Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47288
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林立德
dc.contributor.authorChia-Chun Chenen
dc.contributor.author陳家駿zh_TW
dc.date.accessioned2021-06-15T05:53:40Z-
dc.date.available2010-09-09
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-08-18
dc.identifier.citation1. BouSerhal C, Jacobs R, Quirynen M, van Steenberghe D. Imaging technique selection for the preoperative planning of oral implants: a review of the literature. Clin Impl Dent and Relate Res 2002;4: 3, 156-172
2. Marmulla R, Wo¨ rtche R, Mu¨ hling J, Hassfeld S. Geometric accuracy of the NewTom 9000 cone beam CT. Dentomaxillofacial Radiology 2005:34, 28–31.
3. Widmann G, Bale RJ. Accuracy in computer-aided implant surgery – a review. Int J Oral Maxillofac Implants 2006;21:305-313
4. Ruppin J, Popovic A, Strauss M, Spu¨ntrup E, Alexander Steiner A, Stoll C. Evaluation of the accuracy of three different computer-aided surgery systems in dental implantology: optical tracking vs. stereolithographic splint systems. Clin Oral Impl Res 2008; 19,709–716
5. Block MS, Chandler C. Computed tomography–guided Surgery: complications associated with scanning, processing, surgery, and prosthetics. J Oral Maxillofac Surg 2009;67(Suppl 3):13-22
6. Vercruyssen M, Jacobs R , van Asschen, van Steenberghe D. Review article: the use of CT scan based planning for oral rehabilitation by means of implants and its transfer to the surgical field: a critical review on accuracy. J Oral Rehab 2008 ; 35:454–474
7. White SC, Heslop EW, Hollender LG, Moiser KM, Ruprecht A, Shrout MK. Parameters of radiologic care: an official report of the American Academy of Oral and Maxillofacial Radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod .2001;91:498-511
8. Hatcher DC, Dial C, Mayorga C. Cone Beam CT for presurgical assessment of implant sites. CDA Journal 2003;31(11):825-833
9. Jacobs R, Adriansens A, Naert I, Quirynen M, Hermans R, van Steenberghe D. Predictability of reformatted computed tomography for pre-operative endosseous implants. Dentomaxillofac Radiol 1999;28:37–41.
10. Sforza NM, Franchini F, Lamma A, Botticelli S, Ghigi G Accuracy of computerized tomography for the evaluation of mandibular sites prior to implant placement. Int J Periodontics Restorative Dent 2007;27:589–595
11. Cohnen M, Kemper J, Mo¨bes O, Pawelzik J, Mo¨dder U. Radiation dose in dental radiology. Euro Radiol 2002;12: 634–637.
12. Ludlow JD, Davies-Ludlow LE, Brooks SL. Dosimetry of two extraoral direct digital imaging devices: NewTom cone beam CT and Orthophos Plus DS panoramic unit. Dentomaxillofac Radiol 2003;32: 229–234.
13. Jabero M, Sarment DP. Advanced surgical guidance technology : a review. Impl Dent 2006;15:135-142
14. Modica F, Fava C, Benech A, Preti G. Radiologic-prosthetic planning of the surgical phase of the treatment of edentulism by osseointegrated implants: an in vitro study. J Prosthet Dent 1991;65:541–546.
15. Takeshita F, Tokoshima T, Suetsugu T. A stent for presurgical evaluation of implant placement. J Prosthet Dent 1997;77:36-8.
16. Almog DM, Torrado E, Meitner SW. Fabrication of imaging and surgical guides for dental implants. J Prosthet Dent 2001;85:504-8.
17. Ganz SD. Presurgical planning with CT-derived fabrication of surgical guides. J Oral Maxillofac Surg 2005;63(Suppl 2):59-71
18. Almog DM, Romano PR. CT-based dental imaging for implant planning and surgical guidance a case report. NYSDJ. January 2007: 51-53.
