Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4727
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁肇隆
dc.contributor.authorWei-Cheng Chenen
dc.contributor.author陳韋成zh_TW
dc.date.accessioned2021-05-14T17:45:59Z-
dc.date.available2015-07-20
dc.date.available2021-05-14T17:45:59Z-
dc.date.copyright2015-07-20
dc.date.issued2015
dc.date.submitted2015-07-01
dc.identifier.citation[1] 勞委會101年報職災千人率, http://www.cla.gov.tw/site/business/41733649/4226b8a3/51a7f659/files/%C2%BE%A8a%A4d%A4H%B2v101m51~58.xls.
[2] 勞動安全視訊監控系統設置、勞動檢查即時監督管理系統說明, http://www.doli.taipei.gov.tw/ct.asp?xItem=1732660&ctNode=12871&mp=116021.
[3] M.-Y. Ku, C.-C. Chiu, H.-T. Chen, and S.-H. Hong, 'Visual motorcycle detection and tracking algorithms,' WSEAS Transaction on electronics, pp. 121-131, 2008.
[4] J. F. Canny, 'Finding edges and lines in images,' Massachusetts Inst. of Tech. Report, vol. 1, 1983.
[5] C.-Y. Wen, S.-H. Chiu, J.-J. Liaw, and C.-P. Lu, 'The safety helmet detection for ATM's surveillance system via the modified Hough transform,' in Security Technology, 2003. Proceedings. IEEE 37th Annual 2003 International Carnahan Conference on, 2003, pp. 364-369.
[6] J. Chiverton, 'Helmet presence classification with motorcycle detection and tracking,' Intelligent Transport Systems, IET, vol. 6, pp. 259-269, 2012.
[7] N. Dalal and B. Triggs, 'Histograms of oriented gradients for human detection,' in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, 2005, pp. 886-893.
[8] C.-C. Chang and C.-J. Lin, 'LIBSVM: a library for support vector machines,' ACM Transactions on Intelligent Systems and Technology (TIST), vol. 2, p. 27, 2011.
[9] R. Silva, K. Aires, T. Santos, K. Abdala, R. Veras, and A. Soares, 'Automatic detection of motorcyclists without helmet,' in Computing Conference (CLEI), 2013 XXXIX Latin American, 2013, pp. 1-7.
[10] Z. Zivkovic, 'Improved adaptive Gaussian mixture model for background subtraction,' in Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, 2004, pp. 28-31.
[11] S. Du, M. Shehata, and W. Badawy, 'Hard hat detection in video sequences based on face features, motion and color information,' in Computer Research and Development (ICCRD), 2011 3rd International Conference on, 2011, pp. 25-29.
[12] R. Waranusast, N. Bundon, V. Timtong, C. Tangnoi, and P. Pattanathaburt, 'Machine vision techniques for motorcycle safety helmet detection,' in IVCNZ, 2013, pp. 35-40.
[13] T. Cover and P. Hart, 'Nearest neighbor pattern classification,' Information Theory, IEEE Transactions on, vol. 13, pp. 21-27, 1967.
[14] M.-W. Park and I. Brilakis, 'Construction worker detection in video frames for initializing vision trackers,' Automation in Construction, vol. 28, pp. 15-25, 2012.
[15] S. J. McKenna, S. Jabri, Z. Duric, A. Rosenfeld, and H. Wechsler, 'Tracking groups of people,' Computer Vision and Image Understanding, vol. 80, pp. 42-56, 2000.
[16] R. M. Haralock and L. G. Shapiro, Computer and robot vision: Addison-Wesley Longman Publishing Co., Inc., 1991.
[17] 楊佳穎, '以膚色資訊加速之 AdaBoost 即時人臉偵測系統,' 臺灣大學工程科學及海洋工程學研究所學位論文, pp. 1-64, 2011.
[18] A. R. Smith, 'Color gamut transform pairs,' in ACM SIGGRAPH Computer Graphics, 1978, pp. 12-19.
[19] T. Ojala, M. Pietikäinen, and D. Harwood, 'A comparative study of texture measures with classification based on featured distributions,' Pattern recognition, vol. 29, pp. 51-59, 1996.
[20] T. Ojala, M. Pietikainen, and T. Maenpaa, 'Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 24, pp. 971-987, 2002.
[21] C. Cortes and V. Vapnik, 'Support-vector networks,' Machine learning, vol. 20, pp. 273-297, 1995.
[22] 支持向量機, http://zh.wikipedia.org/wiki/%E6%94%AF%E6%8C%81%E5%90%91%E9%87%8F%E6%9C%BA.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4727-
dc.description.abstract近年來工地事故頻傳,營造業之重大職業災害發生比率,相較於其他行業更為嚴重。其中,工地人員裝備安全配戴不齊為造成嚴重傷害的主要原因。為了避免悲劇一再發生,藉由人體偵測及物件辨識技術,判定勞工進入工地時是否按規定著裝,以達到更全面性的安全檢查。
本論文主要分為三大部分:影像前處理、特徵擷取及辨識。首先,以網路攝影機拍攝影像後,透過背景相減法擷取移動的前景影像,藉由前景高度動態定位出頭部及軀幹位置,接著再各別抽取色調直方圖、飽和直方圖以及區域二元圖樣(Local Binary Pattern, LBP)作為特徵,再交由支持向量機(Support Vector Machine, SVM)進行分類。實驗結果顯示,本系統可以有效的辨識工地安全帽及工地背心,其準確率分別為97%和93%。
zh_TW
dc.description.abstractNumerous construction site accidents have happened around the world in recently years. According to the Ministry of Labor, the occurrence rate of severe occupational injury in construction industry is much higher than others. This high risk is primarily caused by the deficiency of the personal protective equipment (PPE). In this thesis, we apply to the technique of body detection and object recognition on PPE checking system to examine whether construction workers are equipped as prescribed or not. As the result, the rate of construction hazard could be reduced.
There are three parts in our system which including image preprocessing, feature extraction and recognition. First, videos of workers are taken by an IP camera. Then, the moving foreground images would be extracted by background subtraction, and the positions of head and body are located by the height of the foreground image. Lastly, the Support vector machine (SVM) is utilized to perform classification on the features which are hue histogram, saturation histogram and local binary pattern (LBP). The experiment results show the system could effectively recognize the safety hats and safety vests with the accuracies of 97% and 93%, respectively.
en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:45:59Z (GMT). No. of bitstreams: 1
ntu-104-R02525064-1.pdf: 10842830 bytes, checksum: 8a4467579f0185986e83a91a85373ab4 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
ABSTRACT iv
論文目錄 v
圖目錄 vii
表目錄 x
第一章、緒論 1
1.1 研究動機與目的 1
1.2 相關研究 2
1.3 論文架構 5
1.4 系統架構及運作流程 5
第二章、影像前處理 7
2.1 背景模型與前景分割 7
2.2 影像型態學 10
2.3 連通體分析 13
2.4 身體部位分析 14
2.4.1 水平投影 14
2.4.2 膚色濾除 15
2.4.3 比例分析 17
第三章、特徵擷取及SVM 20
3.1 HSV基本色彩特徵 21
3.2 紋理特徵 22
3.3 SVM 24
3.3.1 線性SVM 25
第四章、實驗結果與討論 28
4.1 實驗設備環境 28
4.2 系統實驗影片 29
4.3 SVM訓練 31
4.4 系統實作與結果 34
第五章、結論與未來展望 40
參考文獻 42
附錄一 45
附錄二 49
附錄三 53
附錄四 57
dc.language.isozh-TW
dc.subject人體比例分析zh_TW
dc.subject服裝辨識zh_TW
dc.subject安全帽偵測zh_TW
dc.subject背心偵測zh_TW
dc.subjectclothing recognitionen
dc.subjecttorso proportions analysisen
dc.subjectvest detectionen
dc.subjecthard hat detectionen
dc.title工地安全監控系統zh_TW
dc.titleConstruction Site Surveillance Systemen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.coadvisor張瑞益
dc.contributor.oralexamcommittee呂承諭,張信宏
dc.subject.keyword服裝辨識,安全帽偵測,背心偵測,人體比例分析,zh_TW
dc.subject.keywordclothing recognition,hard hat detection,vest detection,torso proportions analysis,en
dc.relation.page60
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-07-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf10.59 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved