-5-1 AHP理論說明 87 4-5-2 AHP案例說明 89 第五章 高屏溪流域供水承載力與供水能力情勢 93 5-1分析與探討供水系統承載力之容忍缺水風險標準 93 5-2現況供水系統之承載力分析 96 5-3未來供水能力情勢分析 98 5-3-1未來需水量推估 98 5-3-2未來供水模擬 107 5-4 供水系統面臨氣候變遷之脆弱度研析 109 第六章 結論與建議 115 參考文獻 119 | |
| dc.language.iso | zh-TW | |
| dc.subject | 缺水容忍度 | zh_TW |
| dc.subject | 缺水指標 | zh_TW |
| dc.subject | 氣候變遷 | zh_TW |
| dc.subject | 承載力 | zh_TW |
| dc.subject | 降尺度 | zh_TW |
| dc.subject | 氣候分區 | zh_TW |
| dc.subject | 整合系統 | zh_TW |
| dc.subject | 評估模式 | zh_TW |
| dc.subject | shortage index | en |
| dc.subject | Climate change | en |
| dc.subject | shortage tolerance | en |
| dc.subject | carrying capacity | en |
| dc.subject | downscaling | en |
| dc.subject | climate region | en |
| dc.subject | integrated system | en |
| dc.subject | assessment model | en |
| dc.subject | TaiWAP | en |
| dc.title | 氣候變遷對區域水資源衝擊評估整合系統之研究 | zh_TW |
| dc.title | Study on Integrated Climate Change Impact Assessment System for Regional Water Resources | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張斐章,蘇明道,吳明進,游保杉,吳瑞賢 | |
| dc.subject.keyword | 氣候變遷,缺水指標,缺水容忍度,承載力,降尺度,氣候分區,整合系統,評估模式, | zh_TW |
| dc.subject.keyword | Climate change,shortage index,shortage tolerance,carrying capacity,downscaling,climate region,integrated system,assessment model,TaiWAP, | en |
| dc.relation.page | 122 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