19. Sykaras N, Woody RD. Conversion of an implant radiographic template into a surgical template. J Prosthodont 2001;10:108-112
20. Kopp KC, Koslow AH, Abdo OS. Predictable implant placement with a diagnostic/surgical template and advanced radiographic imaging. J Prosthet Dent 2003;89:611-5.
21. Besimo CE, Lambrecht JT, Guindy JS. Accuracy of implant treatment planning utilizing template-guided reformatted computed tomography. Dentomaxillofac Radiol. 2000;29: 46–51.
22. Naitoh M, Ariji E, Okumura S, Ohsaki C, Kurita K, Ishigami T. Can implants be correctly angulated based on surgical templates used for osseointegrated dental implants? Clin Oral Impl Res 2000;11: 409–414.
23. Sarment DP, Sukovic P, Clinthorne N. Accuracy of implant placement with a stereolithographic surgical guide. Int J Oral Maxillofac Implants 2003;18:571-577
24. Hoffmann J, Westendorff C, Gomez-Roman G, Reinert S. Accuracy of navigation-guided socket drilling before implant installation compared to the conventional free-hand method in a synthetic edentulous lower jaw model. Clin Oral Impl Res2005; 16: 609–614
25. Nickenig HJ, Wichmann M, Hamel J, Schlegel KA, Eitner S. Evaluation of the difference in accuracy between implant placement by virtual planning data and surgical guide templates versus the conventional free-hand method e a combined in vivo e in vitro technique using cone-beam CT (Part II). J Cranio-Maxillofac Surg 2009, 1-6
26. Azari A, Nikzad S. Computer-assisted implantology: historical background and potential outcomes – a review. Int J Med Robotics Comput Assist Surg 2008; 4: 95–104.
27. Neugebauer J, Stachulla G, Ritter L, Dreiseidler T, Mischkowski R, Keeve E, Zoller J. Computer-aided manufacturing techonologies for guided implant placement. Expert Rev. Med. Devices 2010;7:1, 113-129
28. Randelzhofer P, Jose Moctezuma de la Barrera, Spielberg M, Kurtz C, Strub JR. Three-dimensional navigation in oral implantology: a preliminary investigation. Int J Periodontics Restorative Dent 2001;21:617–626.
29. Brief J, Hassfeld S, Sonnenfeld U. Computer-guided insertion of dental implants- a clinical evaluation In: Lemke HU, Vannier MW, Inamura K, Farman AG(eds). Computer-assisted Radiology and surgery, International Congress Series, New York: Elsevier Science, 2001;1230:739-747
30. Hassfeld S, Muhling J. Computer assisted oral and maxillofacial surgery—a review and an assessment of technology. Int J Oral Maxiilofac Surg 2001;30:2-13
31. Ewer R, Schicho K, Undt G, Wanschitz F, Truppe M, Seemann R, Wagner A. Basic research and 12 years of clinical experience in computer-assisted navigation technology: a review. J Oral Maxillofac Surg 2005;34:1-8.
32. Casap N, Wexler A, Lustmann J. Image-guided navigation system for placing dental implants. Compendium 2004;25:10,783-789
33. Casap N, Tarazi E, Wexler A, Sonnenfeld U, Lustmann J. Intraoperative computerized navigation for flapless implant surgery and immediate loading in the edentulous mandible. Int J Oral Maxillofac Implants 2005;20:92–98

34. Casap N, Wexler A, Eliashar R. Computerized navigation for surgery of the lower jaw: comparison of 2 navigation systems. J Oral Maxillofac Surg 2008;66,1467-1475,
35. Ewer R, Schicho K, Truppe M, Seemann R, Reichwein A, Figl M, Wagner A. Computer-aided navigation in dental implantology: 7 years of clinical experience. J Oral Maxillofac Surg 2004;62,329-334
36. Jung R, Schneider D, Ganeles J, Wismeijer D, Zwahlen M, Hammerle C, Tahmaseb A. Computer technology applications in surgical implant dentistry: a systemic review. Int J Oral Maxillofac Implants 2009;24(suppl),92-109
37. Casap N, Wexler A, Persky N, Schneider A, Lustmann J. Navigation surgery for dental implants: assessment of accuracy of the Image Guided Implantology system. J Oral Maxillofac Surg 2004;62(Suppl 2):116-119
38. Widmann G, Widmann R, Widmann E, Jaschke W, Bale R. In vitro accuracy of a novel registration and targeting technique for imageguided template production. Clin Oral Impl Res 2005;16, 502–508
39. Wittwer G, Adeyemo WL, Schicho K, Birkfellner W, Enislidis G. Prospective randomized clinical comparision of 2 dental implant navigation systems. Int J Oral Maxillofac Implants 2007;22:785-790
40. Wagner A, Wanschitz F, Birkfellner W, Zauza K, Watzinger F, Schicho K, Kainberger F, Czerny C, Bergmann H, Ewers R. Computer-aided placement of endosseous oral implants in patients after ablative tumor surgery: assessment of accuracy. Clin Oral Implants Res 2003; 14,340–348.
41. Widmann G, Widmann R, Widmann E, Jaschke W, Bale R. Use of a surgical navigation system for CT-guided template production. Int J Oral Maxillofac Implant 2007;22,72-78.
42. Widmann G, Widmann R, Stoffner R, Ing D, Widmann E, Rieger T, Remensberger S, Grubwieser G, Puelacher W, Bale R. Multipurpose navigation system-based concept for surgical template production. J Oral Maxillofac Surg 2009;67,1113-1120
43. Sarment DP, Al-Shammari K, Kazor CE, Stereolithographic surgical templates for placement of dental implants in complex cases. Int J Perio Res Dent 2003;23,287–295.
44. Sohmura T, Kusumoto N, Otani T, Yamada S, Wakabayashi K, Yatani H. CAD/CAM fabrication and clinical application of surgical template and bone model in oral implant sugery. Clin Oral Impl Res 2009; 20, 87–93.
45. Fortin T, Champleboux G, Bianchi S, Buatois H, Coudert JL. Precision of transfer of preoperative planning for oral implants based on cone-beam CT-scan images through a robotic drilling machine: an in vitro study. Clin Oral Implants Res 2002;13,651–656.
46. Fortin T, Isidori M, Blanchet E, Perriat M, Bouchet H, Coudert JL. An image-guided system–drilled surgical template and trephine guide pin to make treatment of completely edentulous patients easier: a clinical report on immediate loading. Clin Implant Dent Related Res 2004;6(2),111-119.
47. Van Steenberghe D, Naert I, Andersson M. A custom template and definitive prosthesis allowing immediate implant loading in the maxilla: a clinical report. Int J Oral Maxillofac Implants 2002;17:663
48. Di Giacomo G, Cury PR, de Araujo NS, Sendyk WR, Sendyk CL. Clinical application of stereolithographic surgical guides for implant placement : preliminary results. J Periodontol 2005;76,503-507.
49. Ersoy AE, Turkyilmaz I, Ozan O, McGlumphy EA. Reliability of implant placement with stereolithographic surgical guides generated from computer tomography: clinical data from 94 implants. J Periodontol 2008;79,1339-1345
50. Al-Harbi SA, Sun A. Implant placement accuracy when using stereolithographic template as a surgical guide: preliminary results. Implant Dent 2009;18:46–56
51. Valente F, Schiroli G, Sbrenna A. Accuracy of computer-aided oral implant surgery: a clinical and radiographic study. Int J Oral Maxillofac Implants 2009;24,234-242
52. Ozan O, Turkyilmaz I, Ersoy AE, McGlumphy EA, Rosenstiel SF. Clinical accuracy of 3 different types of computed tomography-derived stereolithographic surgical guides in implant placement. J Oral Maxillofac Surg 2009;67,394-401
53. Klein M, Abrams M. Computer-guided surgery utilizing a computer-milled surgical template. Pract Proced Aesthet Dent 2001; 13,165–169.
