Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 健康政策與管理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47362
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳端容(Duan-Rung Chen)
dc.contributor.authorHo-Yi Chungen
dc.contributor.author鍾和益zh_TW
dc.date.accessioned2021-06-15T05:56:34Z-
dc.date.available2010-09-13
dc.date.copyright2010-09-13
dc.date.issued2010
dc.date.submitted2010-08-18
dc.identifier.citation中文部份
1.行政院衛生署衛生統計資訊網 (2008)。
2.邱皓政譯 (2007)。多層次模型分析導論。臺北:五南。
3.陳建良、翁銘偉、何慈育、吳令怡 (2006)。肥胖與心血管疾病,
p41。台北肥胖醫學會會訊第4期。
4.梁蘄善 (1991)。地理學計量分析,臺北:文化大學。
5.郭志剛等譯 (2008)。階層線性模式。臺北市:五南。
6.溫福星 (2007)。階層線性模式:原理、方法與應用。臺北:雙葉
書廊。
7.榮泰生 (2006)。SPSS與研究方法,第11章。臺北:五南圖書公
司。
8.錢瑞芳 (2006)。台北市成人心血管疾病暨高危險群三個月之個案
管理的成效。國立陽明大學社區護理研究所碩士論文,臺北市。
9.蘇芷凡 (2004)。資料採礦之實務─心血管疾病之交互作用與用藥
分析。國立政治大學統計學研究所碩士論文,臺北市。
英文部分
1.Adler, N. E., & Newman, K. (2002). Socioeconomic
disparities in health: pathways and policies. Health
Affairs, 21(2), 60-76.
2.Anselin, L. (1995). Local Indicators of Spatial
Association – LISA. Geographical Analysis, 27(2): 94-115.
3.Anselin, L. (1999). Spatial Econometrics, Dallas: Bruton
Center, School of Social Sciences, University of Texas.
4.Anselin, L. (2005). Exploring Spatial Data with GeoDaTM :
A Workbook.
5.Avendaño M, Kunst A, Huisman M, van Lenthe F (2004).
Educational level and stroke mortality: a comparison of
10 European populations during the 1990s. Stroke, 35:432-
7.
6.Blane, D. (2001). Commentary: Socioeconomic health
differentials. International journal of epidemiology, 30
(2), 292-293.
7.Bonita R, Duncan J, Truelsen T, Jackson R, Beaglehole R
(1999). Passive smoking as well as active smoking
increases the risk of acute stroke. Tob Control, 8:156-60.
8.Boyle, P. and Langman, J. S. (2000). ABC of colorectal
cancer : Epidemiology. British Medical Journal, 321:805-
808.
9.Braveman, P. A., Cubbin, C., Egerter, S., Chideya, S.,
Marchi, K. S., Metzler, M., et al. (2005). Socioeconomic
status in health research: one size does not fit all.
Journal of the American Medical Association, 294(22),
2879-2888.
10.Burchfiel CM, Laws A, Benfante R, Goldberg RJ, Hwang LJ,
et al (1995). Combined effects of HDL cholesterol,
triglyceride, and total cholesterol concentration on 18-
year risk of atherosclerotic disease. Circulation, 92:
1430-1436.
11.Bushnell CD, Goldstein LB (2000). Diagnostic testing for
coagulopathies in patients with ischemic stroke. Stroke,
31:3067-3078.
12.Carstairs, V., & Morris, R. (1989). Deprivation:
explaining differences in mortality between Scotland and
England and Wales. British Medical Journal, 299(6704),
886.
13.Chien KL, Sung FC, Hsu HC, et al (2002). Apolipoprotein
A-I and B and stroke events in a community-based cohort
in Taiwan. Report of the Chin-Shan Community
cardiovascular study. Stroke, 33:39-44.
14.Cubbin C, Hadden WC, Winkleby MA (2001). Neighborhood
context and cardiovascular disease risk factors: the
contribution of material deprivation. Ethn Dis, 11:687-
700.
15.Curtis, S. and Jones, I. R. (1998). Is there a place for
geography in the analysis of health inequality?
Sociology of Health & Illness, 20: 645-672.
16.Curtis, S. (2004). Health and Inequality: Geographical
Perspectives. London; Thousand Oaks, Calif. : SAGE
Publications.
17.Department of the Environment, Transport and the Regions
(DETR) (1998). 1998 Index of Local Deprivation ─
summary.
http://www.communities.gov.uk/archived/publications/citiesandregions/index.
