請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47306完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃振康(Chen-Kang Huang) | |
| dc.contributor.author | Chih-Wei Lee | en |
| dc.contributor.author | 李致緯 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:54:21Z | - |
| dc.date.available | 2015-08-19 | |
| dc.date.copyright | 2010-08-19 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-17 | |
| dc.identifier.citation | Bang, I.C. and S.H. Chang. 2005. Boiling heat transfer performance and phenomena of Al2O 3-water nano-fluids from a plain surface in a pool. International Journal of Heat and Mass Transfer. 48(12): 2407-2419.
Chen, R., M.C. Lu, V. Srinivasan, Z. Wang, H.H. Cho, and A. Majumdar. 2009. Nanowires for enhanced boiling heat transfer. Nano Letters. 9(2): 548-553. Chopkar, M., A.K. Das, I. Manna, and P.K. Das. 2008. Pool boiling heat transfer characteristics of ZrO2-water nanofluids from a flat surface in a pool. Heat and Mass Transfer/Waerme- und Stoffuebertragung. 44(8): 999-1004. Coursey, J.S. and J. Kim. 2008. Nanofluid boiling: The effect of surface wettability. International Journal of Heat and Fluid Flow. 29(6): 1577-1585. Das, S.K., N. Putra, and W. Roetzel. 2003. Pool boiling characteristics of nano-fluids. International Journal of Heat and Mass Transfer. 46(5): 851-862. Jo, B. 2009. Wide Range Parametric Study for the Pool Boiling of Nano-fluids with a Circular Plate Heater. Journal of Vision. 12(1): 37. Kim, H., J. Kim, and M.H. Kim. 2006. Effect of nanoparticles on CHF enhancement in pool boiling of nano-fluids. International Journal of Heat and Mass Transfer. 49(25-26): 5070-5074. Kim, H.D., J. Kim, and M.H. Kim. 2007. Experimental studies on CHF characteristics of nano-fluids at pool boiling. International Journal of Multiphase Flow. 33(7): 691-706. Kim, H.D. and M.H. Kim. 2007. Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids. Applied Physics Letters. 91(1): 014104. Kim, S.J., I.C. Bang, J. Buongiorno, and L.W. Hu. 2006. Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids. Applied Physics Letters. 89(15). Kim, S.J., I.C. Bang, J. Buongiorno, and L.W. Hu. 2007. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. International Journal of Heat and Mass Transfer. 50(19-20): 4105-4116. Milanova, D. and R. Kumar. 2005. Role of ions in pool boiling heat transfer of pure and silica nanofluids. Applied Physics Letters. 87(23): 1-3. Nukiyama, S. 1934. The maximum and minimum values of heat transmitted from metal to boiling water under atmospheric pressure. International Journal of Heat and Mass Transfer. 9: 1419. Prakash Narayan, G., K.B. Anoop, and S.K. Das. 2007. Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes. Journal of Applied Physics. 102(7). Prakash Narayan, G., K.B. Anoop, G. Sateesh, and S.K. Das. 2007. Effect of surface orientation on pool boiling heat transfer of nanoparticle suspensions. International Journal of Multiphase Flow. 34(2): 145-160. Rohsenow, W.M. 1952. A method of correlating heat transfer data for surface boiling of liquids. Journal of Heat Transfer-Transactions of the ASME. 74: 969-976. Vassallo, P., R. Kumar, and S. D'Amico. 2004. Pool boiling heat transfer experiments in silica-water nano-fluids. International Journal of Heat and Mass Transfer. 47(2): 407-411. Wang, X.Q. 2007. Heat transfer characteristics of nanofluids: a review. Revue Generale de Thermique. 46(1): 1. Wen, D. and Y. Ding. 2005. Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids. Journal of Nanoparticle Research. 7(2-3): 265-274. Wenzel, R.N. 1949. Surface Roughness and Contact Angle. Journal of Physical Chemistry, The. 53(9): 1466. Yang, S.R. and R.H. Kim. 1988. A mathematical model of the pool boiling nucleation site density in terms of the surface characteristics. International Journal of Heat and Mass Transfer. 31(6): 1127-1135. You, S.M., J.H. Kim, and K.H. Kim. 2003. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Applied Physics Letters. 83(16): 3374-3376. Zuber, N. 1959. On the stability of boiling heat transfer. ASME Transactions. 80: 711-720 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47306 | - |
| dc.description.abstract | 本研究使用純鎳線於濃度0.01%wt.、0.1%wt.以及1%wt.之TiO2奈米流體沸騰製作奈米塗佈線,沸騰之熱通量參數為0 kW/m2、500 kW/m2以及1000 kW/m2。並以池沸騰實驗來探討不同參數製造的奈米塗佈線對沸騰熱傳的影響。同時以接觸角量測、SEM圖片、EDS分析和再現性實驗來探討奈米塗佈層的特性。
SEM和EDS的結果顯示純鎳線在奈米流體中沸騰將形成TiO2奈米塗佈層,此塗佈層隨流體濃度和熱通量參數變高而變厚。而沸騰曲線的結果顯示此奈米塗佈層於加熱表面形成熱阻使對流熱傳係數下降。然而,接觸角量測顯示奈米塗佈層為親水性介質,因此奈米塗佈層具有較高的臨界熱通量,最高約增強87%。為了測試奈米塗佈線的耐久度,本研究比較使用前和使用9次後之奈米塗佈線,結果顯示使用過後之奈米塗佈線其對流熱傳係數和臨界熱通量皆下降。表面型態的改變為對流熱傳係數下降的主要原因,而接觸角和臨界熱通量的反比關係不再,親水性指標不適用於使用過後之奈米塗佈線,因此臨界熱通量下降的原因仍未知。 | zh_TW |
| dc.description.abstract | The pool boiling behavior of water was experimently studied over a TiO2 nanoparticle-coated heater. The nanoparticle-coated wires were produced by boiling processes which submerge a pure nickel wire into nanofluid. Making nanoparticle-coated wires included two parameters: concentration of the nanofluids and heat flux.The concentrations of the nanofluids were 0.01%wt., 0.1%wt., and 1%wt., and the heat flux were 0 kW/m2, 500 kW/m2 and 1000 kW/m2. Furthermore, the contact angle measurement, SEM and EDS analysis were conducted to discuss the features of nanoparticle-coated wires.
The SEM and EDS results showed that nanoparticles were deposited on the heating surface during boiling processes. Besides, the thickness of the nanoparticle-coated surface was enhanced as concentrations and heat flux increased. The boiling curves indicated that heat transfer coefficient of nanoparticle-coated wires decreased as a result of thermal resistance which was generated by nanoparticle-coated surface. However, the CHF was enhanced due to its hydrophilic surface which measured by contact angle experiments, and the maximum CHF enhancement rate was about 87%. It is believed that CHF enhancement is mainly caused by the nanoparticle coating on the heating surface. To test the reliability of nanoparticle-coated wire, boiling curve comparisons between nanoparticle-coated wire and used nanoparticle-coated wire were performed. The CHF and heat transfer coefficient decreased as using time increased. The modification of the heating surface was the main reason that heat transfer coefficient decreased. However, the relationship between contact angle and CHF disappear. Thus, the reason of CHF decrease is still unknown. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:54:21Z (GMT). No. of bitstreams: 1 ntu-99-R97631019-1.pdf: 3738546 bytes, checksum: 2baf66b4405fee4a75162060cbf59157 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 v 圖目錄 ix 表目錄 xii 符號彙編 xiii 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 5 1.3 本文架構 7 第二章 文獻回顧 8 第三章 材料與方法 20 3.1 實驗設備 20 3.1.1 測試容器 20 3.1.2 冷凝系統 21 3.1.3 輔助溫控系統 22 3.1.4 加熱模組 22 3.1.5 資料擷取系統 22 3.1.6 奈米粒子與線材 23 3.2 實驗方法 23 3.2.1 池沸騰實驗 24 3.2.2 製作奈米塗佈線 26 3.2.3 奈米塗佈線沸騰實驗 27 3.2.4 重複性實驗 27 3.3 池沸騰性能分析方法 28 3.3.1 臨界熱通量及對流熱傳係數比較 28 3.3.2 接觸角量測 28 3.3.3 奈米塗佈線SEM觀測 29 3.4 實驗數據計算 29 3.4.1 加熱線溫度推算 30 3.4.2 表面熱通量計算 31 3.4.3 誤差分析 32 第四章 結果與討論 36 4.1 純鎳線/純水之沸騰熱傳性能 36 4.1.1 純鎳線/純水之沸騰曲線及系統穩定性 36 4.1.2 對流熱傳係數比較 37 4.1.3 臨界熱通量比較 39 4.2 純鎳線/TiO2奈米流體之沸騰熱傳性能 40 4.2.1 純鎳線/0.01%wt. TiO2之沸騰熱傳性能 40 4.2.2 純鎳線/0.1%wt. TiO2之沸騰熱傳性能 42 4.2.3 純鎳線/1%wt. TiO2之沸騰熱傳性能 44 4.2.4 沸騰曲線比較 45 4.2.5 臨界熱通量比較 47 4.3 奈米塗佈線/純水之沸騰熱傳性能 48 4.3.1 奈米塗佈線之奈米塗佈層 48 4.3.2 0.01%wt. TiO2奈米塗佈線之沸騰曲線 54 4.3.3 0.1%wt. TiO2奈米塗佈線之沸騰曲線 57 4.3.4 1%wt. TiO2奈米塗佈線之沸騰曲線 60 4.3.5 固定熱通量下之沸騰曲線比較 63 4.3.6 臨界熱通量與接觸角比較 67 4.4 純鎳線/TiO2奈米流體和奈米塗佈線/純水之比較 70 4.4.1 純鎳線/0.01%wt. TiO2 和0.01%wt.奈米塗佈線/純水之沸騰曲線 70 4.4.2 純鎳線/0.1%wt. TiO2和0.1%wt.奈米塗佈線/純水之沸騰曲線 72 4.4.3 純鎳線/1%wt. TiO2和1%wt.奈米塗佈線/純水之沸騰曲線 73 4.4.4 臨界熱通量比較 75 4.5 奈米塗佈線之再現性 76 4.5.1 純鎳線之再現性分析 76 4.5.2 0.01%wt., 0 kW/m2奈米塗佈線之再現性分析 79 4.5.3 0.01%wt., 500 kW/m2之奈米塗佈線再現性分析 81 4.5.4 0.01%wt., 1000 kW/m2之奈米塗佈線再現性分析 85 4.5.5 0.1%wt., 0 kW/m2之奈米塗佈線再現性分析 87 4.5.6 0.1%wt., 500 kW/m2之奈米塗佈線再現性分析 89 4.5.7 0.1%wt., 1000 kW/m2之奈米塗佈線再現性分析 91 4.5.8 1%wt., 0 kW/m2之奈米塗佈線再現性分析 93 4.5.9 1%wt., 500 kW/m2之奈米塗佈線再現性分析 95 4.5.10 1%wt., 1000 kW/m2之奈米塗佈線再現性分析 97 4.5.11 臨界熱通量與接觸角比較 99 第五章 結論與建議 101 5.1 結論 101 5.1.1 純鎳線/純水之結論 101 5.1.2 純鎳線/奈米流體之結論 101 5.1.3 奈米塗佈線/純水之結論 102 5.1.4 純鎳線/奈米流體vs.奈米塗佈線/純水之結論 102 5.1.5 再現性實驗之結論 102 5.2 建議 103 參考文獻 104 | |
| dc.language.iso | zh-TW | |
| dc.subject | 奈米流體 | zh_TW |
| dc.subject | 奈米塗佈線 | zh_TW |
| dc.subject | 池沸騰 | zh_TW |
| dc.subject | nanoparticle-coated wire | en |
| dc.subject | Pool boiling | en |
| dc.subject | nanofluid | en |
| dc.title | 奈米流體之池沸騰熱傳 | zh_TW |
| dc.title | Boiling Enhancement by Using Nanofluid | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周賢福(Shyan-Fu Chou),李宗興(Tzong-Shing Lee) | |
| dc.subject.keyword | 池沸騰,奈米流體,奈米塗佈線, | zh_TW |
| dc.subject.keyword | Pool boiling,nanofluid,nanoparticle-coated wire, | en |
| dc.relation.page | 106 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