54. Cheng WL, Lin LD. The precision of the surgical guide used in dental implantation with CAD-CAM tchnique. 2007
55. Dreiseidler T, Neugebauer J, Ritter L, Lingohr T, Rothamel D, Mischkowski RA, Zo¨ller JE. Accuracy of a newly developed integrated system for dental implant planning. Clin Oral Impl Res 2009;20, 1191–1199
56. Eggers G, Patellis E, Muhling J. Accuracy of template-based dental implant placement. Int J Oral Maxiollofac Implants 2009;24,447-454
57. Kalt G, Gehrke P. Transfer precision of three-dimensional implant planning with CT assisted offline navigation. Int J Comput Dent 2008; 11:3-4,213-25.
58. Nickenig HJ, Eitner S. An alternative method to match planned and achieved positions of implants, after virtual planning using cone-beam CT data and surgical guide templates : a method reducing patient radiation exposure (part I). J Cranio-Maxillofac Surg 2009, 1-5
59. Shiu RH, Lin LD. Accuracy of surgical templates fabricated with a CT image-guided drilling technique–a clinical study of 35 dental implants. 2009
60. Schneider D, Marquardt P, Zwahlen M, Jung R. A systematic review on the accuracy and the clinical outcome of computer guided template-based implant dentistry. Clin Oral Impl Res 2009;20 (Suppl. 4), 73–86.
61. Schermeier O, Hildebrand D, Lueth T, Hein A, Schimansky D, Bier J. Accuracy of an image guided system for oral implantology. In: Lemke, H.U., ed. CARS 2001 Proceedings of the 15th International Congress and Exhibition, International Congress Series 1281. 1st edition. the Netherlands: Elsevier. 2001; 748–752
62. Mischkowski R, Zinser M, Neugebauer J, Kubler A, Zoller J. Comparison of static and dynamic computer-assisted guidance methods in implantology. Inter J Comput Dent 2006;9, 23–25
63. Stumpel LJ. Deformation of stereolithographically produced surgical guides: an observational case series report. Clin Impl Dent and Relate Res 2010
64. Stumpel L: Guided surgery, errors and planning, Academy of Osseointegration annual meeting, San Diego, February 2009
65. Scher E. A gross error occurred when treatment planning a guided surgery case. Impl Dent 2009;18:4, 297-302
66. Solar P, Bednar A, Posch M, Gahleitner A, Jacobs K, Watzek G. In-vitro-Genauigkeit von Dental-CT(SIM/Plant) zur Vermes-sung des prospektiven Implantatlagers in der Mandibula. Stomatologie 2000,211-217
67. Kobayashi K, Shimoda S, Nakagawa Y, et al: Accuracy in measurement of distance using limited cone-beam computed tomography. Int J Oral Maxillofac Implants 2004;19,228,
68. Veyre-Goulet S, Fortin T, Thierry A: Accuracy of linear measurement provided by cone beam computed tomography to assess bone quantity in the posterior maxilla: a human cadaver study. Clin Implant Dent Relat Res 2008;10,226
69. Birkfellner W, Solar P, Gahleitner A, Huber K, Kainberger F, Kettenbach J, Homolka P, Diemling M, Watzek G, Bergmann H. In-vitro assessment of a registration protocol for image guided implant dentistry. Clin Oral Impl Res 2001; 12, 69–78
70. Schneider M, Eckelt U, Lauer G, Hietschold V. Frameless intra-operative navigation and referencing in maxillofacial surgery-advances and limitations. In: Lemke HU, Vannier MW, Inamura K, Farman AG(eds). Computer-assisted Radiology and surgery, vol 1281, International Congress Series, New York: Elsevier Science, 2001;1230:726-732
71. Horwitz J, Zuabi O, Machtei EE. Accuracy of a computerized tomography-guided template-assisted implant placement system: an in vitro study. Clin Oral Impl Res 2009; 20,1156–1162
72. Chang P, Parker T, Patrick C, Jr, Miller MJ, The Accuracy of stereolithography in planning craniofacial bone replacement. J Craniofac Surg. 2003;14:2,164-70.
73. Steele JG, Wassell RW, Walls AWG. A comparative study of the fit and retention of interocclusal splints constructed from heat-cured and autopolymerized polymethylmethacrylate. J Prosthet Dent 1992;67,328-30
74. Choi M, Romberg E, Driscoll CF. Effects of varied dimensions of surgical guides on implant angulations. J Prosthet Dent 2004;92,463-9.
75. Park C, Raigrodski AJ, Rosen J, Spiekerman C, London RM. Accuracy of implant placement using precision surgical guides with varying occlusogingival heights: an in vitro study. J Prosthet Dent 2009;101,372-381
76. Lal K, White GS, Morea DN, Wright RF. Use of stereolithographic templates for surgical and prosthodontic implant planning and placement. Part II. a clinical report. J Prosthodont 2006;15:2, 117-122.
77. Pronych GJ, Sutow EJ, Sykora O. Dimensional stability and dehydration of a thermoplastic polycarbonate-based and two PMMA-based denture resins. J Oral Rehab 2003; 30, 1157–1161
78. Jagger RG, Milward PJ, Jagger DC, Vowles RW. Accuracy of adaptation of thermoformed poly(methyl methacrylate). J Oral Rehab 2003;30, 364–368
79. Holst S, Blatz MB, Wichmann M, Eitner S. Clinical application of surgical fixation screws in implant prosthodontics— Part I: positioning of radiographic and surgical templates. J Prosthet Dent 2004;92,395-8
80. Holst S, Blatz MB, Eitner S. Precision for computer-guided implant placement: using 3D planning software and fixed intraoral reference points. J Oral Maxillofac Surg 2007;65,393-399
81. Simon H. Use of transitional implants to support a surgical guide: enhancing the accuracy of implant placement. J Prosthet Dent 2002;87,229-32
82. Liu XQ, Luo W, Lin SR, Liu MZ. Placement repeatability of individual oral stent used in radiotherapy of nasopharyngeal carcinoma. Chin J Cancer 2009;28:10,1-7
83. Payer M, Kirmeier R, Jakse N, Pertl C, Wegscheider W, Lorenzoni M. Surgical factors influencing mesiodistal implant angulation. Clin Oral Impl Res 2008;19, 265–270
84. Fortin T, Bosson JL, Coudert JL. Reliability of preoperative planning of an image-guided system of oral implant placement based on 3-dimensional images: an in vivo study. Int J Oral Maxillofac Implants 2003;18,886
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47288-
dc.description.abstract緒論: 人工植牙運用於臨床牙科治療已有四十年的歷史,現今對於成功植牙治療的定義,已由過去注重骨整合成功,而進展至要求植體種植於適當的位置。隨著電腦輔助導引系統的成熟發展,目前利用各類電腦導引系統,可以將術前植體規劃位置轉移至實際植體種植位置,減少傷害到重要器官的機率,達成植體及植體補綴物生物力學、美學上的良好結果。 研究動機: 目前的文獻報告皆證實電腦輔助導引系統可以提供臨床所需的導引精準度,在規劃植體與實際植體間,植體距離及角度誤差分別約1 ~ 1.5mm及6 ~ 7°。但醫師在使用特定系統時,最關心的不是誤差平均值,而是該系統可能產生的最大誤差,最大誤差往往是造成植體治療失敗的主因。規劃植體與實際植體間的誤差為植牙治療流程中所有步驟偏差的累積,但現今文獻多為探討整體誤差,針對個別步驟的研究較少,其中探討手術模板保存條件及時間的文獻報告仍相當缺乏。 實驗目的: 本實驗目的在探討不同保存條件和存放時間,對於丙烯酸合成樹脂手術模板導引精準度的影響。 實驗材料與方法:
本實驗備製4個相同的上顎石膏模型,每個模型皆於右上第二小臼齒與第二大臼齒缺牙區埋入兩植體複製體,利用此4個標準模型分別製作4個丙烯酸合成樹脂手術模板(共16個),模板上以植體補綴物暫時性支台代替套筒,並於製作完後依不同相對濕度(70%或100%)保存條件分成兩組(每組8個),每個石膏模型或模板上都有三顆直徑5mm陶瓷圓珠,作為將來誤差計算時空間定位的基準。在每個模板製作完、1天、3天、7天及1個月後5個時間點進行電腦斷層拍攝,全部16個模板共完成80次拍攝,每次拍攝前必須先將人工植體固定於模板上暫時性支台,並配戴至石膏模型相對應位置。之後運用ImplantMax4.0軟體系統進行誤差計算,以每個模板之第一次電腦斷層影像作為控制組,依兩組參考點定位(石膏模型或模板),分別記錄每次影像間植體的距離及角度誤差,最後以ANOVA進行統計分析(P = 0.05)。 實驗結果: 以手術模板參考點定位,在70%相對溼度下,保存1天、3天、7天和1個月後,模板的誤差平均值在植體頸部分別為0.078、0.092、0.082、0.094mm,尖端分別為0.127、0.152、0.137、0.184mm,角度分別為0.87、1.01、0.99、1.07°;在100%相對溼度下,誤差平均值在植體頸部分別為0.085、0.079、0.081、0.097mm,尖端分別為0.126、0.144、0.137、0.180mm,角度分別為0.77、0.91、1.04、0.99°,1個月的保存期間於不同濕度條件下,各類誤差之間皆沒有統計上的差異(P > 0.05)。以石膏模型參考點定位,在70%相對溼度下,保存1天、3天、7天和1個月後,模板的誤差平均值在植體頸部分別為0.073、0.093、0.083、0.108mm,尖端分別為0.138、0.162、0.149、0.184mm,角度分別為0.95、1.01、1.01、1.09°;在100%相對溼度下,誤差平均值在植體頸部分別為0.090、0.091、0.086、0.079mm,尖端分別為0.142、0.169、0.163、0.150mm,角度分別為0.78、0.96、1.06、0.84°,1個月的保存期間於不同濕度條件下,各類誤差之間皆沒有統計上的差異(P > 0.05)。不同參考點定位之間,各類誤差皆沒有統計上的差異(P > 0.05)。 結論: 在本研究的實驗設計下,丙烯酸合成樹脂手術模板於不同濕度條件下,一個月的保存期間內仍能維持穩定的導引精準度。
zh_TW
dc.description.abstractObjectives: An acrylic implant surgical guide stent may shrink during storage and affect the accuracy of implant surgery. The aim of this study was to investigate the accuracy of surgical stent after different durations in different storage conditions. Material and methods: Two implant replicas were placed at second premolar and second molar positions in four duplicated maxillary stone models with missing right second premolar and molars. Corresponding temporary cylinders were attached to the implant replicas and embedded into an acrylic stent fabricated on the model. Four stents were fabricated on each model and sixteen stents were divided into two storage conditions (70%, 100% humidity). Three ceramic balls were attached to each model and stent as markers for CT image-fusing-analysis. CT-images were taken immediate after stent fabrication and after 4 storage durations (1, 3, 7 days, 1month). The missing right posterior region was removed from the model and two corresponding implants were attached to the stent placed on the model before CT imaging. An image-fusing analyzing technique was used to analyze the changes of implant position and angle relative to the two sets of ceramic markers(model’s and stent’s respectively) after different storage durations. Two-way repeated measures ANOVA was used for statistics analysis. Results:
Using the ceramic balls of stents as markers for image-fusing-analysis, the changes of implant position and angle were measured. After storage durations of 1, 3, 7 days, and 1month in 100% humidity, the mean displacement of implant head was 0.085, 0.079, 0.081,and 0.097mm, respectively; the mean displacement of implant apex was 0.126, 0.144, 0.137, and 0.180mm, respectively; the angle deviation was 0.77, 0.91, 1.04, and 0.99 °, respectively. After storage durations of 1, 3, 7 days, and 1month in room humidity, the mean displacement of implant head was 0.078, 0.092, 0.082, and 0.094mm, respectively; the mean displacement of implant apex was 0.127, 0.152,0.137, and 0.184mm, respectively; the angle deviation was 0.87, 1.01, 0.99, and 1.07°, respectively. No statistically significant difference was found after different durations in two storage conditions. Using the ceramic balls of models as markers for image-fusing-analysis, the changes of implant position and angle were measured. After storage durations of 1, 3, 7 days, and 1month in 100% humidity, the mean displacement of implant head was 0.090, 0.091, 0.086,and 0.079mm, respectively; the mean displacement of implant apex was 0.142, 0.169, 0.163, and 0.150mm, respectively; the angle deviation was 0.78, 0.96, 1.06, and 0.84 °, respectively. After storage durations of 1, 3, 7 days, and 1month in room humidity, the mean displacement of implant head was 0.073, 0.093, 0.083, and 0.108mm, respectively; the mean displacement of implant apex was 0.138, 0.162, 0.149, and 0.184mm, respectively; the angle deviation was 0.95, 1.01, 1.01, and 1.09°, respectively. No statistically significant difference was found after different durations in two storage conditions. Neither was between two different sets of ceramic markers attached to models and stents, respectively. Conclusions: The data suggest the accuracy of acrylic surgical stents were maintained within 1 month in 70% and 100% humidity conditions.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:53:40Z (GMT). No. of bitstreams: 1
ntu-99-R96422015-1.pdf: 4993983 bytes, checksum: fb2d31fb6a6bcd01e96d628804c3ec1a (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 Ⅰ
誌謝 Ⅱ
中文摘要 Ⅲ
英文摘要 Ⅴ
第一章 緒論 1
第一節 研究背景 1
第二節 文獻回顧 3
一 應用錐體射線電腦斷層影像於植牙治療 3
二 手術導引模板於植牙手術之應用 4
三 電腦斷層影像輔助植牙手術之現況 7
四 本研究使用之電腦輔助導引軟體-ImplantMax4.0 14
第三節 研究動機 15
第四節 研究目的 17
第二章 實驗材料與方法 18
第一節 實驗軟體系統及儀器 18
一 使用i-CAT cone-beam CT進行電腦斷層攝影 18
二 規劃植體位置及分析之軟體-ImplantMax4.0 18
第二節 實驗步驟 19
一 實驗模型備製 19
二 手術模板製作 20
三 電腦斷層攝影 20
四 ImplantMax4.0之空間定位系統誤差 21
五 ImplantMax4.0分析植體位置誤差 22
六 資料統計分析 23
第三章 實驗結果 24
第一節 ImplantMax4.0定位及計算之系統誤差 24
一 重複選取陶瓷圓珠之基礎誤差 24
二 重複規劃植體步驟之基礎誤差 24
第二節 保存時間對於模板導引精準度之影響 24
第三節 不同保存條件下隨時間產生之導引誤差 26
第四節 保存條件及時間對於模板配戴之影響 27
第四章 討論 29
第一節 電腦規劃階段 29
一 電腦斷層影像資料的匯集及軟體重組 29
二 影像軟體系統之定位精度 30
第二節 手術前階段 32
一 手術模板之製作 32
二 手術模板及套筒設計因素之影響 33
三 保存條件及保存時間 34
第三節 手術及誤差驗證階段 35
一 手術模板穩定度與固持性 35
二 手術模板重複配戴時之空間定位 36
三 臨床手術鑽孔因素 37
四 誤差驗證之理論及方式 38
第四節 總結 39
第五章 結論 40
第六章 文獻回顧 41

圖目錄
圖1 利用量角器調整手術模板之文獻報告 51
圖2 利用析量器調整手術模板之文獻報告 51
圖3 傳統手術模板驗證精準度之文獻報告 52
圖4 利用磁性固定的傳統手術模板之文獻報告 52
圖5 STL模板與傳統模板之精準度比較 53
圖6 電腦輔助鑽孔手術模板與傳統模板之精準度比較 53
圖7 電腦輔助導引系統之分類 54
圖8 IGI電腦導航系統之裝置 55
圖9 IGI電腦導航系統之特殊定位裝置 55
圖10 電腦導航系統顯示於螢幕中之同步導引 56
圖11 快速原型技術製作之實體模型 5
圖12 快速原型技術之原理 57
圖13 雷射光合高分子成型手術模板 57
圖14 不同套筒模式之手術模板 58
圖15 電腦輔助鑽孔系統之特殊鑽頭及鑽床裝置 58
圖16 Med3D電腦輔助鑽孔系統 59
圖17 回顧性文獻中電腦輔助導引系統之誤差 60
圖18 ImplantMax4.0之贗復設計視窗模式 61
圖19 牙齒、骨頭、黏膜支持型手術模板之精準度比較 61
圖20 i-CAT® cone-beam CT設備 62
圖21 本實驗中記錄之誤差定義 62
圖22 實驗流程及分組 63
圖23 實驗模型及手術模板備製 64
圖24 ImplantMax軟體規劃植體及計算誤差 65
圖25 保存時間對於手術模板導引精準度的影響 67
圖26 不同濕度保存條件下隨時間產生的導引誤差 68
圖27 不同參考點分析對於手術模板配戴的影響 69
圖28 下顎與照射方向角度對線性測量精準度之影響 70
圖29 電腦斷層拍射時影響定位精準度之因素 70
圖30 STL模型與原始模型之差異 70
圖31 不同濕度環境下對樹脂變形程度之影響 71
圖32 利用原影像模板轉移植體位置之誤差驗證方式 71

表目錄
表1 植牙治療流程中可能產生誤差之步驟(一) 72
表2 植牙治療流程中可能產生誤差之步驟(二) 72
表3 各種影像之診斷價值 73
表4 傳統影像之臨床應用性 73
表5 傳統手術模板之精準度報告 74
表6 電腦輔助導引技術和傳統模板之精準度比較報告 74
表7 目前植牙手術之電腦輔助導引系統 75
表8 電腦輔助導航裝置之精準度文獻報告-活體外研究 76
表9 電腦輔助導航裝置之精準度文獻報告-臨床試驗 76
表10 STL手術模板之精準度文獻報告-活體外研究 79
表11 STL手術模板之精準度文獻報告-臨床試驗 77
表12 電腦輔助鑽孔手術模板之精準度文獻報告-活體外研究 78
表13 電腦輔助鑽孔手術模板之精準度文獻報告-臨床試驗 79
表14 各類電腦輔助導引系統之最大誤差報告 80
表15 不同支持型手術模板之精準度比較(一) 80
表16 不同支持型手術模板之精準度比較(二) 80
表17 不穩定手術模板產生之異常誤差值 81
表18 重複選取參考點(registration)之系統誤差 81
表19 重複規劃植體步驟(re-plan)的系統誤差 82
表20 保存時間對於手術模板導引精準度之影響 82
表21 不同濕度保存下隨時間產生之導引誤差-模板參考點 83
表22 不同參考點下保存條件及時間對模板導引之影響 83
表23 不同濕度保存下隨時間產生之導引誤差-模型參考點 84
表24 不同參考點下手術模板各類誤差隨時間之影響 84
表25 不同模板之設計於導引精準度之影響 85
表26 多組不同內徑套筒導引於精準度之影響 85
表27 套筒重複使用下之導引誤差 86
表28 回顧性文獻-電腦輔助導引系統之誤差 86
表29 各步驟可能產生之誤差 87
dc.language.isozh-TW
dc.subject人工植牙zh_TW
dc.subject精準度zh_TW
dc.subject手術模板zh_TW
dc.subjectImplanten
dc.subjectaccuracyen
dc.subjectsurgical stenten
dc.title不同保存時間及條件對於植牙手術模板導引精準度之影響zh_TW
dc.titleAccuracy of Implant Surgical Stent with Different Storage Durations and Conditionsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王兆麟,洪志遠
dc.subject.keyword人工植牙,手術模板,精準度,zh_TW
dc.subject.keywordImplant,surgical stent,accuracy,en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2010-08-18
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
4.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved