Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 動物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47337
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李士傑(Shyh-Jye Lee)
dc.contributor.authorYi-Ching Liuen
dc.contributor.author劉怡青zh_TW
dc.date.accessioned2021-06-15T05:55:33Z-
dc.date.available2015-08-20
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-17
dc.identifier.citationAli, I. U., Schriml, L. M., Dean, M., 1999. Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J Natl Cancer Inst. 91, 1922-32.
Bakkers, J., Kramer, C., Pothof, J., Quaedvlieg, N. E., Spaink, H. P., Hammerschmidt, M., 2004. Has2 is required upstream of Rac1 to govern dorsal migration of lateral cells during zebrafish gastrulation. Development. 131, 525-37.
Chang, C.-N., Expression and functional analyses of PTEN during embryonic development in zebrafish, Danio rerio. Institute of Zoology, College of Life Science, Vol. Master National Taiwan University, Taipei, Taiwan, 2005, pp. 65.
Charest, P. G., Firtel, R. A., 2006. Feedback signaling controls leading-edge formation during chemotaxis. Curr Opin Genet Dev. 16, 339-47.
Croushore, J. A., Blasiole, B., Riddle, R. C., Thisse, C., Thisse, B., Canfield, V. A., Robertson, G. P., Cheng, K. C., Levenson, R., 2005. Ptena and ptenb genes play distinct roles in zebrafish embryogenesis. Dev Dyn. 234, 911-21.
Di Cristofano, A., Pesce, B., Cordon-Cardo, C., Pandolfi, P. P., 1998. Pten is essential for embryonic development and tumour suppression. Nat Genet. 19, 348-55.
Dubruille, R., Laurencon, A., Vandaele, C., Shishido, E., Coulon-Bublex, M., Swoboda, P., Couble, P., Kernan, M., Durand, B., 2002. Drosophila regulatory factor X is necessary for ciliated sensory neuron differentiation. Development. 129, 5487-98.
Faucherre, A., Taylor, G. S., Overvoorde, J., Dixon, J. E., den Hertog, J., 2008a. Zebrafish pten genes have overlapping and non-redundant functions in tumorigenesis and embryonic development. Oncogene. 27, 1079-1086.
Faucherre, A., Taylor, G. S., Overvoorde, J., Dixon, J. E., Hertog, J., 2008b. Zebrafish pten genes have overlapping and non-redundant functions in tumorigenesis and embryonic development. Oncogene. 27, 1079-86.
Finkielsztein, A., Kelly, G. M., 2009. Altering PI3K-Akt signalling in zebrafish embryos affects PTEN phosphorylation and gastrulation. Biol Cell. 101, 661-78, 4 p following 678.
Friedl, P., Hegerfeldt, Y., Tusch, M., 2004. Collective cell migration in morphogenesis and cancer. Int J Dev Biol. 48, 441-9.
Funamoto, S., Meili, R., Lee, S., Parry, L., Firtel, R. A., 2002. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell. 109, 611-23.
Hammerschmidt, M., Wedlich, D., 2008. Regulated adhesion as a driving force of gastrulation movements. Development. 135, 3625-41.
Ho, R. K., Kane, D. A., 1990. Cell-autonomous action of zebrafish spt-1 mutation in specific mesodermal precursors. Nature. 348, 728-30.
Huang, H., Potter, C. J., Tao, W., Li, D. M., Brogiolo, W., Hafen, E., Sun, H., Xu, T., 1999. PTEN affects cell size, cell proliferation and apoptosis during Drosophila eye development. Development. 126, 5365-72.
Iijima, M., Devreotes, P., 2002. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell. 109, 599-610.
Keller, R., 2002. Shaping the vertebrate body plan by polarized embryonic cell movements. Science. 298, 1950-4.
Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F., 1995. Stages of Embryonic-Development of the Zebrafish. Developmental Dynamics. 203, 253-310.
Lee, J. O., Yang, H., Georgescu, M. M., Di Cristofano, A., Maehama, T., Shi, Y., Dixon, J. E., Pandolfi, P., Pavletich, N. P., 1999. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell. 99, 323-34.
Leslie, N. R., Yang, X., Downes, C. P., Weijer, C. J., 2007. PtdIns(3,4,5)P(3)-dependent and -independent roles for PTEN in the control of cell migration. Curr Biol. 17, 115-25.
Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S. I., Puc, J., Miliaresis, C., Rodgers, L., McCombie, R., Bigner, S. H., Giovanella, B. C., Ittmann, M., Tycko, B., Hibshoosh, H., Wigler, M. H., Parsons, R., 1997. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 275, 1943-7.
Liaw, D., Marsh, D. J., Li, J., Dahia, P. L., Wang, S. I., Zheng, Z., Bose, S., Call, K. M., Tsou, H. C., Peacocke, M., Eng, C., Parsons, R., 1997. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet. 16, 64-7.
Liliental, J., Moon, S. Y., Lesche, R., Mamillapalli, R., Li, D., Zheng, Y., Sun, H., Wu, H., 2000. Genetic deletion of the Pten tumor suppressor gene promotes cell motility by activation of Rac1 and Cdc42 GTPases. Curr Biol. 10, 401-4.
Maehama, T., Dixon, J. E., 1998. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 273, 13375-8.
Marsh, D. J., Dahia, P. L., Zheng, Z., Liaw, D., Parsons, R., Gorlin, R. J., Eng, C., 1997. Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nat Genet. 16, 333-4.
Montero, J. A., Kilian, B., Chan, J., Bayliss, P. E., Heisenberg, C. P., 2003. Phosphoinositide 3-kinase is required for process outgrowth and cell polarization of gastrulating mesendodermal cells. Curr Biol. 13, 1279-89.
Myers, M. P., Pass, I., Batty, I. H., Van der Kaay, J., Stolarov, J. P., Hemmings, B. A., Wigler, M. H., Downes, C. P., Tonks, N. K., 1998. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci U S A. 95, 13513-8.
Ro, H., Soun, K., Kim, E. J., Rhee, M., 2004. Novel vector systems optimized for injecting in vitro-synthesized mRNA into zebrafish embryos. Mol Cells. 17, 373-6.
Rohde, L. A., Heisenberg, C. P., 2007. Zebrafish gastrulation: cell movements, signals, and mechanisms. Int Rev Cytol. 261, 159-92.
Schier, A. F., 2001. Axis formation and patterning in zebrafish. Curr Opin Genet Dev. 11, 393-404.
Solnica-Krezel, L., 2005. Conserved patterns of cell movements during vertebrate gastrulation. Curr Biol. 15, R213-28.
Solnica-Krezel, L., 2006. Gastrulation in zebrafish -- all just about adhesion? Curr Opin Genet Dev. 16, 433-41.
Solnica-Krezel, L., Cooper, M. S., 2002. Cellular and genetic mechanisms of convergence and extension. Results Probl Cell Differ. 40, 136-65.
Sulis, M. L., Parsons, R., 2003. PTEN: from pathology to biology. Trends Cell Biol. 13, 478-83.
Sun, H., Lesche, R., Li, D. M., Liliental, J., Zhang, H., Gao, J., Gavrilova, N., Mueller, B., Liu, X., Wu, H., 1999. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci U S A. 96, 6199-204.
Suzuki, A., de la Pompa, J. L., Stambolic, V., Elia, A. J., Sasaki, T., del Barco Barrantes, I., Ho, A., Wakeham, A., Itie, A., Khoo, W., Fukumoto, M., Mak, T. W., 1998. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr Biol. 8, 1169-78.
Thisse, C., Thisse, B., Halpern, M. E., Postlethwait, J. H., 1994. Goosecoid expression in neurectoderm and mesendoderm is disrupted in zebrafish cyclops gastrulas. Dev Biol. 164, 420-9.
Thisse, C., Thisse, B., Schilling, T. F., Postlethwait, J. H., 1993. Structure of the Zebrafish Snail1 Gene and Its Expression in Wild-Type, Spadetail and No Tail Mutant Embryos. Development. 119, 1203-1215.
Ueno, S., Kono, R., Iwao, Y., 2006. PTEN is required for the normal progression of gastrulation by repressing cell proliferation after MBT in Xenopus embryos. Dev Biol. 297, 274-83.
Warga, R. M., Kimmel, C. B., 1990. Cell movements during epiboly and gastrulation in zebrafish. Development. 108, 569-80.
Weinberg, E. S., Allende, M. L., Kelly, C. S., Abdelhamid, A., Murakami, T., Andermann, P., Doerre, O. G., Grunwald, D. J., Riggleman, B., 1996. Developmental regulation of zebrafish MyoD in wild-type, no tail and spadetail embryos. Development. 122, 271-80.
Yeh, C.-M., Effects of PTENB on cell migration in gastrulating zebrafish embryos. Institute of Zoology, College of Life Science, Vol. Master. National Taiwan University, Taipei, Taiwan, 2008, pp. 37.
Zhou, X. P., Kuismanen, S., Nystrom-Lahti, M., Peltomaki, P., Eng, C., 2002. Distinct PTEN mutational spectra in hereditary non-polyposis colon cancer syndrome-related endometrial carcinomas compared to sporadic microsatellite unstable tumors. Hum Mol Genet. 11, 445-50.
Zhou, X. P., Marsh, D. J., Morrison, C. D., Chaudhury, A. R., Maxwell, M., Reifenberger, G., Eng, C., 2003. Germline inactivation of PTEN and dysregulation of the phosphoinositol-3-kinase/Akt pathway cause human Lhermitte-Duclos disease in adults. Am J Hum Genet. 73, 1191-8.
Zhu, S., Liu, L., Korzh, V., Gong, Z., Low, B. C., 2006. RhoA acts downstream of Wnt5 and Wnt11 to regulate convergence and extension movements by involving effectors Rho kinase and Diaphanous: use of zebrafish as an in vivo model for GTPase signaling. Cell Signal. 18, 359-72.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47337-
dc.description.abstract方向性細胞遷移是胚胎發育原腸腔時期形成三個主要胚層的主因。目前在斑馬魚關於此時期的研究所知,此種細胞遷移是藉由PI3 kinase磷酸化PIP2為PIP3所調控。Phosphatase and tensin homolog deleted on chromosome 10 (PTEN),是扮演與PI3 kinase相反作用的酵素,其主要作用是將PIP3上D3位置的磷酸根移除而成為PIP2。依此推測,Pten也可能在方向性細胞遷移的過程當中有所參與。因此我利用斑馬魚來探討抑制Pten的表現對於原腸腔時期細胞遷移有何影響。Pten在斑馬魚中有兩種同功異構物Ptena以及Ptenb,我運用ptenb的morpholino (MO)抑制了ptenb的表現之後發現細胞的方向性遷移受到了影響;此外雖然胚胎的形成並未受影響,然而其型態上的發育卻有所缺陷。而我們實驗室先前的實驗也利用PI3 kinase的抑制物,LY294002,削弱PI3 kinase的表現發現可以減弱Ptenb缺失所造成的缺陷,證實Ptenb對於細胞方向性遷移是藉由調控PIP2/PIP3之間的平衡而得之結果。進一步地,在ptenb受抑制的胚胎當中,位於側面具有聚合行為的細胞群其細胞極性也受到影響,同時觀察到肌動蛋白 (actin) 聚合程度有增加的趨勢。此外,我也發現,運用Cdc42的顯性負面(dominant-negative)分子T17NCdc42能夠抑制ptenb缺失所造成之缺陷。若是大量表現持續激活性之另一下游分子AKT1則可觀察到與ptenb 受抑制時同樣之現象,因此我認為此極性上的缺陷是來自於肌動蛋白聚合程度改變所影響而造成的結果。總體而言,Ptenb藉由調控PIP2/PIP3之間的平衡進一步調控了下游分子Cdc42以及Akt1進而調控肌動蛋白之聚合程度而影響了斑馬魚原腸腔時期的方向性細胞遷移。zh_TW
dc.description.abstractDuring gastrulation, directional cell movements occur in the formation of three germ layers. Directional cell movements are known to be controlled by PI3 kinase by phosphorylating PIP2 to form PIP3 in zebrafish embryos. Phosphatase and tensin homolog deleted on chromosome 10 (Pten) is a counter enzyme of PI3 kinase by removing a phosphate group from PIP3. It is logical to hypothesize that Pten may also be involved in gastrulation cell migration. Here, I tested this hypothesis by investigating the effect of Pten knockdown on directed cell migration during gastrulation. I demonstrated that Ptenb, one of the Pten isoforms, regulates convergence and extension in zebrafish gastrulation by using the anti-sense morpholino oligo (MO). The effects of ptenb knockdown were through their control of PIP2/PIP3 balance, because previously in our lab showed that the Pten MO-induced defects could be rescued by PI3-kinase inhibitor, LY294002 and the knockdown of ptenb disturbed polarity and persistency of lateral convergent cells that was presumably via its regulation of actin dynamics, for the reason of actin polymerization was increased in the ptenb morphants. The downstream effectors, Akt1 and small GTPase Cdc42 would increase their activities in ptenb knockdown morphants; therefore, dominant negative Cdc42 was used and found to rescue the ptenb morphant. In addition, over-expression of human constitutively active akt1 mRNA showed similar convergent extension defects. In summary, I demonstrate here Ptenb by modulating PIP2/PIP3 signaling mediates directional cell migration by Akt1 and small GTPase to regulate actin polymerization during gastrulation in zebrafish.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:55:33Z (GMT). No. of bitstreams: 1
ntu-99-R97b41012-1.pdf: 1343726 bytes, checksum: dac8d766a51b476b6a896b0f2797feb5 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents致謝 i
中文摘要 iii
Abstract v
Contents 1
Introduction 3
Materials and Methods 7
Zebrafish maintenance and embryo collection 7
Morpholino oligonucleotide microinjections 7
Cloning and preparing mRNA 8
Whole-mount in situ hybridization (WISH) 10
Measurement and counting of embryos 11
DIC and confocal time-lapse cell migration recording 12
Cell transplantation 13
ptenb-/- zebrafish screening 13
Statistical analysis 14
Results 15
Sequencing, syntenic, and structural analysis of zebrafish ptenb 15
Knockdown of zebrafish ptenb affects convergence and extension 16
Zebrafish ptenb function is required non cell-autonomously for gastrulation cell migration 19
T17NCdc42 rescues ptenb morphant convergence and extension defects 21
Over-expression of human constitutively active AKT1 shows convergence and extension defects 22
PIP3 distribution analysis in gastrulating embryos 23
ptenb tMO1 causes convergence and extension defects on ptenb-/- embryos 24
Discussion 26
Ptenb regulates convergence and extension during gastrulation 27
Zebrafish Ptenb regulates gastrulation in coordination with PI3 kinase. 29
Zebrafish Ptenb regulates protrusive activities of lateral mesendodermal cells but not prechordal plate cells during gastrulation. 29
Zebrafish Ptenb controls convergence and extension during gastrulation via controlling actin polymerization and downstream Akt1 and small GTPases. 31
ptenb-/- embryos shows convergence and extension defects by ptenb tMO1 32
References 34
Figures 42
Figure 1. Sequence analysis of the zebrafish ptenb gene. 43
致謝 i
中文摘要 iii
Abstract v
Contents 1
Introduction 3
Materials and Methods 7
Zebrafish maintenance and embryo collection 7
Morpholino oligonucleotide microinjections 7
Cloning and preparing mRNA 8
Whole-mount in situ hybridization (WISH) 10
Measurement and counting of embryos 11
DIC and confocal time-lapse cell migration recording 12
Cell transplantation 13
ptenb-/- zebrafish screening 13
Statistical analysis 14
Results 15
Sequencing, syntenic, and structural analysis of zebrafish ptenb 15
Knockdown of zebrafish ptenb affects convergence and extension 16
Zebrafish ptenb function is required non cell-autonomously for gastrulation cell migration 19
T17NCdc42 rescues ptenb morphant convergence and extension defects 21
Over-expression of human constitutively active AKT1 shows convergence and extension defects 22
PIP3 distribution analysis in gastrulating embryos 23
ptenb tMO1 causes convergence and extension defects on ptenb-/- embryos 24
Discussion 26
Ptenb regulates convergence and extension during gastrulation 27
Zebrafish Ptenb regulates gastrulation in coordination with PI3 kinase. 29
Zebrafish Ptenb regulates protrusive activities of lateral mesendodermal cells but not prechordal plate cells during gastrulation. 29
Zebrafish Ptenb controls convergence and extension during gastrulation via controlling actin polymerization and downstream Akt1 and small GTPases. 31
ptenb-/- embryos shows convergence and extension defects by ptenb tMO1 32
References 34
Figures 42
Figure 1. Sequence analysis of the zebrafish ptenb gene. 43
Figure 2. Ptenb functions non cell-autonomously to regulate cell protrusions and cell migration. 45
Figure 3. Partial rescue of ptenb MO-induced defects by dominant-negative Cdc42. 46
Figure 4. Partial rescue of ptenb MO-induced defects by dominant-negative Rac1. 47
Figure 5. Over-expressing human constitutively active AKT1 (caAKT1) caused convergence and extension defects. 48
Figure 6. PIP3 detection by PH(Akt)-GFP mRNA 200 pg co-injection with StdMO 10 ng or ptenb tMO1 10 ng. 50
Figure 7. The ptenb tMO1 also induces convergence and extension defects in ptenb-/- embryos. 51
Figure 8. Signaling pathway of PI3 kinase coordinates with Ptenb. 52
Appendix 53
Materials and Methods 53
RNA isolation and RT-PCR analysis 53
DIC time-lapse cell migration recording 53
PI3-kinase inhibitor (LY294002) treatment 54
Actin polymerization assay 54
Figures 56
Figure S1. The ptenb translational-blocking morpholino oligonucleotide (tMO) caused the aberrant of Ptenb protein translation and further affected the zebrafish convergence and extension during gastrulation. 56
Figure S2. Expression patterns of zebrafish ptenb. 58
Figure S3. Rescue the ptenb morphant by PI3 kinase inhibitor LY294002. 59
Figure S4. Knockdown of ptenb inhibits cell protrusion formation of lateral hypoblast cells but not prechordal cells. 61
Figure S5. Knockdown of ptenb enhanced actin polymerization. 62
dc.language.isoen
dc.subjectPTENzh_TW
dc.subject原腸腔zh_TW
dc.subject斑馬魚zh_TW
dc.subjectPI3 kinasezh_TW
dc.subject細胞遷移zh_TW
dc.subjectPtenen
dc.subjectconvergence and extensionen
dc.subjectgastrulationen
dc.subjectPI3 kinaseen
dc.subjectzebrafishen
dc.titlePTENB 調控斑馬魚原腸期胚細胞方向性遷移zh_TW
dc.titlePTENB Mediates Cell Migration during Gastrulation in
Zebrafish
en
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許文明,顏裕庭,蕭崇德
dc.subject.keyword原腸腔,斑馬魚,PI3 kinase,細胞遷移,PTEN,zh_TW
dc.subject.keywordgastrulation,PI3 kinase,zebrafish,Pten,convergence and extension,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2010-08-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept動物學研究所zh_TW
顯示於系所單位:動物學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved