Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4730
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡定平
dc.contributor.authorJie Chenen
dc.contributor.author陳婕zh_TW
dc.date.accessioned2021-05-14T17:46:03Z-
dc.date.available2015-07-20
dc.date.available2021-05-14T17:46:03Z-
dc.date.copyright2015-07-20
dc.date.issued2015
dc.date.submitted2015-06-30
dc.identifier.citation參考文獻
[1] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Soviet physics uspekhi 10, 509-5141968 (1968).
[2] J. B. Pendry, A. J. Holden, W. J. Stewart and I. Youngs. “Extremely low frequency plasmons in metallic mesostructures,” Physical review letters 76, 4773 (1996).
[3] J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart. “Magnetism from conductors and enhanced nonlinear phenomena,” Microwave Theory and Techniques, IEEE Transactions on 47, 2075-2084 (1991).
[4] J. B. Pendry, “Negative refraction makes a perfect lens,” Physical review letters 85, 3966 (2000).
[5] R. A. Shelby, D. R Smith and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[6] N. Fang, H. Lee, C. Sun and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005).
[7] J. B. Pendry, D. Schurig and D. R. Smith, “Controlling electromagnetic fields.,” Science 312, 1780-1782 (2006).
[8] V. V. Mody, R. Siwale, A. Singh and H. R. Mody, “Introduction to metallic nanoparticles,” Journal of pharmacy and bioallied sciences 2, 282 (2010).
[9] L. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera , R. E. Price, J. D. Hazle, N. J. Halas and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proceedings of the national academy of sciences 100, 13549-13554 (2003).
[10] M. Moskovits, “Surface-enhanced spectroscopy,” Review modern physics 57, 783-826 (1985).
[11] S. M. Nie and S. R. Emory, “Surface-enhanced Raman scattering nanoparticles,” Science 275, 1102-1106 (1997).
[12] K. Kneipp, Y. Wang, H. Keipp, L. T. Perelman, I. Itzkan, R. Dasari and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Physical review letter 78, 1667-1670 (1997).
[13] T. Y. Liu, K. T. Tsai, H. H. Wang, Y. Chen, Y. H. Chen, Y. C. Chao, H. H. Chang, C. H. Lin, J. K. Wang and Y. L. Wang, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Nature communications 2, 538 (2011).
[14] A. Chou, E. Jaaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4, 7419-7424 (2012).
[15] A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang and B. Luk’yanchuk, “Magnetic light,” Scientific reports 2, 492 (2012).
[16] A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano letters 12, 3749-3755 (2012).
[17] U. Zywietz, A. B. Evlyukhin, C. Reinhardt and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nature communications 5, 3402 (2014).
[18] K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne and B. Guizal,. “All-dielectric rod-type metamaterials at optical frequencies,” Physical review letters 102, 133901(2009).
[19] J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Physical review letters 108, 097402 (2012).
[20] L. Shi, T. U. Tuzer, R. Fenollosa and F. Meseguer, “A new dielectric metamaterial building block with a strongmagnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Advanced materials 24, 5934–5938 (2012).
[21] J. Zhang, K. F. MacDonald and N. I. Zheludev, “Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial,” Optics express 21, 26721-26728 (2013).
[22] C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nature communications 5, 3892 (2014).
[23] D. Lin, P. Fan, E. Hasman and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298-302 (2014).
[24] F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Physical review letters 93, 197401 (2004).
[25] Z. Jakšić, D. Vasiljević-Radović, M. Maksimović and M. Sarajlić, 'Nanofabrication of Split Ring Resonator Structures for Negative Refractive Index Materials in Optical Range,' Proc. 49th ETRAN Conference 2005, Budva, Montenegro.
[26] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333-337 (2011).
[27] F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano letters 12, 1702-1706 (2012).
[28] S. Sun, Q. He, S. Xiao, Q. Xu, X. Li and L. Zhou, 'Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,' Nature materials 11, 426-431 (2012).
[29] L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nature communications 4, 3808 (2013).
[30] X. Ni, A. V. Kildishev and V. M. Shalaev, “ Metasurface holograms for visible light,” Nature communications 4, 3807 (2013).
[31] W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano letters 14 225-230 (2013).
[32] Y. W. Huang, W. T. Chen, W. Y. Tsai, P. C. Wu, C. M. Wang, G. Sun and D. P. Tsai, 'Aluminum Plasmonic Multicolor Meta-Hologram,' Nano letters 15, 3122-3127 (2015)
[33] F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano letters 12, 4932-4936 (2012).
[34] N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano letters 12 6328-6333 (2012).
[35] I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tenability,” Nano letters 10, 4222-4227 (2010).
[36] B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch” Advanced materials 25, 3050-3054 (2013).
[37] M. Lapine, I. V. Shadrivov, D. A. Powell and Y. S. Kivshar, “Magnetoelastic metamaterials,” Nature materials 11, 30-33(2012).
[38] M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Optics express 17, 18330-18339 (2009).
[39] J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nature communications 3, 1151 (2012).
[40] A. L. Smith and D. R. Anderson, “Vibrational spectra of Me2SiCl2, Me3SiCl, Me3SiOSiMe3, (Me2SiO)3, (Me2SiO)4, (Me2SiO)x, and their deuterated analogs,” Applied spectroscopy 38, 822-834 (1984).
[41] T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature materials 10, 129-134 (2011).
[42] M. Terao, T. Morikawa and T. Ohta, “Electrical phase-change memory: fundamentals and state of the art,” Japanese journal of applied physics 48, 080001 (2009).
[43] S. Kohara, K. Kato, S. Kimura, H. Tanaka, T. Usuki, K. Suzuya, H. Tanaka, Y. Moritomo, T. Matsunaga, N. Yamada, Y. Tanaka, H. Suematsu and M. Takata, “Structural basis for the fast phase change of Ge2Sb2Te5: Ring statistics analogy between the crystal and amorphous states,” Applied physics letters 89, 201910 (2006).
[44] M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nature materials 6, 824-832 (2007).
[45] A. K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS photonics 1, 833-839 (2014).
[46] Q. Wang, J. Maddock, E. T. F. Rogers, T. Roy, C. Craig, K. F. Macdonald, D.W. Hewak and N. I. Zheludev, “1.7 Gbit/in. 2 gray-scale continuous-phase-change femtosecond image storage,” Applied physics letters 104, 121105 (2014).
[47] A. K. U. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano letters 13, 3470-3475 (2013).
[48] W. M. Zhu, Q. H. Song, A. Q. Liu, D. P. Tsai, H. Cai, Z. X. Shen,R. F. Huang, S. K. Ting, Q. X. Liang, H. Z. Liu, B. H. Lu and N. I. Zheludev, “ A Random Access Reconfigurable Metamaterial and a Tunable Flat Lens,” arXiv preprint arXiv:1406.2757 (2014).
[49] V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev and A. V. Kildishev, “negative index of refraction in optical metamaterials,” Optics letters 30, 3356 (2005).
[50] S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano letters 12, 6223-6229 (2012).
[51] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index, “ Nature 455, 376-379(2008).
[52] X. Yang, J. Yao, J. Rho, X. Yin and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nature photonics 6, 450-454 (2012).
[53] A. Poddubny, I. Iorsh, P. Belov and Y. Kivshar, “Hyperbolic metamaterials,” Nature photonics 7, 948-957 (2013).
[54] Y. J. Tsai, S. Larouche, T. Tyler, N. M. Jokerst and D. R. Smith, “Infrared metamaterial phase holograms,” Nature materials 11, 450-454 (2012).
[55] L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano letters 12, 5750-5755 (2012).
[56] L. Song, R. A. Lessard and P. Galarneau, “Diffraction efficiency of a thin amplitude-phase holographic grating: a convolution approach,” Journal of modern optics 37, 1319-1328(1990).
[57] K. A. Nelson, R. Casalegno, R. D. Miller and M. D. Fayer, “Laser‐induced excited state and ultrasonic wave gratings: Amplitude and phase grating contributions to diffraction,” The journal of chemical physics 77, 1144-1152 (1982).
[58] W. L. Hsu, P. C. Wu, J. W. Chen, T. Y. Chen, B. H. Cheng, W. T. Chen, Y. W. Huang, C. Y. Liao, G. Sun and D. P. Tsai, “Vertical split-ring resonator based anomalous beam steering with high extinction ratio,” Scientific reports 5, 11226 (2015).
[59] Y. Chen, X. Li, X. Luo, S. A. Maier and M. Hong.” Tunable near-infrared plasmonic perfect absorber based on phase-change materials,” Photonics research 3, 54-57 (2015).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4730-
dc.description.abstract超穎材料因為本身所特有的自然界中不存在的光學性質而備受關注,被運用在了隱形材料、負折射材料等研究中。超穎界面是其中一個重要的分支:它將超穎材料與超穎器件連接在一起,衍生出了平面透鏡、超穎全像片以及超穎光學元件等研究。在最近的一些研究中,科學家們運用相變化材料實現了對超穎材料異常光學現象的主動控制。在眾多的相變化材料中,鍺銻碲合金 ( Ge2Sb2Te5 ) 由於其良好的穩定性、極短的轉態時間(飛秒量級)以及不同相態之間光學常數、電阻值的明顯差異,被運用在了高密度的光存儲、相變化記憶體以及奈米微影技術中。
本論文運用有限元(Finite Element Method, FEM)以及時域有限差分法(Finite-Difference Time-Domain, FDTD)的模擬方法,對相變化材料鍺銻碲合金運用到主動式相位梯度超穎界面進行研究。我們在光通訊波段(1550 奈米)設計了一種主動式調變的具有異常反射現象的超穎界面。通過對不同結構尺寸的鍺銻碲合金的組合以及雷射對特定位置的鍺銻碲合金結構的相態控制,實現不同角度的反射現象:當所有結構都為晶態時,反射現象為正常反射現象,符合傳統的光學定律;當部分結構為晶態,部分結構為非晶態時,反射光會沿著偏離傳統的反射光線19度或是40度的角度方向出射。產生異常反射現象的原因是由於電磁波對不同尺寸、不同相態的結構有不同的相位延遲。對特定的結構進行排列,可以藉由人工的方式控制波前,從而實現異常反射的現象。利用雷射控制特定位置的鍺銻碲合金奈米結構的晶態發生改變,等效於改變超穎界面的排列方式。這可以使得相位調控單元的週期發生變化,從而改變異常反射的角度。
與傳統貴重金屬構成的超穎界面相比,引入了材料的相態作為變數,我們只需要兩種尺寸就能達到三階的相位調製效果。依賴相變化材料的相態變化,我們可以通過改變相位調控單元週期實現主動式的調變效果:實現一個可以在不同反射角之間切換的相位梯度超穎界面。這克服了傳統超穎界面難以實現主動變化的缺點,未來可以運用在光通訊波段的主動式奈米元件中。
關鍵字:超穎界面 相變化材料 主動調製
zh_TW
dc.description.abstractMetamaterial is a hot topic in these years which is applied to the researches of clocking, negative refraction, relying on its non-existing proprieties in nature. Metasurface is an important part connecting metamaterial with metadevice, contributing to a great many of applications, such as flat lens, metahologram and some meta-optical-component. Recently, Phase-change materials are applied to active metamaterial due to their distinctions in optical constant between crystal state and amorphous state. Ge2Sb2Te5 (GST) alloy is widely used in optical data storage, phase change memory and nanolithography owing to its nature of stability, quick response (femtosecond order) to external stimuli and dramatical difference in optical constant and electrical resistance between two phases.
We present an active gradient-phase metasurface design based on algorithms of Finite Element Method (FEM) and Finite-Difference Time-Domain (FDTD). An active gradient-phase metasurface made of phase-change material exhibiting normal or abnormal reflection working at communication frequency (around 1550 nm) is achieved. When GST alloy nanostructures are all in crystal state, there is a normal reflective phenomenon following traditional laws. Under an external stimuli, an anomalous reflected beam can be detected in the angle of 19 or 40 degree off the traditional light path. The difference of the geometry and phase-state leads to a distinct phase delay. With a specific arrangement, the wavefront can be reshaped and the metasurfce give rise to an abnormal reflected phenomena. The phase-state of GST rods can be changed to attain a period variation of phase modulation by fs-laser process. In a word, there is a three-level phase modulation when elements are partly in amorphous and partly in crystal state.
Here, we achieve a three-level phase modulation only relying on two different geometry by introducing phase-state of PCMs. Meanwhile, an active phase-gradient metasurface is realized to improve tunability of metamaterial which is potential for active metadevice in optical communication process.

Key words: Metasurface, Phase-change materials, Active modulation
en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:46:03Z (GMT). No. of bitstreams: 1
ntu-104-R02222072-1.pdf: 2760663 bytes, checksum: 78c8fc657300380ca4a7a81db7817df3 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致 謝 I
中文摘要 II
ABSTRACT III
目 錄 V
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 超穎材料簡介 1
1.2 局域性表面電漿共振 4
1.3 超穎界面 9
1.3.1 超穎全像片 12
1.3.2 超穎光學元件 15
1.4 主動式超穎材料 17
1.4.1 基於靈活性基板的主動式超穎材料 18
1.4.2 基於溫敏材料以及半導體物質的主動式超穎材料 20
1.4.3 基於相變化材料的主動式超穎材料 22
1.4.4 基於微流道技術的主動式超穎界面 26
第二章 模擬設定與測試 27
2.1 模擬設定與測試 27
2.2 設計思路與邏輯 30
第三章 相變化材料作主動式超穎界面 33
3.1 最小結構單元設計 34
3.2 基於相變化材料的梯度式超穎界面 37
3.3 編碼式超穎材料 41
3.4 多角度變化的主動式超穎界面 43
第四章 總結與展望 47
參考文獻 48
dc.language.isozh-TW
dc.subject超穎界面zh_TW
dc.subject主動調製zh_TW
dc.subject相變化材料zh_TW
dc.subjectMetasurfaceen
dc.subjectActive modulationen
dc.subjectPhase-change materialsen
dc.title基於相變化材料之主動調變式相位梯度超穎界面zh_TW
dc.titleActive gradient-phase metasurface based on phase-change material Ge2Sb2Te5en
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張允崇,王智明
dc.subject.keyword超穎界面,相變化材料,主動調製,zh_TW
dc.subject.keywordMetasurface,,Phase-change materials,,Active modulation,en
dc.relation.page55
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-06-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf2.7 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved