請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47351完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃建璋(JuanJang, Huang) | |
| dc.contributor.author | Liang-Yu Su | en |
| dc.contributor.author | 蘇亮宇 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:56:07Z | - |
| dc.date.available | 2013-08-20 | |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-17 | |
| dc.identifier.citation | Chap1
[1] D. Hsieh, 'Flat-panel display market outlook,' DisplaySearch, Nov. 2005. [2] J. Kanicki, F. R. Libsch, J. Griffith, and R. Polastre, 'Performance of thin hydrogenated amorphous silicon thin-film transistors,' J. Appl. Phys., vol. 69, pp. 2339-45, 1991. [3] S. S. Kim, 'The World's largest (82-in.) TFT-LCD,' SID Int. Symp. Digest Tech. Papers, vol. 36, pp. 1842-1847, 2005. [4] S. S. Kim, B. H. You, J. H. Cho, D. G. Kim, B. H. Berkeley, and N. D. Kim, 'An 82-in. ultra-definition 120-Hz LCD TV using new driving scheme and advanced super PVA technology,' J. SID, vol. 17, pp. 71-78, 2009. [5] Y. Yoshida, Y. Kikuchi, S. Daly, and M. Sugino, 'Invited paper: Image quality improvements in large-screen LC-TV,' SID Int. Symp. Digest Tech. Papers, vol. 36, pp. 1852-1855, 2005. [6] J.-H. Lan and J. Kanicki, 'Planarized copper gate hydrogenated amorphous-silicon thin-film transistors for AM-LCDs,' IEEE Electron Device Lett., vol. 20, pp. 129-31, 1999. [7] J.-H. Lan and J. Kanicki, 'Buried busline a-Si:H TFT structures for AM-LCDs ' Proceedings AM-LCD'98, pp. 77-81, 1998. [8] J.-H. Song, H.-L. Ning, W.-G. Lee, S.-Y. Kim, and S.-S. Kim, 'Views on the low-resistant bus materials and their process architecture for the large-sized post-ultra definition TFT-LCD,' Digest Tech. Papers IMID 2008, vol. 8, pp. 9-12, 2008. [9] http:// techon.nikkeibp.co.jp [10] R. A. Street, “Thin-Film Transistors,” Adv. Mater., vol. 21, pp. 1-16, 2009 [11] C.-F. S. Jiin-Jou Lih, Chun-Huai Li,Tiao-Hung Hsiao and Hsin-Hung Lee, “Comparison of a-Si and Poly-Si for AMOLED displays,” J. SID, vol. 12, no. 4, pp. 367-371, 2004 [12] J. B. Kim, C. Fuentes-Hernandez, W. J. Potscavage, Jr., X.-H. Zhang, B. Kippelen, “Low-voltage InGaZnO thin-film transistors with Al2O3 gate insulator grown by atomic layer deposition”, Appl. Phys. Lett. 94, 142107, 2009 [13] J. B. Kim, C. Fuentes-Hernandez, B. Kippelen, “High-performance InGaZnO thin-film transistors with high-k amorphous Ba0.5Sr0.5TiO3 gate insulator”, Appl. Phys. Lett. 93, 242111, 2008 [14] R. Hayashi et al., “Circuits using uniform TFTs based on amorphous In-Ga-Zn-O ”, J. Soc. Inf. Display 15, 915, 2007. [15] Y.-K. Moon et al., “Application of DC Magnetron Sputtering to Deposition of InGaZnO Films for Thin Film Transistor Devices”, Jpn J. Appl. Phys. 48, 031301, 2009. Chap 2 [1] C. Y. Tsay, H. C. Cheng, M. C. Wang, P. Y. Lee, C. F. Chen, and C. K. Lin, Surface and Coatings Technology, 202, 1323, 2007. [2] N. L. Dehuff, E. S. Kettenring, D. Hong, H. Q. Chiang, J. F. Wager, R. L. Hoffman., C. H. Park, and D. A. Keszler, “Transparent thin-film transistors with zinc indium oxide channel layer”, J. Appl. Phys, 97, 064505, 2005. [3] B. Yaglioglu, Yeom, H.Y, R. Beresford and D. C. Paine, “High-mobility amorphous In2O3 10 wt% ZnO thin film transistors”, Appl. Phys. Lett., 89, 062103, 2006. [4] E. Fred Schubert, “Delta-doping of semiconductors”, Chapter 1, Cambrige University Press. [5] E.F. Schubert, A. Fischer, K. Ploog, “The delta-doped field-effect transistor”, IEEE Transactions on Electron Devices, vol. Ed-33, no. 5, 1986 [6] E. Ozturk, Y. Ergum, H. Sari, I Sokmen, “Influence of an applied electric field on the electronic properties of Si -doped GaAs ”, J. Appl. Phys., vol. 91, no. 4, 2002 [7] F.M. Hossain,J. Nishii, S. Takagi, A. Ohtomo, T. Fukumura, H. Fujioka, H. Ohno, H. Koinuma, M. Kawasaki, “High mobility thin film transistors with transparent ZnO channels”, Journal of Applied Physics, vol. 94, no. 12, 2003 31 [8] H. Tian, K. W. Kim, M.A. Littlejohn, S.M. Bedair, L.C. Witkowski, “Analysis of delta-doped and uniformly doped AlGaAs/GaAs HEMT's byensemble Monte Carlo”, IEEE Transactions on Electron Devices, vol. 39, no. 9. 1992 [9] Andrew C. G. Wood, Anthony G. O’Neill, Peter J. Phillips, Robin G. Biswas, Terry E. Whall, and Evan H. C. Parker, “Transconductance and mobility of Si: B delta MOSFETs”, IEEE TRANSACTIONS ON ELECTRON DEVICES, WOL. 40, NO. 1, JANUARY 1993. [10] Andrew C. G. Wood, Anthony G. O’Neill, Mat. Res. Soc. Symp. Proc., vol. 220, p. 465, 1991. Chap3 [1] Lih, J.-J., C.-F. Sung, C.-H. Li, T.-H. Hsiao, and H.-H. Lee, “Comparison of a-Si and Poly-Si for AMOLED displays”, J. Soc. Inf. Display, 12(4): p. 367-371, 2004. [2] YUE KUO,” Thin Film Transistors : Materials and Processes Volume 1: Amorphous Silicon Thin Film Transistors” page 41. [3] Walle, C.G.V.d., Hydrogen as a Cause of Doping in Zinc Oxide. Phys. Rev. Lett., 85(5): p. 1012-1015, 2000. [4] Kang, D., H. Lim, C. Kim, I. Song, J. Park, Y. Park, and J. Chung, “Amorphous gallium indium zinc oxide thin film transistors: Sensitive to oxygen molecules.”, Appl. Phys. Lett., 90(19), 2007. [5] Jeong, J.K., H.W. Yang, J.H. Jeong, Y.-G. Mo, and H.D. Kim, “Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors.”, Appl. Phys. Lett., 93(12), 2008. [6] Riley, F.L., “Silicon nitride and related materials”, Journal of the American Ceramic Society, 83(2): p. 245-265, 2000. [7] Lanford, W.A. and M.J. Rand, “The hydrogen content of plasma deposited silicon nitride”, Journal of Applied Physics, 49: p. 2473, 1978. [8] Walle, C.G.V.d., “Hydrogen as a Cause of Doping in Zinc Oxide”, Phys. Rev. Lett., 47 85(5): p. 1012-1015, 2000. [9] Ip, K., M.E. Overberg, Y.W. Heo, D.P. Norton, S.J. Pearton, S.O. Kucheyev, C. Jagadish, J.S. Williams, R.G. Wilson, and J.M. Zavada, “Thermal stability of ion-implanted hydrogen in ZnO”, Appl. Phys. Lett., 81(21), 2002. Chap 4 [1] Jiin-Jou Lih, Chih-Feng Sung, Chun-Huai Li, Tiao-Hung Hsiao and Hsin-Hung Lee, “Comparison of a-Si and Poly-Si for AMOLED displays ”, J. Soc. Inf. Disp., 12, 4, pp. 367-371, 2004. [2] M. E. Lopes, H. L. Gomes, M. C. R. Medeiros, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, and I. Ferreira, “Gate-bias stress in amorphous oxide semiconductors thin-film transistors”, Appl. Phys. Lett. 95, 063502, 2009. [3] J.M. Lee, I.T. Cho, J.H. Lee, and H.I. Kwon, “Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in IGZO TFTs”, Appl. Phys. Lett. 93, 093504, 2008. [4] E. Fortunato, P. Barquinha, A. Pimentel, A. Gonçalves, A. Marques, R. Marins, and L. Pereira ,“Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature”, Appl. Phys. Lett. 85, 2541, 2004. [5] E. M. C. Fortunato , P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Gonçalves, A. J. S. Marques, L. M. N. Pereira, R. F. P. Martins, “Fully Transparent ZnO Thin-Film Transistor Produced at Room Temperature”, Adv. Mater. 17,No.5, 590 – 594,2005. 68 [6] Takashi Hirao, Mamoru Furuta, Member, IEEE, Takahiro Hiramatsu, Tokiyoshi Matsuda, Chaoyang Li,Hiroshi Furuta, Hitoshi Hokari, Motohiko Yoshida, Hiromitsu Ishii, and Masayuki Kakegawa, “Bottom-Gate Zinc Oxide Thin-Film Transistors (ZnO TFTs) for AM-LCDs” , IEEE Trans. Electron Devices , vol. 55, NO. 11, 2008. [7] Sang-Hee K. Park, Chi-Sun Hwang, Minki Ryu, Shinhyuk Yang, Chunwon Byun, Jaeheon Shin, Jeong-Ik Lee, Kimoon Lee, Min Suk Oh, andSeongil Im, “Transparent and Photo-stable ZnO Thin-film Transistors to Drive an Active Matrix Organic-Light-Emitting-Diode Display Panel” Adv. Mater. 21, 678–682, 2009. [8] F. R. Libsch, and J. Kanicki, “Bias‐stress‐induced stretched‐exponential time dependence of charge injection and trapping in amorphous thin‐film transistors”, Appl. Phys. Lett. 62, 1286, 1993. [9] A. R. Merticaru, and A. J. Mouthaan, “Dynamics of metastable defects in a-Si:H/SiN TFTs”, Thin Solid Films 383, Issues 1-2, Pages 122-124, 2001. [10] M. J. Powell, “Charge Trapping Instabilities in Amorphous Silicon-silicon Nitride Thin-film Transistors”, Appl. Phys. Lett., 43 (6), 597, 1983. [11] R. A. Street, C. C. Tsai, J. Kakalios and W. B. Jackson, “Hydrogen Diffusion in 69 Amorphous Silicon”, Phil. Mag. B, 56(3), 305, 1987. [12] R. B. M. Cross, M. M. De Souza, S. C. Deane, and N. D. Young “A comparison of the performance and stability of ZnO-TFTs with silicon dioxide and nitride as gate insulators” , IEEE Trans. Electron Devices 55, no. 5, 1109 – 1115,2008. [13] R. Navamathavan, E.J. Yang, J.H. Lim, D.K. Hwang, J.Y. Oh, J.H. Yang, J.H. Jang, and S.J. Park. “Effects of Electrical Bias Stress on the Performance of ZnO-Based TFTs Fabricated by RF Magnetron Sputtering”, J. Electrochem. Soc. 153, Issue 5, pp. G385-G388, 2006. [14] M. Kimura, T. Nakanishi, K. Nomura, T. Kamiya, and H. Hosono, “Trap densities in amorphous-InGaZnO4 thin-film transistors”, Appl. Phys. Lett. 92, 133512, 2008. [15] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors“, Jpn. J. Appl. Phys. 45, pp. 4303-4308, 2006. [16] M. J. Powell, C. van Berkel, and J. R. Hughes, “Time and temperature dependence of instability mechanisms in amorphous silicon thin‐film transistors”Appl. Phys. Lett. 54, 1323, 1989. [17] I.T. Cho, J.M. Lee, J.H. Lee, and H.I. Kwon. “Charge trapping and detrapping characteristics in amorphous InGaZnO TFTs under static and dynamic stresses” ,Semicond. Sci. Technol. 24, 015013, 2009. 70 [18] Jun Hyuk Choi, Un Bin Han, Ki Chang Lee, Joon-Hyung Lee, and Jeong-Joo Kim. “Transfer characteristics and bias-stress stability of amorphous indium zinc oxide thin-film transistors” J. Vac. Sci. Technol. B , 27, Issue 2, pp. 622-625, 2009 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47351 | - |
| dc.description.abstract | 薄膜電晶體長久以來在平面顯示技術扮演重要角色,隨著技術的成熟,顯示器將往更大尺寸、更高畫質的方向發展,傳統的非晶矽薄膜電晶體由於載子遷移率的限制,將無法驅動下一世代的平面顯示器,此外,有機發光二極體由於具有高對比、廣視角…等等好處,未來將有極高機會取代傳統的液晶顯示技術,但由於非晶矽薄膜電晶體在長時間工作之後,其不穩定效應將導致工作電流下降,這將導致顯示器亮度逐漸下降,為商品化的一大挑戰。
氧化鋅具備較非晶矽更高的載子遷移率,且製程可完全相容於傳統非晶矽薄膜電晶體,具備大面積、低成本的製作能力,在這篇論文中,為了提高氧化鋅薄膜電晶體工作電流,我們提出了一種通道局部高參雜的新結構,由理論的計算證實可經由調整通道參雜結構控制元件的臨界電壓,在進一步的實驗中我們製作出了這樣的元件 ,在閘極電壓5伏特,汲極電壓14伏特時,其工作電流高達3.2mA,證實此種結構可提供較傳統的氧化鋅及氧化鋅鎵元件高出許多的工作電流。 由於以往的製程步驟重複性不高,我們更改了光罩的設計,利用電漿輔助化學氣相沉積均勻的沉積絕緣層,有效的抑制住漏電流,並使同尺寸元件的特性均一,此外更改善了以往電流不易飽和以及凸起(over-shoot)等現象,為了更進一步的提升元件穩定性,我們嘗試了不同氧化鋅薄膜沉積溫度、退火溫度,成功的將元件的開關比提升到大於10的9次方,由於氧化物半導體易受外界環境影響,我們也提出了一套保護層的選取法則,並成功利用濺鍍的方式,將沉積保護層對元件臨界電壓的影響成功抑制到1伏特。 在最後,我們利用過去得到最穩定的製程,製作並比較不同退火時間下元件在閘極偏壓之下的穩定性,並導入Stertched-Exponential Time Dependence定量的萃取出元件的生命期,並更進一步的將生命期最長(1.26x106s)的元件在變溫下作穩定性測驗,成功的萃取出元件的活化能 (0.57eV),利用萃取的這些參數客觀的比較過去文獻,我們製作的氧化鋅薄膜電晶體有過人的穩定性 | zh_TW |
| dc.description.abstract | Thin films transistors has long been the workhorse in the active-matrix liquid crystal display (AM-LCD) industry. In the future development, the displays will expand to larger size and higher resolution. Due to the nature restriction of the mobility, amorphous silicon thin film transistors are incapable of driving next generation flat panel displays. Besides, organic light emitting diode displays have the advantages of high contrast ratio and wide view angle. It is likely to replace the traditional liquid crystal displays. But owing to the instability mechanism of a-Si TFTs, the working current will decrease after a prolong operating. This will cause the brightness of OLED displays degrade and being a challenge for commercialization.
ZnO has larger carrier mobility than amorphous silicon. The fabrication process of ZnO TFTs is compatible to traditional a-Si TFTs, which posses the ability of fabrication in large area with low cost. In this thesis, in order to improve the output current of ZnO TFTs, we proposed a new structure with a delta-doped channel layer. From theoretical model, this structure allows us to adjust the threshold voltage by varying the composition of the delta-doped layer. In the further experiment, we successfully fabricated the device with working current reaching 3.2mA under VGS=5Vand VDS=14V. This proves that this structure can provide a higher current than conventional ZnO and GZO TFTs. In order to improve process reliability, we redesign the fabrication process. Plasma enhanced chemical vapor deposition (PECVD) can deposit uniform film in large area. This will contribute to maintain identical electrical performance for the devices with the same size. Furthermore, it restrains the leakage current. The unsaturated and over-shoot phenomena are not observed anymore. In order to improve the device stability, we deposited and annealed the ZnO film in various temperatures. The on-off ratio is increased to larger than 109. Since oxide semiconductor is sensitive to ambient configuration, we proposed a guide line for choosing passivation. The threshold voltage shift after depositing passivation is reduced to 1V. At last, we compared three samples with various post ZnO growth annealing durations. We compared the stability through a constant gate bias stress. A stretch-exponential time dependence was introduced and was utilized to extracted the characteristic trapping time (τ). A further stress test under different temperature was carried out on the device with longest τ (1.26x106s). An average effective energy barrier (Eτ) was extracted (0.57eV). Comparing those parameter with literature, we successful fabricated ZnO TFTs with high stability. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:56:07Z (GMT). No. of bitstreams: 1 ntu-99-R97941029-1.pdf: 4841183 bytes, checksum: d76b6b83d1b9c6038ec3a9b2133a6eab (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Chapter 1 Introduction…………………………………………….…….1
1.1 Overview / Background 1 1.1.1 Current status and limitation of a-Si:H TFT backplane technology …………………………………………………..…1 1.1.2 TFT in Organic Light-Emitting Diode (OLEDs) displays application …………………………………………….……...4 1.1.3 High performance metal oxide TFTs…………………………..7 1.2 Thesis organization………………………………………………..10 Chapter 1 References………………………...….…………………….11 Chapter 2 High-operating Current ZnO Based Thin Film Transistors with a Bi-layer ZnO/GZO Channel……………….………...13 2.1 Introductions………………………………………………………13 2.1.1 Semiconductor delta-doped theory…………………………...15 2.1.2 Threshold voltage model for ZnO TFTs with a GZO delta-doped layer ……………………………………….……16 2.2 Device fabrication…………………………………………………20 2.3 Characterization of delta-doped TFTs …………………………….22 2.3.1 Comparison of delta-doped TFTs with conventional TFTs ….22 2.3.2 Carrier Transport Behaviors of Delta-doped TFTs …………..26 Chapter 2 References………………..…………………………..…….30 Chapter 3 Improving the process stability of ZnO TFTs ……..……..32 3.1 Introduction ………………………………………………….……32 3.2 Device Fabrication ……………………………….……………….34 3.3 Discussion…………………………………………………………36 3.3.1 Device with ZnO deposited at room temperature…………….36 3.3.2 Device with ZnO deposited at high temperature……………..39 3.3.3 The choice of passivation……………………………………..41 Chapter 3 References………………………………………………….46 Chapter 4 Effect of electrical stress on ZnO TFTs…………...……….48 4.1 Introduction………………………………………………………..48 4.1.1 ZnO TFT stability…………………………………………….48 4.1.2 The stretched exponential model in a-Si TFT threshold voltage metastability…………………………………………49 4.2 Device Fabrication………………………………………………...51 4.3 Device Characterizations………………………………………….53 4.3.1 Electrical properties of TFTs …………………………………53 4.3.2 Gate bias stress on ZnO TFTs ………………………………..56 4.4.3 Extraction of the average effective energy barrier and the thermal prefactor on device C………………………………..64 Chapter 4 References………………………………………………….67 Chapter 5 Conclusions and Future Work……………………………..71 5.1 Conclusions………………………………………………………. 71 5.2 Future work ……………………………………………………….73 | |
| dc.language.iso | en | |
| dc.subject | 穩定性 | zh_TW |
| dc.subject | 薄膜電晶體 | zh_TW |
| dc.subject | 氧化鋅 | zh_TW |
| dc.subject | Stretched-exponential | en |
| dc.subject | Zinc Oxide | en |
| dc.subject | Thin-film transistor | en |
| dc.subject | Stability | en |
| dc.title | 氧化鋅薄膜電晶體穩定性分析與探討 | zh_TW |
| dc.title | A Comprehensive Study of the Mechanism of the Bias Temperature Instability on Zinc Oxide Thin Film Transistors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡振國,劉致為,陳奕君,彭隆瀚 | |
| dc.subject.keyword | 薄膜電晶體,氧化鋅,穩定性, | zh_TW |
| dc.subject.keyword | Thin-film transistor,Zinc Oxide,Stability,Stretched-exponential, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
