請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47336完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉開溫 | |
| dc.contributor.author | Tsen-Tsz Hsiao | en |
| dc.contributor.author | 蕭岑慈 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:55:30Z | - |
| dc.date.available | 2010-08-24 | |
| dc.date.copyright | 2010-08-24 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-17 | |
| dc.identifier.citation | 陳正次 (1998) 番茄育種。蔬菜育種技術研習會專刊,台灣農試所特刊第 73 號: 231-284.
陳正次 (2002) 番茄病蟲害與生理障礙的防治。番茄品種特性與栽培技術全輯。行政院農委會種苗改良繁殖場。台灣。P56-78。 張孝齊 (2005) 甘藷 sporamin 基因啟動子上順向作用的 DNA 片段之功能性分 析及 sporamin 基因家族成員間變異性之研究。國立台灣大學植物科學研究所碩士論文。 楊藹華 (2004) 芋頭半胱胺酸蛋白酶抑制劑 (Tarocystatin) 之基因選殖、表現特性及對微生物抗性的分子基至研究。國立台灣大學植物科學研究所博士論文。 蔡東纂 (1996) 台灣作物線蟲病連作帳害之發生及對策。植病會刊 5: 113-128. 蔡東纂、程永雄、林奕耀、陳昭豐 (1994) 台灣根莖薯類作物線蟲病害之發生。植病會刊 4: 180-192。 Adams, D. J. (2004) Fungal cell wall chitinase and glucanases. Microbiology 150: 2029-35. Agrios, G. N. (2005) Plant diseases caused by nematodes. Plant Pathology. Elsevier Inc. UK. p826-74. An, G., Costa, M. A., and Ha, S. B. (1990) Nopaline synthase promoter is wound inducible and auxin inducible. Plant cell. 2: 225-33. Arakane, Y., and Muthukrishnan, S. (2010) Insect chitinase and chitinase-like proteins. Cell Mol Life Sci. 67:201-16. Review. Atkinson, H. J., Urwin, P. E., Clarke M. C., and McPherson, M. J. (1996) Image analysis of the growth of Globodera pallid and Meloidogyne incognita on transgenic tomato roots expressing cystatins. Journal of Nematology. 28: 209-15. Atkinson, H. J., Urwin, P. E., and McPherson, M. J. (2003) Engineer plant for nematode resistance. Annu. Rev. Phytopathol. 41:615–39 Atkinson, H. J., Urwin, P. E., Hanson, E., and McPherson, M. J. (1995) Designs for engineered resistance to root-parasitic nematode. Trends in Biotechnology 13: 369-74. Beyene, G., Foyer, C. H., and Kunert, K. J. (2006) Two new cysteine proteinases with specific expression patterns in mature and scenescent tobacco (Nicotiana tabacum L.) leaves. JXB. 1-13 Bird, A. F., and McClure, M. A. (1976) The Tylenchid (Nematoda) egg shell: structure, composition and permeability. Parasitology 72: 19-28. Bird, D. McK., Williamson, V. M., Abad, P., McCarter, J., Danchin, EG. J., Castagnone-Sereno, P., and Opperman1, C. H. (2009) The Genomes of Root-Knot Nematodes. Annu. Rev. Phytopathol. 47:333–51 Boter, M., Ruíz-Rivero, O., Abdeen, A., and Prat, S. (2004) Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis.Genes Dev. 18:1577-91. Boulter, D., Edwards, G. A., Gatehouse, A. M. R., Gatehouse, J. A., and Hilder V. A. (1990) Additive protective effects of different plant-derived insect resistance genes in transgenic tobacco plants. Crop Protect. 9: 351-4. Caillaud, M. C., Abad, P., and Favery, B. (2008) Cytoskeleton reorganization, a key process in root-knot nematode-induced giant cell ontogenesis. Plant Signal Behav. 3: 816-8. Caño-Delgado, A. I., Metzlaff, K., and Bevan, M. W. (2000) The eli1 mutation reveals a link between cell expansion and secondary cell wall formation in Arabidopsis thaliana. Development. 127: 3395-405. Castens, M., Vivier, M. A., and Pretorius I. S. (2003) The Saccharomyces cerevisiae chitinase, encodes by the CTS-2 gene, confers antifungal activity against Botrytis cinerea to transgenic tobacco. Transgenic Research 12: 497-508. Chan, Y-L, Cai, D., Taylor P. W. J., Chan M-T, and Yeh, K-W. (2010a) A novel chitinolytic enzyme, PjCHI-1, causes aberrant embryonic development and egg mass production of Meloidogyne incognita in transgenic tomato. Plant Pathol. (in the Epub) Chan, Y-L, Yang, A-H, Chen, J-T, Yeh, K-W,and Chan M-T. (2010b) Heterologous expression of taro cystatin protects transgenic tomato against Meloidogyne incognita infection by means of interfering sex determination and suppressing gall formation. Plant Cell Rep. 29: 231-8. Chang, S., Puryear, J., and Cairney, J. (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Reports 11: 113-116. Chen, Y-L, Ashok Kumar H. G.,Kumar, S., Tzean, S. S., and Yeh K. W. (2007) Molecular cloning characterization, and expression of chitinase from the entomopathogenic fungus Paecilomyces javanicus. Current Microbiology 55:8-13. Chitwood, D. J. (2002) Phytochemical based strategtes for nematode control. Annu. Rev. Phytopathol. 40:221–49. Cohen-Kupiec, R., and Chet, I. (1998) The molecular biology of chitin digestion, Current Opinion in Biotechnology 9: 270-7. Davis, E. L., Hussey, R. S., and Baum, T. J. (2004) Getting to the roots of parasitism by nematodes.Trends Parasitol. 20:134-41. Ehwaeti, M. E., Elliott, M. J., McNicol, J. M., Phillips, M. S., and Trudgill, D.L. (2000) Modelling nematode population growth and damage. Crop Protection 19 :739-745. Fuller, V. L., Lilley, C. J., and Urwin, P. E. (2008) Nematode resistance. New Phytologist 180: 27-44. Gheysen, G., and Fenoll, C. (2002) Gene expression in nematode feeding sites. Annu. Rev. Phytopathol. 40: 191–219 Girlanda,M., Bianciotto, V., Cappellazzo, G. A., Casieri, L., Bergero, R., Martino, E., Luppi, A. M., and Perotto, S. (2008) Interactions between engineered tomato plants expressing antifungal enzymes and nontarget fungi in the rhizosphere and phyllosphere. FEMS Microbiol Lett 288: 9–18. Gongora, C. E., and Broadway, R. M. (2002) Plant growth and development influenced by transgenic insertion of bacterial chitinolytic enzymes. Molecular Breeding. 9: 123–135. Hattori, T., Nakagawa, S., and Nakamura, K. (1989) Structural relationship among the members of multigene family coding for the sweet potato tuberous roots storage proteins. Plant Mol. Biol. 13:563–572. Holtzmann, O. V. (1965) Effects of soil temperature on resistance of tomato to root-knot nematode (Meloidogyne incognita). Phytpathology 55: 990-2. Ibrahim, H. M., Alkharouf, N. W., Meyer, S. L., Aly, M. A., Gamal, El-Din A. E., Hussein, E. H., and Matthews, B. F. (2010) Post-transcriptional gene silencing of root-knot nematode in transformed soybean roots. Exp Parasitol. (in the Epub) Ishiguro, S., and Nakamura, K. (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Mol Gen Genet. 28;563-71. Karczmarek, A., Fudali, S., Lichocka, M., Sobczak, M., Kurek, W., Janakowski, S., Roosien, J., Golinowski, W., Bakker, J., Goverse, A., and Helder, L. (2008) Expression of two functionally distinct plant endo-β-1,4-glucanases is essential for the compatible interaction between potato cyst nematode and its hosts. MPMI 21: 791–98. Khan, A., Williams, K. L., and Nevalainen, H. K. M. (2004) Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne incognita juveniles. Biol. Control 31: 346-52. Koritsas, V. M., and Atkinson, H. J. (1994) Proteinases of females of the phytoparasite Globodera pallid (potato cyst nematode). Parasitology. 109: 357-65. Lee, C. G. (2009) Chitin, chitinases and chitinase-like proteins in allergic inflammation and tissue remodeling. Yonsei Med J. 50:22-30. Li, D-C. (2006) Reviw of fungal chitinase. Mycopathologia. 161: 345-360. Li, X-Q., Wei, J. Z., Tan, A., and Aroian, R. V. (2007) Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnology Journal. 5: 455-464. Lopez-Llorca, L. V. (1990) Purification and properties of extracellular proteases produced by the nematophagous fungus Verticillium suchlasporium. Can. J. Microbiol. 36:530–37. Lübberstedt, T., Bolle, C. E., Sopory, S., Flieger, K., Herrmann, R. G., and Oelmüller, R. (1994) Promoters from genes for plastid proteins possess regions with different sensitivities toward red and blue light. Plant Physiol. 104: 997-1006. Maeshima, M., Sasaki, T., and Asahi, T. (1985) Characterization of major proteins in sweet potato tuberous roots. Phytochemistry. 24: 1899-902. Maximova, S. N., Marelli, J-P., Young, A., Pishak, S., Verica, J. A., and Guiltinan, M. J. (2006) Over-expression of a cacao class I chitinase gene in Theobroma cacao L. enhance resistance against the pathogen, Colletortrichum gloeosporioides.Planta 224: 740-49. Nusbaum, C. J., and Ferris, H. (1973) The role of cropping systems in nematode population management. Annu Rev Phytopathol 11: 423-40. Omuega, C. O., Thomason, I. J., and Roberts, P. A. (1988) A non-destructive technique for screening bean germ plasm for resistance to Meloidogyne incognita. Plant Disease. 72: 970-2. Orion, D., and Frank, A. (1990) An electron microscopy study of cell wall lysis by Meloidogyne incognita gelatinous matrix. Revue de Nematologie 13: 105-7. Orion, D., Loots, G. C., and Orion, T. (1987) Cell lysis activity of Meloidogyne gelatinous matrix. Revue de Nematology. 10: 465-5. Orion, D., Wergin, W. P., Chitwood, D. J., and Erbe, E. F. (1994) Low-temperature scanning electron microscope observations of the Meloidogyne incognita egg mass: the gelatinous matrix and embryo development. J Nematol. 26: 402–411. Pernas, M., Lopez-Solanilla, E., Sanchez-Monge, R., Salcedo, G., and Rodriguez-Palenzuela, P. (1999) Antifugal activity of a plant cystatin. Mol. Plant Mol. Int. 12: 624-27. Petersen, J. J. (1972) Factor affecting sex ratios of a mermithid parasite of mosquitoes. J Nematol. 4:83-7. Sasser, J. K., and Freckman, D. W. (1987) A world perspective on nematology: the role of the society. In: Veech JA, Dickerson DW (eds) Vistas on nematology. Society of Nematologists, p7-14. Senthilkumar, R., Cheng, C. P., and Yeh, K. W. (2010) Genetically pyramiding protease-inhibitor genes for dual broad-spectrum resistance against insect and phytopathogens in transgenic tobacco. Plant Biotechnol J. 8: 65-75. Shingles, J. Lilley, C. J., Atkinson, H. J., and Urwin., P. E. (2007) Meloidogyne incognita: Molecular and biochemical characterisation of a cathepsin L cysteine proteinase and the effect on parasitism following RNAi. Experimental Parasitology 115: 114–120. Spiegel, Y., Cohn, E., and Chet, I. (1989) Use of chitin for controlling Heterodera avenae and Tylenchulus semipenetrans. J.Nematol. 21: 419-22. Terra, W. R., and Ferreira, C. (1994) Insect digestive enzymes: properties, compartmentalization and function. Compareative Biochemistry and Physiology Part B. Biochemistry Molecular Biology 109: 1-62. Triantaphyllou, A. (1997) Environment sex differentiation of nematodes in relation to pest management. Annual Review of Phytopathology. 11: 441-62. Turk, V., and Bode, W. (1991) The cystatin: protein inhibitor of cysteine proteinase. FEBS Letters 285: 213-9. Urwin, P. E., Atkinson, H. J., Waller, D. A., and McPherson, M. J. (1995) Enginerred oryzacystatin-1 expressed in transgenic hairy roots confers resistance to Globodera pallid. The Plant J. 8: 121-31. Urwin, P. E., Lilley, C. J., McPherson, M. J., and Atkinson, H. J. (1997) Resistance to both cyst and root-knot nematodes conferred by transgenic Arabidopsis expressing a modified plant cystatin. The Plant Journal. 12:455-461. Urwin, P. E., McPherson, M. J., and Atkinson, H. J. (1998) Enhanced transgenic plant resistance to nematodes by dual proteinase inhibitor constructs. Planta. 204: 472-79. Wang, K-M, Kumar, S., Cheng, Y-S, Venkatagiri, S., Yang, Y-H., and Yeh, K-W. (2008) Characterization of inhibitory mechanism and antifungal activity between group-1 and group-2 phytocystatin from taro (Colocasia esculenta). FEBS J. 275: 4980-9. Wang, S. J., Lan, Y. C., Chen, S. F., Chen, Y. M., and Yeh, K. W. (2002) Wound-response regulation of the sweet potato sporamin gene promoter region. Plant Mol Biol.48: 223-31. Yang, A. H., and Yeh, K. W. (2005) Moleculare cloning, recombinant gene expression, and antifungal activity of cystatin from taro (Colocasia esculenta cv. Kaosiung no. 1). Planta. 221: 493-501. Yaghoobi, J., Kaloshian, I., Wen, Y., and Williamson, V. M. (1995) Mapping a new nematodes resistance locus in Lycopersicon peruvianum. Theoretical and Applied Genetics. 91: 457-64. Yeh, K-W, Chen, J. C., Lin, M. I.,Chen, Y-M., and Lin, C. Y. (1997) Functional activity of sporamin from sweet potato (Ipomoea batatas Lam.): atuber storage protein with trypsin inhibitory activity. Plant Molecular Biology 33: 565–70. Zhang, Y., Foster, J. M., Nelsob, L. S., Ma, D., and Carlow, C. K. S. (2005) The chitin synthasegenes chs-1 and chs-2 are essential for C. elegans development and responsible for chitin deposition in the eggshell and pharynx, respectively. Development Biology 85: 330-9. Zhang, F., and Schmitt, D. P. (1995) Embryogenesis and postinfection development of Meloidogyne konaensis. Journal of Nematology. 27: 103-8. Zhao, Y., Botella, M. A., Subramanian, L., Niu, X., Nielsen, S. S., Bressan, R. A., and Hasegawa, P. M. (1996) Two wound-inducible soybean cysteine proteinase inhibitor activities than a constitutive homology. Plant Physiol. 111: 1299-1306. Zhong, R., Kays, S. J., Schroeder, B. P., and Ye, Z. H. (2002) Mutation of a chitinase-like gene causes ectopic deposition of lignin, aberrant cell shapes, and overproduction of ethylene. Plant Cell. 14:165-79. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47336 | - |
| dc.description.abstract | 根瘤線蟲 (root-knot nematode, RKN) 為植物內寄生性線蟲,可以危害多種經濟作物,而造成作物產量及經濟上的損失。對根瘤線蟲的防治策略以化學藥劑的施用為主,而化學藥劑的使用會危害人類及汙染環境,因此我們希望以基因轉殖作物替代化學藥劑防治根瘤線蟲。本實驗室利用人工合成的 pMSPOA 表現來自芋頭的半胱胺酸蛋白酶抑制因子基因 (cysteine protease inhibitor, CeCPI) 及來自 Paecilomyces javanica 的幾丁質酶基因 (chitinase-1, PjCHI-1) 於耐熱番茄 (Solanum lycopersicum Mill.) 品系CLN2468D 中,測試此寄主對南方根瘤線蟲 (Meloidogyne incognita) 抗性反應。非轉殖株與轉殖株 pMSPOA::CeCPI- pMSPOA::PjCHI-1在感染根瘤線蟲的六週後,測試它們的抗性能力。轉殖株大量表現 CeCPI 於植物體內,可以抑制根瘤的形成,也減少母蟲所占族群百分比而降低線蟲子代數量;另外,具有高量表達 PjCHI-1 的轉殖株,可以減少卵殼的幾丁質含量,降低卵及卵塊數量及阻礙蟲卵胚胎正常的發育,此結果表示轉殖 pMSPOA::CeCPI- pMSPOA::PjCHI-1 於耐熱番茄中,可以大量表達此兩基因於植物體內,因此有效的抑制線蟲的繁殖力及減少線蟲的後代。 | zh_TW |
| dc.description.abstract | Root-knot nematodes are sendentary parasitic nematode, they attack multiple economic crops and cause productivity and economic losses. The strategies of nematode control are culture management, resistant cultivar and nematocide. Although useful nematocide is used to reduce nematode population, it causes the enormous harm to human and environment. Through, our goal is to engineer the nematode-resistant plant to replace nematocide. We construct the Colocasia esculenta cysteine protease inhibitor (CeCPI) and Paecilomyces javanicus chitinase-1(PjCHI-1) driven by a synthetic promoter, pMSPOA . 6 weeks afeter root-knot nematode infection, we calculate the root galls and egg mass, and we find that the number of root galls and egg mass are reduced. In the previous study, we know that CeCPI can affect the nematode digestion and PjCHI-1 can destroy the egg shell. The transgenic plants showed prominently the reduction of saccate, decline of enlarged saccate female percentage, lack of chitin content, decrease of eggs per egg mass and retardation of embryogenesis. In conclusion, the transgenic plants which are overexpressed PjCHI nad CeCPI can effectively control the propagation Meloidogyne incognita and to decline nematode progeny. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:55:30Z (GMT). No. of bitstreams: 1 ntu-99-R97b42023-1.pdf: 3469675 bytes, checksum: 033c9ccf4160fdb52138b015bb490765 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 目次(含頁碼) 口試委員會審定書……………………………………………………………………..I
誌謝…………………………………………………………………….………………II 目錄…………………………………………………………………….……………...III 圖目錄……………………………………………………………………………….....V 附表目錄……………………………………………………………………………...VI 附圖目錄……………………………………………………………………………...VI 中文摘要……………………………………………………………………….…….VII 英文摘要…………………………………………………………………………….VIII 第一章 前言…………………………………………………………………….…….1 第一節 根瘤線蟲………………………………………………………………..1 第二節 根瘤線蟲的防治策略…………………………………………………..2 第三節 蛋白酶抑制因子………………………………………………………..4 第四節 幾丁質酶………………………………………………………………...5 第五節 番茄.……………………………………………………………………..6 第六節 人工合成啟動子–pMSPOA……………………………………………7 第七節 轉基因植物對抗線蟲之研究概況………………………………………9 第八節 本論文之研究方向…………………………………………………….10 第二章 材料與方法………………………………………………………………….11 第一節 實驗材料……………………………………………………………….11 第二節 轉殖番茄植株的鑑定與檢測………………………………………….11 第三節 轉殖番茄植株的抗性分析…………………………………………….20 第四節 統計分析………………………………………………………………25 第三章 結果……………………………………………………………………..…...26 第一節 番茄轉殖株表現 CeCPI 基因…………………………………………26 第二節 番茄轉殖株表現 PjCHI-1 基因……………………………………….27 第三節 番茄轉殖株同時表現 CeCPI 與 PjCHI-1基因……………………..28 第四節 比較雙基因轉殖株與二種不同啟動子之單基因轉殖株對南方根瘤線 蟲的抗性能力…………………………………………………………………..30 第四章 討論…………………………………………………………………………32 第一節 轉殖株利用人工合成 pMSPOA 表現 CeCPI 或 PjCHI-1…………32 第二節 番茄轉植株表現 CeCPI 及PjCHI-1 基因…………………………..34 第三節 未來展望………………………………………………………………..40 參考文獻……………………………………………………………………………….41 圖表…………………………………………………………………….………………50 附表…………………………………………………………………………………….69 附圖…………………………………………………………………………………….70 | |
| dc.language.iso | zh-TW | |
| dc.subject | 幾丁質酶 | zh_TW |
| dc.subject | 南方根瘤線蟲 | zh_TW |
| dc.subject | 半胱胺酸抑制因子 | zh_TW |
| dc.subject | root-knot nematode | en |
| dc.subject | Paecilomyces javanicus-1 (PjCHI-1) | en |
| dc.subject | Colocasia esculenta cysteine protease inhibitor (CeCPI) | en |
| dc.title | 利用半胱胺酸蛋白酶抑制因子及幾丁質酶之雙基因轉殖發展抗根瘤線蟲的耐熱番茄品系 | zh_TW |
| dc.title | Engineering the heat-tolerant tomato plant with a stacking of cysteine protease inhibitor and chitinase genes exhibits resistance against root-knot nematode
(Meloidogyne incognita) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊文彬,曾顯雄,高穗生,陳珮臻 | |
| dc.subject.keyword | 南方根瘤線蟲,半胱胺酸抑制因子,幾丁質酶, | zh_TW |
| dc.subject.keyword | root-knot nematode,Colocasia esculenta cysteine protease inhibitor (CeCPI),Paecilomyces javanicus-1 (PjCHI-1), | en |
| dc.relation.page | 75 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-18 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