18.Diez-Roux, A. V. (2000). Multilevel analysis in public
health research. Annual Review of Public Health, 21, 171-
192.
19.Drexel H, Amann FW, Beran J, Rentsch K, Candinas R, et
al (1994). Plasma triglycerides and three lipoprotein
cholesterol fractions are independent predictors of the
extent of coronary atherosclerosis. Circulation, 90:
2230-2235.
20.Feletou M, Vanhoutte PM. (2006). Endothelial: a
multifaceted disorder (The Wiggers Award Lecture). Am J
Physiol Heart Circ Physiol, 291: H985-1002.
21.Galobardes, B., Shaw, M., Lawlor, D. A., Lynch, J. W., &
Smith, G. D. (2006). Indicators of socioeconomic
position (part 1). British Medical Journal, 60(1), 7-12.
22.Galobardes, B., Shaw, M., Lawlor, D. A., Lynch, J. W., &
Smith, G. D. (2006). Indicators of socioeconomic
position (part 2). Journal of Epidemiology and Community
Health, 60(2), 95-101.
23.Getis, A., and Ord, J .K. (1992). The Analysis of
Spatial Association by Use of Distance Statistics.
Geographical Analysis, 24(3): 189-206.
24.Gillum RF, Mussolino ME (2003). Education, poverty, and
stroke incidence in whites and blacks: the NHANES I
Epidemiologic Follow-up Study. J Clin Epidemiol, 56:188-
95.
25.Goodchild, M. F. (1986). Spatial autocorrelation.
Norwich, CN: Geo Books.
26.Hart CL, Hole DJ, Smith GD (2000). Influence of
socioeconomic circumstances in early and later life on
stroke risk among men in a Scottish cohort study.
Stroke, 31:2093-7.
27.Hofmann, D. A. (1997). An overview of the logic and
rationale of hierarchical linear models. Journal of
Management, 23(6), 723-744.
28.Howard G, Wagenknecht LE, Burke GL, Diez-Roux A, Evans
GW, McGovern P, et al (1998). Cigarette smoking and
progression of atherosclerosis: the Atherosclerosis Risk
in Communities (ARIC) Study. JAMA, 279:119-24.
29.Jan Sundquist, Marianne Malmströmb and Sven-Erik
Johansson (1999). Cardiovascular risk factors and the
neighbourhood environment: a multilevel analysis.
International Journal of Epidemiology, 28:841-845.
30.Jeppesen J (1998). Triglyceride concentration and
ischemic heart disease: an eight-year follow-up in the
Copenhagen Male Study. Circulation, 97: 1029-1036.
31.Kaplan, G., & Keil, J. (1993). Socioeconomic factors and
cardiovascular disease: A review of the literature.
Circulation, 88, 1973-1998.
32.Kaplan, G. A., Pamuk, E. R., Lynch, J. W., Cohen, R. D.,
& Balfour, J. L. (1996). Inequality in income and
mortality in the United States: analysis of mortality
and potential pathways. British Medical Journal, 312
(7037), 999-1003.
33.Kawachi, I., & Berkman, L. F. (2003). Neighborhoods and
health. New York: Oxford University Press.
34.Kitron, U. and Kazmierczak, J. J. (1997). Spatial
analysis of the distribution of Lyme disease in
Wisconsin. American Journal of Epidemiology, 145: 558-
566.
35.Krieger, N., Williams, D. R., & Moss, N. E. (1997).
Measuring social class in US public health research:
Concepts, methodologies, and guidelines. Annual Review
of Public Health, 18: 341-378.
36.Kristina Sundquist, Marilyn Winkleby, Helena Ahlén, and
Sven-Erik Johansson (2004). Neighborhood Socioeconomic
Environment and Incidence of Coronary Heart Disease: A
Follow-up Study of 25,319 Women and Men in Sweden. Am J
Epidemiol, 159:655-662.
37.Longley, P. A., Goodchild, M. F., Maguire, D. J. and
Rhind, D. W. (2005). Geographic Information Systems and
Science, 2nd edition, UK: John Willey & Sons, Ltd.
38.Lostao L, Regidor E, Aiach P, Dominguez V (2001). Social
inequalities in ischaemic heart and cerebrovascular
disease mortality in men: Spain and France, 1980–1982
and 1988–1990. Soc Sci Med, 52: 1879-87.
39.Lynch, J., Kaplan, G., Cohen, R., Tuomilehto, J., &
Salonen, J. (1996). Do cardiovascular risk factors
explain the relation between socioeconomic status, risk
of all-cause mortality, cardiovascular mortality, and
acute myocardial infarction? American Journal of
Epidemiology, 144, 934-942.
40.Lynch, J., & Kaplan, G. (2000). Socioeconomic Position.
In L. F. Berkman & I. Kawachi (Eds.), Social
Epidemiology. New York: Oxford University Press.
41.Macintyre, S., Maciver, S., & Sooman, A. (1993). Area,
class and health: should we be focusing on place or
people? Journal of Social Policy, 22(2), 213-234.
42.Marmot, M. G., & Smith, G. D. (1991). Health
inequalities among British civil servants: the Whitehall
II study. Lancet, 337(8754), 1387-1393.
43.Monsalve MV, Thommasen HV, Pachev G, Frohlich J. (2005).
Differences in cardiovascular risks in the aboriginal
and non-aboriginal people living in Bella Coola, British
Columbia. Med Sci Monit, 11(1):CR21-8.
44.O'Campo, P., & Caughy, M. O. (2006). Measures of
residential community contexts. In J. M. Oakes & J. S.
Kaufman (Eds.), Methods in Social Epidemiology. San
Francisco, CA: Jossey-Bass.
45.Pandey DK, Gorelick PB (2005). Epidemiology of stroke in
African Americans and Hispanic Americans. Med Clin North
Am, 89:739-52.
46.Peltonen M, Rosen M, Lundberg V, Asplund K (2000).
Social patterning of myocardial infarction and stroke in
Sweden: incidence and survival. Am J Epidemiol, 151:283–
92.
47.Pickett, K. E., & Pearl, M. (2001). Multilevel analyses
of neighbourhood socioeconomic context and health
outcomes: a critical review. Journal of Epidemiology and
Community Health, 55(2), 111-122.
48.Pittilo RM (2000). Cigarette smoking, endothelial injury
and cardiovascular disease. Int J Exp Pathol, 81:219-30.
49.Public Health Intelligence (PHI).
http://www.moh.govt.nz/phi.
50.Qureshi A, Fareed M, Saad M, Hopkins N (2003).
Educational attainment and risk of stroke and myocardial
infarction. Med Sci Monit, 9: CR466-73.
51.Rezaeian, M., Dunn, G., Leger, S. S. and Appleby, L.
(2007). Geographical epidemiology, spatial analysis and
geographical information systems: a multidisciplinary
glossary, Journal of Epidemiology and Community Health,
61: 98-102.
52.Rose, G., & Marmot, M. (1981). Social class and coronary
heart disease. British Heart Journal, 45, 13-19.
53.Ross, C. E., & Wu, C. l. (1995). The links between
education and health. American Sociological Review, 60
(5), 719-745.
54.Salonen, J. (1982). Socioeconomic status and risk of
cancer, cerebral stroke, and death due to coronary heart
disease and any disease: A longitudinal study in eastern
Finland. Journal of Epidemiology and Community Health,
36, 294-297.
55.Stronegger, W.-J., Freidl, W., & Rásky, É. (1997).
Health behaviour and risk behaviour: Socioeconomic
differences in an Austrian rural county. Social Science
& Medicine, 44(3), 423-426.
56.Suk SH, Sacco RL, Boden-Albala B, et al (2003).
Abdominal obesity and risk of ischemic stroke: the
Northern Manhattan Stroke Study. Stroke, 34:1586–92.
57.Susanna Toivanen and Örjan Hemström (2006). Income
Differences in Cardiovascular Disease: Is the
Contribution from Work Similar in Prevalence Versus
Mortality Outcomes? International Journal of Behavioral
Medicine, Vol. 13, No. 1, 89-100.
58.Sverre E. Kjeldsena, Stevo Julius, Giuseppe Mancia, et
al (2006). Effects of valsartan compared to amlodipine
on preventing type 2 diabetes in high-risk hypertensive
patients: the VALUE trial. Journal of Hypertension,
24:1405–1412.
59.Thompson PL, Bradshaw PJ, Veroni M, Wilkes ET (2003).
Cardiovascular risk among urban aboriginal people. MJA,
179:143-46.
60.Townsend, P. (1987). Deprivation. Journal of Social
Policy, 16(2), 125-146.
61.United Nations Development Programme (2000). UNDP
Poverty Report 2000.
62.Wang, F. (2006). Quantitative methods and applications
in GIS. Taylor & Francis, 167-188.
63.Winkleby, M. A., Jatulis, D. E., Frank, E., & Fortmann,
S. P. (1992). Socioeconomic status and health: how
education, income, and occupation contribute to risk
factors for cardiovascular disease. American Journal of
Public Health, 82(6), 816-820.
64.Wong, D. W. S. and Lee, J. (2005). Statistical Analysis
of Geographic Information with ArcView GIS and ArcGIS.
Part II Spatial Statistics. New Jersey: John Wiley &
Sons.
65.World Bank (2000). World Development Report 2000/2001:
attacking poverty. New York: Oxford University.
66.Yen AM, Chen LS, et al (2008). A prospective community-
population-registry based cohort study of the
association between betel-quid chewing and
cardiovascular disease in men in Taiwan (KCIS no. 19).
America Journal of Clinical Nutrition, 87(1):70-8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47362-
dc.description.abstract目的:首先藉由空間統計分析瞭解臺灣地區20-64歲心血管疾病與其合併中風之地區變異,包含偵測心血管疾病與其合併中風高盛行率聚集之地區、以及比較不同年盛行率群聚之時空變遷。其次探討心血管疾病患者之個人層次預測因子、社會經濟地位、鄉鎮層次地區變項與跨層次交互作用對其有無合併中風的影響。
方法:採橫斷式研究設計、次級資料分析。資料主要以2001年國民健康訪問調查、2005年國民健康訪問暨藥物濫用調查及其全民健康保險資料串連資料檔為主,對象為心血管疾病患者。空間統計分析部分,以最近鄰法(k-Nearest Neighbors)之最近5個鄉鎮(k = 5)為鄰區的權重矩陣,並以全域型空間自相關(Global Spatial Autocorrelation)指標Moran’s I 與Getis-Ord Genral G以及區域型空間自相關(Local Spatial Autocorrelation)指標LISA(Anselin Local Moran’s I)與Getis-Ord Gi*進行群聚分析比較。多層次分析中的階層線性迴規模型部分,包含隨機係數模型、截距預測模型;個人層次自變項包括人口特質、健康狀態、健康行為、飲食狀態、時間、社會經濟地位變項,鄉鎮(市區)層次變項有四個,分別為Log平均所得、Log平均所得LISA指標、地區劣勢因素分數、地區劣勢因素分數LISA指標,資料來源為財政部財稅資料中心的綜合所得稅申報核定統計專冊、內政部統計處、以及全民健康保險資料庫。
結果:空間統計分析部分,2001年、2000-2002年心血管疾病盛行率在臺灣地區整體上有明顯群聚現象,分佈模式相似且皆位於部分台北縣市、高雄縣市地區。2001年至2005年之心血管疾病盛行率由群聚現象轉變為隨機,且2005年心血管疾病高盛行率的顯著群聚區域已不是2001年分佈於南北都會區(部分台北縣市、高雄縣市)等地,而有往臺灣中西部(即彰化縣、雲林縣、嘉義縣、南投縣等)包含沿海地區移動之趨勢。階層線性迴規模型部分,刪除遺漏值後,納入本研究之心血管疾病患者樣本共計1,360人,197個鄉鎮(市區)。研究顯示,年齡、性別、有無工作狀況與心血管疾病患者是否合併中風有相關;而在控制個人層次後,鄉鎮(市區)層次有達統計上顯著差異的地區變項與有無合併中風皆呈現顯著負相關。

結論:隨著年齡增加、男性、以及沒有工作的心血管疾病患者其合併中風之風險會提升許多;另外,當居住在平均所得較高、鄰區皆為高平均所得的群聚地區,其合併中風的風險會較低。由此可知,不同的個人預測因子、社會經濟地位與地區因素對心血管疾病患者是否會合併中風造成不同程度的效果與影響。
zh_TW
dc.description.abstractObjectives: To find out geographical variations of cardiovascular disease (CVD) and cardiovascular disease with stroke aged 20-64 in Taiwan by applying spatial analysis, including the detection of cluster(s) of high CVD prevalence and high CVD with stroke prevalence, and the comparison of the space-time transitions of high prevalence cluster(s) among different years. Then, assess the effects of individual factors, individual socioeconomic status, town-level variables, and cross-level effects from a sample of CVD adult patients with stroke.
Methods: Data were obtained from National Health Interview Survey in 2001 (2001 NHIS), National Health Interview Survey in 2005 (2005 NHIS), and each National Health Insurance Research Databases. Distanced-based k-Nearest Neighbors (k=5) were used as spatial weights matrix for spatial analysis, and the measures of Global Spatial Autocorrelation (Moran’s I and Getis-Ord Genral G) and Local Spatial Autocorrelation (LISA and Getis-Ord Gi*) were also used to exhibit the spatial clustering of CVD and CVD with stroke. Individual-level variables were included individual characteristics, health outcome, health behavior, diet condition, time, and individual socioeconomic status. Town-level data were derived from Ministry of Finance (Financial Data Center), Ministry of the Interior (Department of Statistics), and National Health Insurance Research Database, including 4 variables. Multilevel models including random coefficient model and intercept-as-outcome, were used in the analyses.

Results: 2001 and 2000-2002 CVD prevalence rates demonstrated spatial clustering characteristics, which distribution patterns of high prevalence were not only similar but also clustered in part of Taipei and Kaohsiung. The spatial clustering of high CVD prevalence was transformed from clustered to random among 2001 and 2005, moreover, the significant spatial clustering areas of high CVD prevalence were tended to shift to the Midwest of Taiwan from 2001 to 2005. For multilevel analysis, we excluded missing data on individual information and the remaining study sample included 1,360 CVD patients nested within 197 towns. As shown in the results, age and gender were positively related to CVD patients with stroke, and work condition were negatively related to CVD patients with stroke. Town-level variables were negatively related to CVD patients with stroke after controlling individual-level variables.
Conclusions: Elder, male, and unemployed CVD adult patients had higher risk with stoke, compared to those younger, female, working patients. Furthermore, CVD adult patients who live in the higher average income areas and clustered districts had lower risk with stroke, compared to those live in the lower average income areas and clustered districts. Therefore, different individual-level and town-level variables were associated with CVD adult patients with stroke.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:56:34Z (GMT). No. of bitstreams: 1
ntu-99-R97843010-1.pdf: 1559750 bytes, checksum: 9dcdceef6d4786d3c34e92654be34bf4 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents中文摘要 i
ABSTRACT iii
目錄 v
表目錄 vi
圖目錄 vii
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 4
第二章 文獻回顧 5
第一節 心血管疾病之簡介與概述 5
第二節 影響心血管疾病的因子 7
第三章 研究方法 20
第一節 研究架構及假說 20
第二節 研究資料來源 22
第三節 研究對象與變項操作型定義 27
第四節 統計分析方法 39
第四章 研究結果 52
第一節 空間聚集分析 52
第二節 描述性統計 66
第三節 雙變項分析 91
第四節 階層線性模型 107
第五章 討論 112
第一節 研究假說驗證與討論 112
第二節 研究限制 118
第三節 研究貢獻 121
第六章 結論與建議 123
第一節 結論 123
第二節 未來研究建議 125
參考文獻 126
dc.language.isozh-TW
dc.subject多層次分析zh_TW
dc.subject心血管疾病zh_TW
dc.subject中風zh_TW
dc.subject空間統計分析zh_TW
dc.subject最近鄰法zh_TW
dc.subject全域型空間自相關zh_TW
dc.subject區域型空間自相關zh_TW
dc.subject個人社會經濟地位zh_TW
dc.subjectGlobal Spatial Autocorrelationen
dc.subjectMultilevel Analysisen
dc.subjectIndividual Socioeconomic Statusen
dc.subjectLocal Spatial Autocorrelationen
dc.subjectCardiovascular Diseaseen
dc.subjectSrokeen
dc.subjectSpatial Analysisen
dc.subjectk-Nearest Neighborsen
dc.title影響成人心血管疾病患者合併中風之個人因素與地區變異分析 (2000-2007年)zh_TW
dc.titleThe Analysis of the Individual and Geographical Variations Associated with Cardiovascular Disease (CVD) Adult Patients with Stroke (2000-2007)en
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee溫在弘(Tzai-Hung Wen),喬芷(Chi Chiao)
dc.subject.keyword心血管疾病,中風,空間統計分析,最近鄰法,全域型空間自相關,區域型空間自相關,個人社會經濟地位,多層次分析,zh_TW
dc.subject.keywordCardiovascular Disease,Sroke,Spatial Analysis,k-Nearest Neighbors,Global Spatial Autocorrelation,Local Spatial Autocorrelation,Individual Socioeconomic Status,Multilevel Analysis,en
dc.relation.page131
dc.rights.note有償授權
dc.date.accepted2010-08-18
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept醫療機構管理研究所zh_TW
顯示於系所單位:健康政策與管理研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved