請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47367完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏溪成(Shi-Chern Yen) | |
| dc.contributor.author | Wei-Che Hsieh | en |
| dc.contributor.author | 謝維哲 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:56:46Z | - |
| dc.date.available | 2011-08-18 | |
| dc.date.copyright | 2010-08-18 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-17 | |
| dc.identifier.citation | Alegria, Y., F. Liendo, O. Nunez, “On the Fenton degradation mechanism. The role of oxalic acid,” Arkivoc, 10, 538-549 (2003).
Anotai, J., M.C. Lu, P. Chewpreecha, “Kinetics of aniline degradation by Fenton and electro-Fenton processes,” Water Research, 40, 1841-1847 (2006). Bigda, R.J. “Consider Fenton's chemistry for wastewater treatment,” Chemical Engineering Progress, 12, 62-66 (1995). Blomeke, B., R. Brans, P.J. Coenraads, H. Dickel, T. Bruckner, D.W. Hein, M. Heesen, H.F. Merk, Y. Kawakubo, “Para-phenylenediamine and allergic sensitization: risk modification by N-acetyltransferase 1 and 2 genotypes,” British Journal of Dermatology, 1130-1135 (2009). Brillas, E., R.M. Bastida, and E. Llosa, “Electrochemical destruction of aniline and 4-chloroaniline for wastewater treatment using a carbon-PTFE O2-fed cathode,” Journal of the Electrochemical Society, 142, 1733-1741 (1995). Brillas, E., E. Mur, J. Casado, “Iron(II) catalysis of the mineralization of aniline using a carbon-PTFE O2-fed cathode,” Journal of the Electrochemical Society, 143 (3), L49-L53 (1996). Brillas, E., E. Mur, R. Sauleda, L. Sánchez, J. Peral, X. Domenech, “Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photo-electro-Fenton processes,” Applied Catalysis B-Environmental, 16, 31-42 (1998). Brillas, E., J.C. Calpe, J. Casado, “Minerallization of 2,4-D by advanced electrochemical oxidation process.” Water Research, 41, 2253-2262 (2000). Brillas, E., J. Casado, “Aniline degradation by Electro-Fenton® and peroxi-coagulation processes using a flow reactor for wastewater treatment,” Chemosphere, 47, 241-248 (2002). Brillas, E., M.A. Baños, J.A. Garrido, “Mineralization of herbicide 3,6-dichloro-2-methoxybenzoic acid in aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton,” Electrochim Acta, 48, 1697-1705 (2003). Brillas, E., B. Boye, I. Sirés, J.A. Garrido, R.M. Rodríguez, C. Arias, P.L. Cabot and C. Comninellis, “Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode,” Electrochimica Acta, 49, 4487-4496 (2004). Chen, Y.H., Y.Y. Liu, R.H. Lin, F.S. Yen, “Photocatalytic degradation of p-phenylenediamine with TiO2-coated magnetic PMMA microspheres in an aqueous solution,” Journal of Hazardous Materials, 163, 973-981 (2009). Corbett, J.F., “Hair colorants: Chemistry and Toxicology,” Cosmetic Science Monographs, No. 2 (1998). Devi, L.G., S.G. Kumar, K. M. Reddy, C. Munikrishnappa, “Photo degradation of Methyl Orange an azo dye by Advanced Fenton Process using zero valent metallic iron: Influence of various reaction parameters and its degradation mechanism,” Journal of Hazardous Materials, 164, 459-467 (2009). Duesterberg, C., T.D. Waite, “Process optimization of Fenton oxidation using kinetic modeling,” Environmental Science & Technology, 40, 4189-4195 (2006). Faust, BC., J. Hoigne, “Photolysis of Fe(III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain,” Atmospheric Environment, 24, 79-89 (1990). Fenton, H.J.H., “Oxidation of tartaric acid in the presence of iron,” Journal of the Chemical Society, 65, 899-910 (1984). Flox, C., S. Ammar, C. Arias, E. Brillas, A.V. Vargas-Zavala, R. Abdelhedi, “Electro-Fenton and photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium,” Applied Catalysis B: Environmental, 67, 93–104 (2006). Galindo, C., P. Jacques, A. Kalt, “Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2 Comparative mechanistic and kinetic investigations,” Journal of Photochemistry and Photobiology A: Chemistry, 130, 35–47 (2000). Gil, A.F., L. Salgado, L. Galicia and I. Gonzalez, “Predominance-zone Diagrams of Fe(Ⅲ) and Fe(Ⅱ) Sulfate Complexes in Acidic Media Voltammetric and Spectrophotometric Studies,” Talanta,Vol. 42, No. 3, 407-414 (1995). Glaze, W.H., J.W. Kang, D.H. Chapin, “Chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation,” Science and Engineering, Vol. 9, Issue 4, 335-352 (1987). Goi, A., Y. Veressinina, M. Trapido, “Degradation of salicylic acid by Fenton and modified Fenton treatment”, Chemical Engineering Journal, 143, 1-9 (2008). Gözmen, B., M.A. Oturan, N. Oturan, and O. Erbatur, “Indirect electrochemical treatment of bisphenol A in water via electrochemically generated Fenton's reagent,” Environmental Science and Technology, 37, 3716-3723 (2003). Guinea, E., C. Arias, P.L. Cabot, J.A. Garrido, R.M. Rodriguez, F. Centellas, E. Brillas, “Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide,” Water Research, 42, 499-511 (2008). Haber, F., J. Weiss, “The catalytic decomposition of hydrogen peroxide by iron salts,” Proceedings of the Royal Society London, Series A 147, 332–351 (1934). Hebert, M., D. Rochefort, “Electrode passivation by reaction products of the electrochemical and enzymatic oxidation of p-phenylenediamine,” Electrochimica Acta, 53, 5272-5279 (2008). Hirakawa, T. and Y. Nosaka, “Properties of OH• formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions,” Langmuir, 18, 3247-3254 (2002). Hirakawa, T., K. Yawata, Y. Nosaka, “Photocatalytic reactivity for O2•- and OH• adical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition”, Applied Catalysis A: General, 325, 105-111 (2007). Hirayama, K., N. Unohara, “Spectrophotometric catalytic determination of an ultratrace amount of iron(II) in water based on the oxidation of N ,N-dimethyl-p-phenylenediamine by hydrogen peroxide,” American Chemical Society, 60, 2573-2577 (1988). Holze, R. and W. Vielstich, “Kinetic of oxygen reduction at porous teflon-bonded fuel cell electrodes,” Journal of the Electrochemical Society, 131, 2298-2303 (1984). Hsiao, Y.L. and K. Nobe, “Hydroxylation of chlorobenzene and phenol in a packed bed flow reactor with electro-generated Fenton's reagent,” Journal of Applied Electrochemistry, 23, 943-946 (1993). Huang, C.P., C. Dong, Z. Tang, “Advanced chemical oxidation: its present role and potential future in hazardous waste treatment,” Waste Manage, 13, 361-377 (1993). Huang, Y.H., S. Chou, M.G. Perng, G.H. Huang, S.S. Cheng, “Case study on the bioeffluent of petrochemical wastewater by electro-Fenton method,” Water Science and Technology Vol. 39, No. 10-11, 145-149 (1999). Hu, T., R.E. Bailey, S.W. Morrall, M.J. Aardema, L.A. Stanley, J.A. Skare, “Dermal penetration and metabolism of p-aminophenol and p-phenylenediamine: Application of the EpiDermTM human reconstructed epidermis model,” Toxicology Letters, 188, 119–129 (2009). Kavitha, V., K. Palanivelu, “The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol,” Chemosphere, 55, 1235-1243 (2004). Kim, S., A. Vogelpohl, “Degradation of organic pollutants by the photo-Fenton process,” Chemical Engineering & Technology, 21, 187-197 (1998). La, V.C., A. Tavani, “Epidemiological evidence on hair dyes and the risk of cancer in humans,” European Journal of Cancer Prevention, 4(1), 31-43 (1995). Legan, R.W., “Ultraviolet light takes on CPI role,” Chemical Engineering (New York), 89, 95-100 (1982). Legrini, O., E. Oliveros, A. M. Braun, “Photochemical processes for water treatment,” Chemical Reviews, 93(2), 671-698 (1993). Leng, W.H., W.C. Zhu, J. Ni, Z. Zhang, J.Q. Zhang, C.N. Cao, “Photoelectrocatalytic destruction of organics using TiO2 as photo-anode with simultaneous production of H2O2 at cathode,” Applied Catalysis A: General, 300, 24-35 (2006). Li, M.H., “Globalization environmental pollution,” Science Development, 400, 23-29 (2009). Li, J., Z. Ai, L. Zhang, “Design of a neutral electro-Fenton system with Fe@Fe2O3/ACF composite cathode for wastewater treatment,” Journal of Hazardous Materials, 164, 18–25 (2009). Lipczynskakochany, E., “Novel method for a photocatalytic degradation of 4-nitrophenol in homogeneous aqueous-solution,” Environmental Technology, 12, 87-92 (1991). Liu, H., X.Z. Li, Y.J. Leng, C. Wang, “Kinetic modeling of electro-Fenton reaction in aqueous solution,” Water Research, 41, 1161-1167 (2007). Magat, E.E., “Fibers from extended chain aromatic polyamides, new fibers and their composites,” Philosophical Transactions of the Royal Society of London, Series A 294, 463–472 (1980). Malato, S., J. Caceres, A. Aguera, M. Mezcua, D. Hernando, J. Vial, “Degradation of imidacloprid in water by photo-Fenton and TiO2 photocatalysis at a solar pilot plant: acomparative study,” Environmental Science & Technology, 35, 4359-4366 (2001). Maletzky, P. and R. Bauer, “The Photo-Fenton method - Degradation of nitrogen containing organic compounds,” Chemosphere, 37, 899-909 (1998). Oturan, M.A., N. Oturan, C. Lahitte, S. Trevin, “Production of hydroxyl radicals by electrochemically assisted Fenton's reagent: Application to the mineralization of an organic micropollutant, pentachlorophenol,” Journal of Electroanalytical Chemistry, 507, 96-102 (2001). Ozcan, A.,Y. Sahin , M.A. Oturan, “Removal of propham from water by using electro-Fenton technology:Kinetics and mechanism,” Chemosphere,73, 737–744 (2008). Panizza, M., G. Cerisola, “Electrochemical generation of H2O2 in low ionic strength media on gas diffusion cathode fed with air,” Electrochimica Acta, 54, 876-878 (2008). Panizza, M., G. Cerisola, “Electro-Fenton degradation of synthetic dyes,” Water Research, 43, 339-344 (2009). Pignatello, J.J., E. Oliveros, A. MacKay, “Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry,” Critical Reviews in Environmental Science and Technology, 36, 1-84 (2006). Pourbaix, M., “Atlas of Electrochemical Equilibria in Aqueous Solutions,” National Association of Corrosion Engineers, Houston, Texas, USA (1966). Qiang, Z.M., J.H. Chang, C.P. Huang, “Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions,” Water Research, 36, 85-94 (2002). Qiang Z.M., J.H. Chang, C.P. Huang, “Electrochemical regeneration of Fe2+ in Fenton oxidation processes,” Water Research, 37, 1308-1319 (2003). Ravichandran, L., K. Selvam, M. Swaminathan, “Photo-Fenton defluoridation of pentafluorobenzoic acid with UV-C light,” Journal of Photochemistry and Photobiology A: Chemistry, 188 , 392-398 (2007). Safarzadeh, A., JR. Bolton, SR. Cater, “Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water,” Water Research, 31, 787-798 (1997). Saha, M.S., Y. Nishiki, T. Furuta, T. Ohsaka, “Electrolytic synthesis of peroxyacetic acid using in situ generated hydrogen peroxide on gas diffusion electrodes,” Journal of the Electrochemical Society, 151, D93-D97 (2004). Sires, I., C. Arias, P.L. Cabot, F. Centellas, J.A. Garrido, R.M. Rodriguez, E. Brillas, “Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton,” Chemosphere, 66, 1660–1669 (2007). Skoog, D. and D.M. West, “Fundamentals of analytical chemistry,” CBS College Publishing, 4th, 381-382 and 669-676 (1982). Sundstrom, D.W., B.A. Weir, and H.E. Klei, “Destruction of Aromatic Pollutants by UV Light Catalyzed Oxidation with Hydrogen Peroxide,” Environmental Progress, 8, 6-11 (1989). Ting, W.P., M.C. Lu, Y.H. Huang, “Kinetics of 2,6-dimethylaniline degradation by electro-Fenton process,” Journal of Hazardous Materials, 161, 1484–1490 (2009). Weir, B.A. and D.W. Sundstrom, “Destruction of trichloroethylene by UV light-catalyzed oxidation with hydrogen peroxide,” Chemosphere, 27, 1279-1291 (1993). Wilson, R., “Risks posed by various components of hair dyes,” Archives of Dermatologyical Research, 278, 165-170 (1985). Yamano, T., M. Shimizu, “Skin sensitization potency and cross-reactivity of p-phenylenediamine and its derivatives evaluated by non-radioactive murine local lymph node assay and guinea-pig maximization test,” Contact Dermatitis, 60, 193–198 (2009). Yue P.L., “Modelling of kinetics and reactor for water purification by photo-oxidation,” Chemical Engineering Science, 48, 1-11 (1993). Zepp, R.G., B.C. Faust, J. Hoigne, “Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron(II) with hydrogen peroxide: The Photo-Fenton reaction,” Environmental Science and Technology, 26, 313-319 (1992). Zhang, G., F. Yang, L. Liu, “Comparative study of Fe2+/H2O2 electro-oxidation systems in the degradation of amaranth using anthraquinone/polypyrrole composite film modified graphite cathode,” Journal of Electroanalytical Chemistry, 632, 154-161 (2009). Zongo, I., A.H. Maiga, J. Wethe, G. Valentin, J.P. Leclerc, “Electrocoagulation for the treatment of textile wastewaters with Al or Fe electrodes: Compared variations of COD levels, turbidity and absorbance,” Journal of Hazardous Materials, 169, 70-76 (2009). Zuo, Y. and J. Hoigne, “Formation of hydrogen peroxide and depletion of oxalic acid on atmospheric water by photolysis of iron(III)-oxalato compounds,“ Environmental Science and Technology, 26, 4-22 (1992). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47367 | - |
| dc.description.abstract | 在廢水處理中以高級氧化程序最有成效,根據不同的反應機制分類,其中以Electro-Fenton程序與光催化程序最為普遍。本研究探討Electro-Fenton程序,陽極為白金線,而陰極為碳布的系統簡稱AP-CC,藉由陰極碳布通入氧氣,外加電壓進行電化學反應產生H2O2。當系統添加亞鐵離子試劑,則稱為AP-CC-Fe2+,接著將鐵片氧化反應與Fenton程序結合,以鐵片為陽極,鐵陽極氧化產生電流與亞鐵離子,稱為AF-CC-Iapp=0mA。由於系統能自行反應生成電流,因此,反應能持續進行直到有機物被完全分解。
陰極過氧化氫實驗,以氧氣進料流量、起始pH值以及反應溫度做討論,了解施加電流與過氧化氫平均生成速率成正比關係。另外,藉由對苯二胺電解實驗,得到電解反應速率常數約10-4 M.A-1min-1。 對苯二胺在染料及染髮劑與人造纖維合成工業上用途廣泛,所以對環境造成的汙染也相當嚴重。本研究以400ppm對苯二胺為有機物進行降解反應。在AP-CC-Fe2+以起始pH值、亞鐵離子濃度做探討,當pH=3且亞鐵離子濃度為3mM時,為最適化條件,整體反應速率常數為5.35×10-2min-1。 對於自生電Fenton研究,依據AF-CC-Iapp=0mA系統,對起始pH值及氧氣進料流量等系統因素作研究,當pH=7,氧氣進料流量為60ml/min時,有助於對苯二胺降解,整體反應速率常數為2.85×10-2min-1。相較於其他系統,其優點為不需要施加電流,不需要添加Fenton試劑,只需要通入氧氣即可自行反應生成電流、亞鐵離子以及過氧化氫,達到不錯的降解速率。 | zh_TW |
| dc.description.abstract | Advanced oxidation process is the best method for wastewater treatment. According to the different classification of reaction mechanisms, Electro-Fenton process and Photo-catalytic reaction have the most common applications. In this study, the AP-CC represented that the anode was Platinum (Pt) and the cathode was carbon cloth which was fed with oxygen. The applied voltage was set to produce H2O2 at the cathode. When the Fe2+ was added into the solution, the system was called AP-CC-Fe2+ system in this research. Afterward, the iron (Fe) replaced the Pt as the anode with zero applied voltage and the system was named AF-CC-Iapp=0mA. Besides, the Fe was oxidized to generate current and Fe2+, and the organics will be decomposed by Fenton process.
The flux of oxygen, the initial pH value, and the reaction temperature were discussed in this experiment of H2O2 formation. The average formation rate of H2O2 is proportional to the applied current. Moreover, the electrolysis constant is 10-4 M.A-1min-1 according to the electrolyzing p-phenylenediamine experiment. p-Phenylenediamine causes the quite serious environmental pollution because of its popular applications in hair dye and artificial fiber synthetic industry. The initial pH value and the Fe2+ concentration were discussed in AP-CC-Fe2+ system. The optimum condition is pH=3 and [Fe2+]=3mM, and the overall rate constant is 5.35×10-2min-1. According to the AF-CC-Iapp=0mA system in the self electro-generative process, the influences of the initial pH value and the flux of oxygen on degradation rate were studied. The degradation efficiency was enhanced with the condition of pH=7 and [O2]=60ml.min-1, and the overall rate constant is 2.85×10-2min-1. In the AF-CC-Iapp=0mA system, p-phenylenediamine can be degraded by self electro-generative process without applied voltage and Fenton reagents. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:56:46Z (GMT). No. of bitstreams: 1 ntu-99-R97524020-1.pdf: 1534989 bytes, checksum: c93084483b229afbb64ee3eebbae6329 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 目錄
摘要 i 目錄 iv 圖目錄 vi 表目錄 viii 符號 ix 第一章 序論 1 1-1 研究緣起與目的 1 1-2 研究動機 3 第二章 文獻回顧 5 2-1 對苯二胺(PPD) 5 2-2 高級氧化程序(AOPs) 7 2-3 Fenton 程序 9 2-4 自生Electro-Fenton程序 17 第三章 實驗 22 3-1 實驗藥品與儀器 22 3-2 實驗架構 24 3-3 電極前處理 25 3-4 對苯二胺降解反應 26 3-5 動力學分析 38 3-6 電化學OCP分析 41 3-7 實驗符號意義 42 第四章 結果與討論 43 4-1 陰極─過氧化氫生成 43 4-2 對苯二胺降解反應背景實驗 52 4-3 反應性比較 58 4-4 陽極白金-陰極白金(AP-CP)系統 60 4.5 Anode-Pt/Cathode-Carbon cloth/Fe2+(AP-CC-Fe2+)系統 62 4-6 AF-CC-Iapp=0mA系統 71 第五章 結論 86 參考資料 88 Appendix 96 A. Carbon Cloth 96 | |
| dc.language.iso | zh-TW | |
| dc.subject | 高級氧化程序 | zh_TW |
| dc.subject | 鐵陽極氧化 | zh_TW |
| dc.subject | 自生成電流 | zh_TW |
| dc.subject | Electro-Fenton程序 | zh_TW |
| dc.subject | 對苯二胺 | zh_TW |
| dc.subject | p-phenylenediamine | en |
| dc.subject | self electro-generative current | en |
| dc.subject | anodic oxidation of iron | en |
| dc.subject | Advanced oxidation process | en |
| dc.subject | Electro-Fenton process | en |
| dc.title | 以自生電流Fenton方法降解對苯二胺反應研究 | zh_TW |
| dc.title | Degradation Treatment of p-Phenylenediamine
by Self Electro-generative Fenton Process | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周正堂(Cheng-Tung Chou),陳嘉明(Jia-Ming Chern),王勝仕(Sheng-Shih Wang) | |
| dc.subject.keyword | 高級氧化程序,對苯二胺,Electro-Fenton程序,鐵陽極氧化,自生成電流, | zh_TW |
| dc.subject.keyword | Advanced oxidation process,p-phenylenediamine,Electro-Fenton process,anodic oxidation of iron,self electro-generative current, | en |
| dc.relation.page | 97 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 1.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
